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Te accuracy of indices widely used to evaluate lung metastasis (LM) in patients with kidney cancer (KC) is insufcient.Terefore,
we aimed at developing a model to estimate the risk of developing LM in KC based on a large population size and machine
learning algorithms. Demographic and clinicopathologic variables of patients with KC diagnosed between 2004 and 2017 were
retrospectively analyzed.We performed a univariate logistic regression analysis to identify risk factors for LM in patients with KC.
Six machine learning (ML) classifers were established and tuned using the ten-fold cross-validation method. External validation
was performed using clinicopathologic information from 492 patients from the Southwest Hospital, Chongqing, China. Al-
gorithm performance was estimated by analyzing the area under the receiver operating characteristic curve (AUC), accuracy,
sensitivity, specifcity, precision, recall, F1 score, clinical decision analysis (DCA), and clinical utility curve (CUC). A total of
52,714 eligible patients diagnosed with KC were enrolled, of whom 2,618 developed LM. Variables of age, sex, race, T stage, N
stage, tumor size, histology, and grade were identifed as important for the prediction of LM.Te extreme gradient boosting (XGB)
algorithm performed better than other models in both the internal validation (AUC: 0.913, sensitivity: 0.873, specifcity: 0.809, and
F1 score: 0.325) and the external validation (AUC: 0.904, sensitivity: 0.750, specifcity: 0.878, and F1 score: 0.364). Tis study
established a predictive model for LM in KC patients based on ML algorithms which showed high accuracy and applicative value.
A web-based predictor was built using the XGB model to help clinicians make more rational and personalized decisions.

1. Introduction

Kidney cancer (KC) originates in the kidney and accounts for
approximately 2% of all malignancies worldwide [1, 2].
Approximately 350,000 people are newly diagnosed with KC,
and 15,000 die from this cancer yearly [3]. According to the
2016 World Health Organization classifcation of urinary
carcinoma, KC incorporates several subtypes, including renal
cell carcinoma (90%), transitional cell carcinoma (1%), renal
sarcoma (1%), and other kidney tumors [4]. Most patients
have a favorable prognosis, and more than half of the patients
have an overall survival (OS) of more than ten years.

Although immunotherapy and precision surgery provide
patients with KC with a more favorable prognosis, ap-
proximately 20% of them have distant metastasis at the time
of diagnosis. Once the cancer has spread, the 5-year OS rate
severely decreases to approximately 10% [5]. Te lungs are
the most common site of distant metastasis, accounting for
55% of all metastatic cases of KC [6]. Previous studies
demonstrated that although drug treatment is advanced,
patients who develop lung metastasis (LM) only have
a median survival time of 15months [7]. Terefore, precise
measures to diagnose LM will provide clinicians with more
rational decisions. Conventional contrast-enhanced
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computed tomography (CT) is traditionally used for pre-
operative diagnosis. However, CT has relatively low sensi-
tivity (62%) and specifcity (86%) in predicting LM from KC,
leading to the misdiagnosis of many patients with LM
resulting in unnecessary surgeries that cannot cure their
cancer [8]. Moreover, because the metastatic focus is usually
small, many patients do not exhibit respiratory symptoms,
resulting in a delayed diagnosis of LM. Although magnetic
resonance imaging and biopsy ofered high accuracy in
detecting LM, the high fnancial cost and long waiting
duration delayed the diagnosis of LM and thus limited its
application to all patients with KC [9]. Terefore, a pre-
dictive model that conveniently and precisely detects LM in
patients with KC is needed, which could help clinicians
make more rational treatment decisions, adopt preventive
therapy, and improve patient survival. Te tumor-node-
metastasis (TNM) staging system, UCLA Integrated Staging
System (UISS), the tumor stage, size, grade, necrosis
(SSIGN) score, and Leibovich score encompass common
pathological factors and are frequently used to assess the
recurrence and metastatic risk of KC in clinical studies.
However, the C-index of these predictive systems was re-
ported to range between 0.723 and 0.80 [10, 11] and was not
highly satisfactory.

