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Background. Immunotherapy shows promise in treating cancer by leveraging the immune system to combat cancer cells.
However, the infuence of crotonylation metabolism on the prognosis and tumor environment in ccRCC patients is not fully
understood.Methods. We conducted various systematic analyses, including prognosis and cluster analyses, to investigate the role
of KAT2A in immunotherapy. We used qRT-PCR to compare KAT2A expression in cancer and adjacent tissues and among
diferent cell lines. Additionally, we employed Cell Counting Kit-8, wound healing, and Transwell chamber assays to assess
changes in the proliferative and metastatic ability of A498 and 786-O cells. Results. We identifed three clusters related to
crotonylation metabolism, each with distinct prognosis and immune characteristics in ccRCC. We categorized CT1 as immune-
infamed, CT2 as immune-excluded, and CR3 as immune-desert. A new system, CRS, emerged as an efective predictor of patient
outcomes with difering immune characteristics. Moreover, qRT-PCR revealed elevated KAT2A levels in ccRCC tissues and cell
lines. KAT2A was found to promote ccRCC and correlate signifcantly with immunosuppressive elements and checkpoints.
Reducing KAT2A expression hindered ccRCC cell growth and metastasis. Conclusion. Our study highlights the critical role of
crotonylation metabolism in cancer development and progression, particularly its link to poor prognosis. CRS proves to be an
accurate predictor of patient outcomes and immune features in ccRCC. KAT2A shows strong associations with clinical factors and
the immunosuppressive environment, suggesting potential for innovative immunotherapies in ccRCC treatment.

1. Introduction

Post-translational modifcation (PTM) of proteins encom-
passes chemical alterations that occur after the translation
process.Tesemodifcations wield substantial infuence over
intracellular signal transduction, metabolism, and gene
regulatory networks by orchestrating changes in protein
stability, activity, localization, and interactions with other
biological macromolecules, such as proteins, nucleic acids,
and lipids [1–3]. Consequently, they hold sway over a wide
array of cellular functions. In normal cells, PTMs play
a pivotal role in precisely and swiftly regulating cell pro-
liferation, thereby dictating the cell’s state—be it quiescence
or proliferation. In contrast, in cancer cells, PTMs can foster
abnormal proliferation by steering cell cycle-related efector

proteins and perpetuating proliferation signals [4–6]. Te
vast spectrum of PTMs, numbering in the hundreds, en-
compasses forms like phosphorylation, glycosylation, acet-
ylation, ubiquitination, and acylation [7]. Among them,
protein acylation stands out as a pivotal post-translational
modifcation. Lipidated proteins often share an intimate
association with non-polar structures like lipid bilayers,
greatly elevating their hydrophobicity and, in turn, modu-
lating their conformation, membrane afnity, localization,
and mobility [8]. Consequently, protein acylation plays
a pivotal role in regulating cell proliferation andmetabolism,
regardless of whether the context is normal or cancerous.

Histone crotonylation, a conservative and non-acetylated
histone lysine acylation modifcation, occupies a prominent
niche in transcriptional regulation and disease progression
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[9, 10]. Lysine crotonylation (Kcr), a subtype of histone lysine
acylation, primarily unfolds at the ε-amino group of histone
lysines [11]. Te mechanisms behind histone crotonylation’s
establishment, removal, and recognition are orchestrated by
well-known enzymes involved in histone acetylation [12].
Furthermore, localized shifts in histone crotonylation levels
can precipitate corresponding changes in gene expression
[13]. Importantly, histone crotonylation exerts distinctive
biological functions, impacting cell metabolism, the cell
cycle, tissue development, and other vital processes [14–16].
Nonetheless, the prognostic implications and underlying
biological mechanisms of Kcr in clear cell renal cell carcinoma
(ccRCC) remain veiled.

Tis study embarks on a systematic exploration of the
prognostic signifcance and immune signatures associated with
Kcr-related genes in ccRCC. We also construct Kcr-related
clusters distinguished by their varying prognostic and immune
characteristics. Leveraging data from the Cancer Genome Atlas
(TCGA) and the E-MATB-1980 dataset, we construct and
validate a Kcr-based prognostic model to predict the fate of
ccRCC patients. Additionally, we delve into the clinical attri-
butes, biological pathways, and immune properties of KAT2A,
a pivotal gene in Kcr modifcation.

2. Methods

2.1. Data Acquisition and Processing. Transcriptome data
and clinical information of ccRCC patients were obtained
from TCGA and Gene Expression Omnibus (GEO) data-
bases. A set of 17 crotonylation-related genes (CRGs) were
curated from pertinent literature sources [17, 18]. Te
GSE22541 dataset was utilized as external validation data-
sets, while the GSE36895 and GSE73731 datasets were
utilized to evaluate the clinical features of the model genes.

2.2. Construction of Crotonylation-Related Clusters. To
evaluate the role of CRGs in tumor progression, we adopted
the non-negative matrix factorization (NMF) algorithm to
classify patients. Survival diferences between crotonylation-
related clusters were evaluated using Kaplan–Meier (KM)
analysis. To further delve into the diferences of biological
pathways among the clusters, we identifed diferentially
expressed genes (DEGs) according to the criteria of | log-
Fold Change (logFC)> 1.5 | and adjusted p value <0.01. We
then conducted Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analyses
to unravel the underlying mechanisms of these DEGs. Gene
set variation analysis (GSVA) was employed to explore
variations in pathway enrichment among the clusters.

2.3. Establishment of the Crotonylation-Related Signature.
Firstly, we performed the Wilcoxon test to discern the dif-
ferential expression of 17 CRGs between cancer and adjacent
tumors tissues. Subsequently, we subjected the diferentially
expressed CRGs to univariate Cox regression analysis to
identify CRGs associated with prognosis. Utilizing the ex-
pression profle of prognostic related CRGs, we further
constructed a prognostic model using the least absolute

shrinkage and selector operation (LASSO) analysis. Te
crotonylation-related signature (CRS) was obtained by linear
combination of gene expression weighted regression co-
efcients. Te algorithm was as follows: CRS�Coef A∗Gene
A expression+Coef B∗Gene B expression+Coef C∗Gene
C expression+. . .. . .Coef N∗Gene N expression, with Coef
referring to the coefcient calculated by LASSO and gene
expression referring to the expression of CRGs. According to
the ratio of 1 :1, the patients were classifed into training and
test group. Te survival diferences in overall survival (OS,
overall survival is a measure of the length of time individuals
or patients survive from a defned starting point (such as
diagnosis or treatment initiation) until death from any cause)
were analyzed between the high and low groups. Te time-
dependent receiver operating characteristic (ROC) curve and
univariate and multivariate analyses were adopted to assess
the stability and accuracy of the model. Te GSE22541 dataset
was used for external validation of the model.

2.4. Evaluation of the Immunogenomic Landscape. Multiple
algorithms were exploited to investigate immune infltration
characteristics of ccRCC samples. Te Spearman algorithm
was employed to analyze the correlation between CRS and
immunoinfltrating cells. Te anticancer immune response
(cancer immune cycle) in the tumor microenvironment
(TME) had seven steps. Te immune activity scores on
ccRCC samples were collected from the Tracking Tumor
Immunophenotype (TIP, https://biocc.hrbmu.edu.cn/TIP/).
Tumor microenvironment (TME) may afect the occurrence
and development of cancer, so we employed the ESTIMATE
algorithm to evaluate the TME score (ImmuneScore,
StromalScore, and tumor purity) of ccRCC samples. Ad-
ditionally, the single-sample gene set enrichment analysis
(ssGSEA) algorithm was applied to assess immune function
pathway scores in ccRCC samples.