Machine learning (ML) has emerged as a powerful tool in
various felds such as computer vision, security systems, and
medicine, where it has shown signifcant value [12, 13]. An
increasing number of studies are demonstrating its potential
to improve diagnostics, prognostic predictions, and treatment
planning across a range of clinical diseases. In the medicine
feld, ML algorithms can learn from and make predictions
based on data, enabling the creation of personalized, data-
driven models that can enhance clinical decision-making and
patient care [14]. For instance, Liu et al. employed machine
learning models based on a population of 311,408 to predict
bone metastasis in patients with ductal carcinoma. Tey
achieved an area under the receiver operating characteristic
curve (AUC) of 0.888, a sensitivity of 0.801, and a specifcity of
0.837. Tis high predictive accuracy highlights the potential
for ML models to be utilized in determining appropriate
treatment strategies for such patients [15]. Similarly, Cheng
et al. developed a machine learning-based model using
a population of 10,580 to predict the survival of patients with
neuroendocrine tumors.Tey attained an AUC of 0.90, which
was signifcantly greater than that of the American Joint
Committee on Cancer (AJCC) seventh staging system. Te
success of this model demonstrates the utility of ML-based
approaches for prognostication and guiding clinical decision-
making in oncology [16]. In this study, we attempted to build
an exact tool based on ML algorithms by employing a large
population of patients with KC from the Surveillance, Epi-
demiology, and End Results (SEER) database and a real-world
hospital.

2. Materials and Methods

2.1. Patients. Te patients were extracted from the SEER
database (2010–2017), which comprises approximately 30%
of the total population in the USA [17]. Patients from the

Southwest Hospital in China were also enrolled in the pa-
tient cohort. Te inclusion criteria were patients with kidney
malignancy. Patients who (1) were younger than 18 years
old, (2) had unknown Tor N stage, (3) had unknown LM, (4)
had unknown tumor size, (5) had more than one primary
tumor site, and (6) had unknown tumor grade were excluded
from the cohort. Tis retrospective study involving human
participants was conducted in accordance with the ethical
standards of the institutional and national research com-
mittee. Ethical approval was waived by the local Ethics
Committee of Southwest Hospital in view of the retro-
spective nature of the study.

Finally, 52,714 patients were enrolled in this study. We
randomly assigned 52,222 patients from the SEER database
to the training (70%) and internal test (30%) sets. Te
training set was used to establish the predictive models,
while the latter was used to validate the model’s perfor-
mance. Subsequently, 492 patients from Southwest Hospital
were assigned to the external test cohort, which was used to
externally re-validate themodels. A detailed patient selection
fowchart is shown in Figure 1.

2.2. Feature Selection. We retrospectively selected clinical
features using SEERStat software (8.4.0.1) to screen for
commonly used variables, including age, sex, T stage, N
stage, laterality, tumor size, grade, histology, race, and LM.
Te T and N stages were determined according to the
seventh edition of the AJCC TNM staging system. His-
tology categories included the following: (8120) transi-
tional cell carcinoma, (8255) adenocarcinoma with mixed
subtypes, (8260) papillary adenocarcinoma, (8310) clear
cell adenocarcinoma, (8312) renal cell carcinoma, and
(8317) chromophobe renal carcinoma and other rare
subtypes.

2.3. Model Establishment and Model Performance. First, we
used univariate logistic regression to identify features related
to LM in the training cohort and then included variables
with a P value less than 0.05 in the model development
process. We measured feature importance using the per-
mutation method in machine learning models, as described
in references [14, 18]. Ten, utilizing the “Tidymodels”
packages, we constructed six machine learning models that
incorporated the selected features. Tese models included
logistic regression (LR), extreme gradient boosting (XGB),
random forest (RF), support vector machine (SVM), arti-
fcial neural network (ANN), and decision tree (DT). Tese
models were developed using the selected variables from the
procedures described above and applied to the training
cohort. Te hyperparameters were optimized using a ten--
fold cross-validation and grid search approach, with the
specifc parameter settings detailed in Supplementary fle 1.