2.5. Screening and Validation of Hub Crotonylation-Related
Genes. On the basis of modeled genes expression, the re-
cursive feature elimination- (RFE-) support vector machine
(SVM) algorithm was utilized to further screen the hub
crotonylation-related genes. Ten, the KM survival curve and
ROC curve were adopted to evaluate the prognostic char-
acteristics of hub genes. We further exploited the correlation
between hub genes and clinicopathological variables. Ten,
the real-time quantitative PCR (RT-qPCR) was utilized to
evaluate the diferential expression of modeling genes be-
tween ccRCC and normal tissues. Protein expression data for
KAT2A between cancer and paracancer tissues were retrieved
from the Human Protein Atlas (HPA) database.

2.6. Cell Culture and Cell Transfection. Two human ccRCC
cell lines (A498 and 786-O) were purchased from the cell bank
of the Chinese Academy of Sciences (Shanghai, China). All
cells were cultured in RPMI 1640 medium (Termo Fisher
Scientifc, Inc.) supplemented with 10% fetal bovine serum
(FBS; Termo Fisher Scientifc, Inc.) at a constant tempera-
ture of 37°C in a humidifed atmosphere containing 5% CO2.
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Lentiviral shRNA plasmids that target KAT2A together
with the nonspecifc control shRNA were obtained from
Dharmacon (Shanghai, China). Transfection of plasmid and
shRNA was performed with Lipo3000 following the man-
ufacturer’s instructions.

2.7. Cell Counting Kit-8 (CCK8) Assay. In brief, A498 and
786-O cells after diferent interventions were incubated in
96-well plates (2×103), supplemented with 200 μL culture
medium and conditioned in 37°C with 5% CO2. On days 1, 2,
3, 4 and 5, 20 μL CCK8 solution was added into each well,
and incubation was performed for 2 h. Absorbance was
measured at an optical density of 450 nm using a microplate
reader (Bio-Rad Laboratories, Inc.).

2.8. Transwell Assay. A498 and 786-O cells (with an cuba-
tion density of 2×105) were incubated in the upper
chambers (Corning). For the invasion assay, the upper
chambers were precoated with Matrigel (BD Biosciences).
Culture medium without and with 10% FBS was added into
the upper and lower chambers, respectively. After 12 h, non-
migrated cells were wiped out while migrated or invaded
CRC cells were fxed, stained, and counted using an inverted
microscope.

2.9. Wound Healing Assay. Cell migration was assessed by
performing a wound healing assay. In brief, A498 and 786-O
cells were transfected with KAT2A. Approximately 2×106
cells were seeded into 6-well plates and cultured for 24 h.
Ten, a yellow plastic pipette tip was used to create a wound
by scraping the cells. Cell migration was monitored under
a Nikon Eclipse microscope and photographed at 100×.

3. Results

3.1. Establishment of the Crotonylation-Related Clusters and
Functional Enrichment Analysis. We utilized the NMF al-
gorithm to establish three disparate crotonylation
metabolism-related clusters (CT1, CT2, and CT3) according
to 17 CRG expressions (Figure 1(a)). Te heatmap illustrated
the distribution of the clinical variables and CRG expression
(Figure 1(b)). Te KM curve indicated that CT1 patients had
the best prognosis (Figure 1(c)). To delve into diference of
pathway enrichment among the clusters, we screened the
DRGs according to the criteria of | logFC|≥ 1.5 and adjustedp

value <0.01. Venn diagram demonstrated that 788 DEGs were
common among the three distinct crotonylation metabolism-
related clusters (Figure 1(d)). GO analysis revealed that DEGs
were mainly enriched in cadherin binding, cell adhesion
molecule binding, cell-substrate junction, and protein cata-
bolic process (Figure 1(e)). KEGG analysis suggested that
DEGs were focused on the immune-related pathway, onco-
genic pathway, and angiogenesis pathway (Figure 1(f)).
Additionally, GSVA analysis unveiled that CT1 was signif-
cantly related to the enrichment pathway related to immune
activation, matrix and carcinogenic activation pathway were
signifcantly enriched in CT2, and CT3 was obviously

associated with the biological process of immunosuppression
(Figures 1(g) and 1(h)).

3.2. Immune Infltration Characteristics of Crotonylation-
Related Clusters. To further explore causes of survival dif-
ferences among crotonylation metabolism-related clusters,
we analyzed characteristics of immune infltration. Initially,
we analyzed diferences of immune function pathways
among the clusters, fnding that the expression of multiple
immune function pathways was highest in CT1 and lowest in
CT3 (Figure 2(a)). Immunosuppression checkpoints were
diferentially expressed among crotonylation metabolism-
related clusters, and the highest expression was found in
CT3 (Figure 2(b)). Te TME scores showed signifcant
diferences among various groups, with CT1 exhibiting the
highest expression in StromalScore and ESTIMATEScore,
while displaying the lowest expression in tumor purity
(Figures 2(c)–2(f)). Heatmap presented the distribution of
immune infltrating cells and TME scores among crotony-
lation metabolism-related clusters (Figure 2(g)). Addition-
ally, the expression of immune infltrating cells was the
highest in CT1 and the lowest in CT3 (Figure 2(h)).

3.3. Establishment of the Crotonylation-Related Signature and
Prognosis Analysis. To explore the role of CRGs in ccRCC,
we explored diferential expression of CRGs between cancer
and paracancerous tissues. Except for EP300 and SIRT1, the
expression of other 15 CRGs was signifcantly diferent
between ccRCC and paracancer tissues (Figure 3(a)). Sub-
sequently, we identifed eight prognostic related CRGs
through univariate Cox regression analysis (Figure 3(b)).
After performing LASSO regression analysis on these 8
genes, we selected 4 genes to establish the crotonylation-
related signature (Figure 3(c)). Patients were randomly
divided into training group and test group on a 1 :1 ratio.
Heatmap illustrated the distribution of four modeled genes
and clinical variables in allrisk group (Figure 3(d)). KM
curve and survival status distribution suggested that patients
in the high CRS group had a worse prognosis in the allrisk
group (Figures 3(e) and 3(f)). ROC curves about CRS in one,
two, and tree years in the allrisk group were 0.735, 0.685, and
0.697 (Figure 3(g)). Univariate andmultivariate Cox analysis
suggested that CRS had strong predictive accuracy for
the prognosis of ccRCC patients (Figures 3(h) and 3(i)).
GSE22541 served as an external validation dataset to verify
stability of CRS. Te KM curve and survival status distri-
bution in the GSE22541 showed that CRS was associated
with poor prognosis (Figures 3(j) and 3(k)). ROC curves
about CRS in 1, 2, and 3 years in the GSE22541 dataset were
0.683, 0.699, and 0.680 (Figure 3(l)). Similar results were
obtained in the training and test risk groups (Figure S1).

3.4. Identifcation of Clinicopathological and Prognostic
Characteristics of the Crotonylation-Related Signature.
We assessed the correlation between CRS and clinicopatho-
logical variables by examining the diferential expression of
CRS in diferent clinical variables. CRS expression was highest
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Figure 1: Construction of crotonylation metabolism-related clusters. (a) Diferent crotonylation metabolism-related molecular clusters of
the TCGA cohort were identifed for k� 3. (b) Diferences in crotonylation metabolism-related gene expression and clinical characteristics
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in CT3, and its expression was more pronounced in advanced
clinicopathologic variables (Figures 4(a)–4(f)). Te chisq test
was then utilized to analyze the diferences in the distribution
of clinicopathological variables between high and low CRS.
Figures 4(g)–4(l) reveal that compared with low CRS group,
the proportion of advanced clinicopathologic variables in high
CRS group was higher and there was statistical diference. Te
KM curves indicated that among diferent clinicopathological
variables, the high CRS group was associated with poor

prognosis and had signifcant diferences (Figures 4(m)–4(q)).
Tese results corroborated the association between higher CRS
expression and worse patient prognosis.