Several evaluators, including AUC, accuracy, sensitivity,
specifcity, precision, recall, and F1 score, were used to
estimate the performance of models in internal and external
test cohorts. Decision curve analysis (DCA) and clinical
utility curve (CUC) were performed to examine the dis-
criminative and ftting abilities of the models. We then
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selected the best-performing model to build a web-based
online calculator for generalization. In addition, to evaluate
the contribution of each variable in prediction, we used an
imputation-based method to rank the importance of the
selected parameters in the training cohort. Finally, the
survival analysis of OS and cancer-specifc survival was
performed to validate the prognostic value using the
Kaplan–Meier method based on the predictive results.

2.4. Statistical Analysis. Te age and tumor size variables in
this study were measured in a continuous form, and the t-
test was used to compare the diferences between these two
variables. Te TNM stage was classifed according to the 7th
AJCC TNM classifcation. Other variables were displayed in
the categorical form, and the chi-square test was used to
compare the diferences. A correlation analysis by the
Spearman method was performed to describe the relevance
among variables and identify highly relevant features to LM.
Te relevant index categorized three levels: 0–0.4, low;
0.4–0.7, intermediate; and ≥0.7, high. All statistical analyses
were performed using R software (version 4.2.1; R Foun-
dation for Statistical Computing).

3. Results

3.1. Baseline Characteristics. In total, 52,714 patients were
enrolled in this study. Among them, 2,618 (4.96%) patients
with KC were diagnosed with LM. A comparison of char-
acteristics between the LM and non-LM cohorts is sum-
marized in Table 1. Compared with non-LM individuals,
individuals with LM were more likely to be elderly (61.3 vs.
59.6), male (71.4% vs. 62.5%), with larger tumor sizes
(51.0mm vs. 34.7mm), advanced (T3, T4) Tstage (71.8% vs.
20.1%) and N stage (33% vs. 2.9%), and higher (III-IV)
tumor grade (79.2% vs. 28.4%).

After being randomly divided into training and internal
test groups in a 7 : 3 ratio, patients in the training arm
(38,335) had characteristics similar to those of the internal
(15,667) and external (492) arms (Table 2).

3.2. Univariate and Multivariate Logistic Regression.
Based on univariate regression analysis, variables of age, sex,
Tstage, N stage, tumor size, histology, race, and tumor grade
were features with a P< 0.05 (Table 3). Tese variables were
used in building six ML algorithms. Multivariate regression
analysis showed that older age, male sex, larger tumor size,
Asian ethnicity, advanced T and N stage, tumor grade, and
histology of renal cell carcinoma were identifed as in-
dependent factors for LM.

3.3. CorrelationAnalysis. To recognize the variables relevant
to LM and to examine the linear relationship among
characteristics, we performed a correlation analysis based on
the Spearman method. As shown in Figure 2, no variables
exhibited a high linear relationship (index >0.8). In addition,
the Spearman relevant analysis showed that characteristics
of N stage, T stage, tumor size, and tumor grade were LM’s
four most relevant features.

3.4. Model Performance. Receiver operating characteristic
(ROC) curves of the internal and external cohorts are shown
in Figure 3, indicating that the XGB algorithm exhibited the
highest AUC value. Detailed information on the perfor-
mance is shown in Table 4. In internal and external test
cohorts, XGB outperformed the others, with AUC, accuracy,
sensitivity, and specifcity of 0.913, 0.812, 0.873, and 0.809,
respectively, in the internal test and 0.904, 0.872, 0.750, and
0.878, respectively, in the external test. Te XGB algorithm
demonstrated the third highest F1 scores, following RF and

train set (N=36555)
internal test set (N=15667)

excludes

Patients from Southwest hospital

external test set (N=492)

Patients with kidney cancer diagnosed
between 2000 through 2019 (N=240598)

Patients younger than 20-years (N=3045)
T stage unknown (N=109208)
N stage unknown (N=4557)

Lung metastasis unknown (N=932)
Tumor size unknown (N=1075)

More than one primary tumor (N=35256)
Grade unknown (N=27373)

Study cohort (N=52222)

Figure 1: Detailed fowchart for the patient selection procedure.
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Table 1: Clinicopathologic characteristics.