3.5. Identifcation of Immune InfltrationCharacteristics of the
Crotonylation-Related Signature. We further evaluated the
correlation between CRS and immunoinfltrating cells. Across
various algorithms, the expression distribution of immune
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Figure 2: Immune infltration characteristics of crotonylation metabolism-related clusters. (a) Diferential expression of immune function
score among diferent crotonylation metabolism-related clusters. (b) Diferences in immunosuppressive checkpoint expression among
crotonylation metabolism clusters. (c–f ) Diferences in tumor microenvironment scores among crotonylation metabolism-related clusters.
(g) Distribution of immune cell and tumor microenvironment scores among crotonylation metabolism clusters. (h) Diferences in immune
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Figure 3: Construction and validation of the crotonylation metabolism-related signature. (a) Diferences in crotonylation metabolism-
related genes expression between ccRCC and normal tissues. (b) Results of univariate Cox regression analysis. (c) LASSO regression
identifed 4 crotonylation metabolism-related genes. (d) Distribution of modeled genes and clinicopathologic features between croto-
nylation metabolism signatures. (e) Te risk curve of each sample reordered by crotonylation metabolism-related signature and the
distribution of survival states. (f ) Survival analysis of the crotonylation metabolism signature. (g) ROC curves about crotonylation
metabolism-related signature in 1–3 years. (h, i)Te results of univariate and multivariate Cox analysis of crotonylation metabolism-related
signature. (j) Risk curve of each sample reordered by crotonylationmetabolism signature and the distribution of survival states in GSE22541.
(k) Survival analysis of the crotonylation metabolism signature in GSE22541. (l) ROC curves about crotonylation metabolism signature in
1–3 years in GSE22541.
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cells in the high and low-risk groups were analyzed
(Figure 5(a)). Additionally, we analyzed correlation co-
efcient between CRS and immune cells by Spearman al-
gorithm and visualized it in the lollipop chart (Figure 5(b)).
Immunosuppressive cells (Regulatory Tcell, Myeloid-Derived
Suppressor Cells (MDSCs), and Macrophage) were obviously
overexpressed in high CRS group (Figures 5(c)–5(e)). Besides,
the StromalScore, ImmuneScore, and ESTIMATEScore were
all signifcantly overexpressed in the high CRS group
(Figures 5(f)–5(h)). Te high CRS group exhibited higher
expression levels in immune functional pathways such as the
checkpoint, cytoolytic activity, CCR, and infammation-
promoting pathway (Figure 5(i)). In order to further assess
the relevance of CRS to immune typing, we then analyzed the
relation between CRS and previously reported pan-cancer
immune subtypes. Te expression of CRS was higher in C1,
C2, and C6 and lowest in C3 (Figure 5(j)). Given that C6 was
correlated with a poor prognosis and C3 was linked to a better
prognosis, these results suggested a unique characteristic of
the ccRCC immune microenvironment. Most immunosup-
pressive checkpoints were signifcantly overexpressed in the
high CRS group (Figure 5(k)). Antitumor immunity must
efectively eliminate cancer cells through a gradual process. To
further analyze function of immune cells in progression of
ccRCC, we obtained immune activity score of each step in
ccRCC sample from TIP. Antitumor immune cells were
signifcantly overexpressed in high CRS group (Figure 5(l)).

3.6. Identifcation of Prognostic Characteristics of Hub
Crotonylation-Related Genes. In order to identify the most
representative prognostic genes related to crotonylation mod-
ifcation in RCC, we employed the SVM-RFEmethod to screen
three genes (KAT2A, KAT6A, and SIRT3) (Figure 6(a)). Te
AUCof ROCwas used for evaluation of the ability to predict the
prognosis of patients with ccRCC on the basis of gene ex-
pression.Te AUC values of KAT2A, KAT6A, and SIRT3 were

0.811, 0.618, and 0.572, respectively (Figure 6(b)). KM analysis
showed that KAT2A was associated with a poor prognosis,
while KAT6A and SIRT3 displayed an inverse association
(Figures 6(c)–6(e)). Furthermore, KAT2A expression was
higher in advanced clinical variables, while KAT6A and SIRT3
were opposite (Figures 6(f)–6(m)).

3.7. Identifcation of Immune Characteristics of KAT2A.
Ten, we further analyzed immune characteristics of KAT2A.
Patients were grouped into high and low KAT2A expression
groups based on the average expression of KAT2A. In the low
KAT2A group, most immune cells were markedly upregu-
lated (Figure 7(a)). Figure 7(b) shows a signifcant negative
correlation between KAT2A and a variety of immune cells.
Moreover, KAT2A was positively correlated with multiple
immunosuppressive checkpoints, with most of these check-
points being markedly overexpressed in the high KAT2A
group (Figures 7(c) and 7(d)).

3.8. KAT2A Knockdown Suppressed Proliferation, Migration,
and Invasion in A498 and 786-O Cells. In addition, 18 pairs
of ccRCC tissues, tree ccRCC cell lines, and 1 normal renal
cell line were detected by RT-qPCR. KAT2A was markedly
upregulated in tumor tissues. Furthermore, KAT2A was
markedly upregulated in ccRCC cell lines and was highest in
A498 cell line in comparison to normal kidney cell lines
(Figure 8(a)). In the KAT2A knockdown group, mRNA and
protein expression of KAT2A were dramatically down-
regulated (Figure 8(b)). Te CCK8 assay demonstrated that
the proliferation of A498 and 786-O cells was markedly
decreased in KAT2A knockdown group (Figure 8(c)).
Transwell experiments revealed that the migration and in-
vasion of A498 and 786-O cells were clearly inhibited in
KAT2A knockdown group (Figure 8(d)). Wound healing
detection suggested that the healing distance of A498 and
786-O cells in KAT2A knockdown group was lower than

(p) (q)

Figure 4: Correlation analysis between crotonylation metabolism signature and clinicopathological stages. (a–f) Diferences in croto-
nylation metabolism signature among clinicopathological variables. (g–l) Te histogram showing the proportion of clinicopathological
variables in crotonylation metabolism signature groups. (m–q) Survival analysis of palmitoylation metabolism-related signature in diferent
clinicopathological variables.
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that in control group after 24 hours (Figure 8(e)). Tese
fndings indicated that the expression of KAT2A was pos-
itively correlated with the proliferation, migration, and
invasion of ccRCC cells.

4. Discussion

Renal cell carcinoma (RCC) is an extremely complex tumor
originating from epithelial cells, of which ccRCC is the most
common subtype [19, 20]. Te incidence and mortality of
ccRCC were increasing year by year, accounting for about
two to tree percent of adult malignancies [21–23]. Since

ccRCC was insensitive to targeted and immunosuppressive
agents, surgical treatment remains the main and most ef-
fective treatment [23, 24]. Despite signifcant progress in
early screening and diagnosis, about one-third of patients
already metastasized when diagnosed and about 25% have
metastases after surgical treatment [25, 26]. Lysine croto-
nylation takes part in many biological processes, including
translation initiation, RNA splicing, DNA damage and re-
pair, cell cycle, and amino acid metabolism. Tis study
focuses on understanding the potential role of crotonylation
modifcation in ccRCC, as Kcr has been implicated in
various cellular processes, including those related to cancer.
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Figure 5: Identifcation of the immune characteristics of the crotonylation metabolism signature. (a) Heatmap representing expression of
immune cells in crotonylation metabolism-related signature groups under various algorithms. (b) Correlation analysis of immune cells and
crotonylation metabolism signature under multiple algorithms. (c–e) Expression diference of immunosuppressive cells in crotonylation
metabolism-related signature groups. (f–h) Expression diference of tumor microenvironment scores in crotonylation metabolism-related
signature groups. (i) Diference of immune function scores in crotonylation metabolism-related signature groups. (j) Diferential expression of
crotonylation metabolism signature among immune subtypes. (k) Expression diference of immunosuppressive checkpoints in crotonylation
metabolism-related signature groups. (l) Diferential expression of crotonylation metabolism signature in tracking tumor immunophenotypes.
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Figure 6: Clinicopathological characteristics and prognostic characteristics of hub crotonylation metabolism-related genes. (a) Optimal
outcome of screening ccRCC genes by SVM algorithm. (b) ROC curves of three hub crotonylation metabolism-related genes. (c–e) Survival
analysis of the three hub crotonylation metabolism-related genes. (f–m) Expression diference of three hub crotonylation metabolism-
related genes in various clinicopathological stages in TCGA and GEO datasets.
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Figure 7: Continued.

International Journal of Clinical Practice 13



*** *** ** ** *** * *** *** ***

PD
CD

1

CT
LA

4

CD
27

4

TI
G

IT

PD
CD

1L
G

2

LG
A

LS
9

LA
G

3

IL
10

RB IL
10

ID
O

1

CD
96

CD
24

4

CD
16

0

BT
LA

A
D

O
RA

2A

KAT2A

Low

High

0

2

4

6

G
en

e e
xp

re
ss

io
n

(d)

Figure 7: Immunological characteristics and expression verifcation of KAT2A. (a) Expression diference of immune cells in KAT2A
groups. (b) Correlation analysis between immune cells and KAT2A. (c) Correlation analysis between immunosuppression checkpoints and
KAT2A. (d) Expression diference of immunosuppression checkpoints in KAT2A groups.
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Figure 8: Downregulation of KAT2A suppressed the progression of ccRCC in vitro. (a) mRNA diferential expression of KAT2A in ccRCC
tissues and cell lines. (b) Te expression of KAT2A in A498 and 786-O cells was detected by RT-qPCR. (c) KAT2A knockdown suppressed
ccRCC cell proliferation in A498 and 786-O cells. (d) KAT2A knockdown suppressed ccRCC cell metastasis in A498 and 786-O cells.
(e) Wound healing tests demonstrated changes in ccRCC cell migration.
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Immunotherapy has emerged as a promising approach for
the treatment of cancer, ofering several advantages over
traditional therapies such as chemotherapy and radiation [27].
Its design is centered on the specifc targeting of cancer cells
while preserving healthy cells. Unlike conventional treatments
that often harm both cancerous and healthy cells, immuno-
therapy is designed to target specifc molecules or cells in-
volved in the immune response against cancer. Tis targeted
approach minimizes of-target toxicity and reduces the risk of
side efects. Immunotherapy can reactivate the immune sys-
tem, which can be particularly efective when cancer cells
develop resistance to traditional treatments. Immune check-
point inhibitors, for example, have shown success in blocking
interactions that hinder immune responses, allowing immune
cells to attack cancer cells more efectively.

In this study, based on the 17 CRG expressions, we
employed the NMF algorithm to construct three crotonylation-
modifed clusters with diferent prognostic and immune
characteristics. By analyzing the diferences of immune and
biological pathways between the three clusters, three croto-
noylation modifcation clusters have markedly diferent TME
cell infltration characteristics. We speculated that a large
number of immune cell infltration and immune-related
pathways were enriched in CT1, which was considered to be
an immune-infammatory type; a large number of innate im-
mune cell infltration and cancer-promoting activation-related
pathways were enriched in CT2, and CT2 was considered an
immune excluded type; there was a lack of immune cell in-
fltration in CT3, which was considered an immune desert
type. However, CT2 was signifcantly enriched in innate
immune cells but had a poorer prognosis. It has been shown
that immune-excluded tumors were infltrated by immune
cells, but these immune cells were only present in the stroma
surrounding the tumor cells. Terefore, activation of the
stroma in the tumor microenvironment was considered to be
T cell suppression [28]. In addition, matrix activation path-
ways were clearly enriched in CT2. Tese pathways include
ECM receptor interaction, TGF-β signal pathway, and cell
adhesion. Tus, we hypothesized that the antitumor efects of
immune cells were suppressed by the activation of in-
termediates in the CT2 cluster. Subsequently, the univariate
cox and Lasso analyses were utilized to structure the Cro-
tonacylation modifcation-related prognosis model and ver-
ifed the stability of this model in predicting patient prognosis
with univariate and multivariate independent prognostic
analysis and E-MATB-1980 datasets. In TME, invasive im-
mune cells had key function in tumor proliferation, migra-
tion, invasion, and regulation of anticancer immunity and
were extremely important therapeutic targets [29]. In high
CRS group, tumor microenvironment score and proportion
of immunosuppressive cell infltration were higher, and the
prognosis was worse. In conclusion, the crotonylation
modifcation-related prognosis model was an important in-
dicator for evaluating patients’ prognosis and immune re-
sponse, which was helpful for the formulation and
development of personalized therapy for patients with
ccRCC.

Kcr is not only a plentiful, evolutionally conservative, and
physiologically related PTM but also signifcantly associated

with the occurrence and progression of tumors. A quantitative
proteomics study indicated that Kcr substrates targeted by P300
may be linked to cancer [30]. Besides, crotonylation modif-
cation was expressed diferently in various cancers, such as high
expression in thyroid, esophagus, colon, pancreas, and lung
carcinomas, but low expression in liver and stomach carci-
nomas [31]. At the same time, in hepatocellular carcinoma
(HCC), Kcr was correlated to tumor, lymph node, and me-
tastasis (TMN) staging [14]. Besides histone crotonylation,
many non-histone proteins also participate in carcinogenesis. In
lung adenocarcinoma, many non-histone proteins were mod-
ifed by crotonylation, and these proteins were signifcantly
enriched in subcellular localization, cell composition, molecular
function, and many important cellular pathways [32].

As the frst writers, KAT2A (General control non-
depressible 5 (GCN5)) has been shown to have acetyl-
transferase, succinyltransferase, and crotonyltransferase ac-
tivities on histones [32–34]. KAT2A regulated multiple
biological events and played a vital role in tumor initiation
and progression [34]. KAT2A was highly expressed in non-
small-cell radiation-induced lung cancer and may promote
tumor progression by upregulating E2F1 and cyclin d1 [35].
GCN5 was overexpressed in HCC, and downregulation of
KAT2A inhibits HCC cell and xenograft tumor proliferation
[36]. KAT2A is markedly overexpressed in urothelial car-
cinoma, and KAT2A knockdown can inhibit the progression
of urothelial carcinoma [37]. Our study revealed that KAT2A
was markedly upregulated in ccRCC, and this conclusion was
further verifed by RT-qPCR assay and HPA dataset. At the
same time, KAT2A was negatively associated with most
immune cells and signifcantly positively correlated with
immunosuppression checkpoints. We speculated that
KAT2A might promote tumor metastasis and proliferation
by participating in the establishment of an immunosup-
pressive tumor microenvironment.

Despite the valuable insights gained from this study, it has
some limitations.Tese include the use of traditional univariate
and Lasso regression analyses to construct the crotonylation-
related prognosis model, which may beneft from more ad-
vanced methodologies. Additionally, the study’s reliance on
clinical information from the TCGA database, which may lack
comprehensive data, could be complemented with additional
parameters such as imaging data. Future research could focus
on further elucidating the mechanisms through which croto-
nylation modifcation afects ccRCC progression and exploring
the potential of targeted therapies, including immunotherapies,
based on these fndings. Moreover, clinical studies could be
conducted to validate the prognostic and predictive value of the
crotonylation-related signature in ccRCC patients, ultimately
leading to more personalized treatment approaches for this
challenging cancer subtype.

5. Conclusion

In brief, we classifed ccRCC patients into three crotonylation
metabolism-related clusters with diferent prognosis and
immune cell infltration characteristics. Moreover, the cro-
tonylation metabolism-related prognostic model was con-
structed in ccRCC patients, which may be a marker to predict
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the prognosis and immune response of ccRCC patients.
Meanwhile, KAT2A may contribute to the construction of an
immunosuppressive tumor microenvironment, which may
become a target for immunotherapy to further guide clinical
treatment decisions.
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