Variables Overall (N � 52,714) Non-LM (N � 50,096) LM (N � 2,618)
Age
Mean (SD) 59.7 (12.3) 59.6 (12.4) 61.3 (11.0)
Sex
Female 19,555 (37.1%) 18,805 (37.5%) 750 (28.6%)
Male 33,159 (62.9%) 31,291 (62.5%) 1,868 (71.4%)
Laterality
Left 25,973 (48.8%) 24,395 (48.7%) 1,330 (50.3%)
Right 26,741 (50.3%) 25,233 (50.4%) 1,288 (48.7%)
Race
Asian 3,625 (6.9%) 3,408 (6.8%) 217 (8.3%)
Black 5,701 (10.8%) 5,523 (11.0%) 178 (6.8%)
Others 1,031 (2.0%) 992 (2.0%) 39 (1.5%)
White 42,357 (80.4%) 40,173 (80.2%) 2,184 (83.4%)
T_stage
T1 35,124 (66.6%) 34,842 (69.6%) 282 (10.8%)
T2 5,646 (10.7%) 5,189 (10.4%) 457 (17.5%)
T3 10,959 (20.8%) 9,465 (18.9%) 1,494 (57.1%)
T4 985 (1.9%) 600 (1.2%) 385 (14.7%)
N_stage
N0 50,392 (95.6%) 48,646 (97.1%) 1,746 (66.7%)
N1 2,322 (4.4%) 1,450 (2.9%) 872 (33.3%)
Tumor_size
Mean (SD) 53.6 (37.3) 51.1 (34.7) 101 (51.0)
Histology
8120 182 (0.3%) 147 (0.3%) 35 (1.3%)
8255 1,344 (2.5%) 1,219 (2.4%) 125 (4.8%)
8260 6,029 (11.4%) 5,931 (11.8%) 98 (3.7%)
8310 35,878 (68.1%) 34,176 (68.2%) 1,702 (65.0%)
8312 5,736 (10.9%) 5,351 (10.7%) 385 (14.7%)
8317 2,210 (4.2%) 2,190 (4.4%) 20 (0.8%)
Others 1,335 (2.5%) 1,082 (2.2%) 253 (9.7%)
Grade
I 5,923 (11.2%) 5,862 (11.7%) 61 (2.3%)
II 26,761 (50.8%) 26,280 (52.5%) 481 (18.4%)
III 15,484 (29.4%) 14,401 (28.7%) 1,083 (41.4%)
IV 4,546 (8.6%) 3,553 (7.1%) 993 (37.9%)
LM, lung metastasis; 8120, transitional cell carcinoma; 8255, adenocarcinoma with mixed subtypes; 8260, papillary adenocarcinoma; 8310, clear cell ad-
enocarcinoma; 8312, renal cell carcinoma; 8317, chromophobe renal carcinoma.

Table 2: Characteristics in the training, internal, and external test cohorts.

Variables
Training cohort Internal test cohort External test cohort

Non-LM LM Non-LM LM Non-LM LM
Total N � 34,775 N � 1,780 N � 14,853 N � 814 N � 468 N � 24
Age
Mean (SD) 59.6 (12.4) 61.3 (11.1) 59.8 (12.3) 61.1 (10.8) 59.5 (10.8) 60.0 (9.07)
Sex
Female 13,622 (37.3%) 514 (28.9%) 5,524 (37.2%) 232 (28.5%) 173 (37.0%) 4 (16.7%)
Male 22,933 (62.7%) 1,266 (71.1%) 9,329 (62.8%) 582 (71.5%) 295 (63.0%) 20 (83.3%)
Laterality
Left 17,982 (49.2%) 889 (49.9%) 7,302 (49.2%) 429 (52.7%) 248 (53.0%) 12 (50.0%)
Right 18,573 (50.8%) 891 (50.1%) 7,551 (50.8%) 385 (47.3%) 220 (47.0%) 12 (50.0%)
Race
Asian 2,163 (5.9%) 131 (7.4%) 908 (6.1%) 62 (7.6%) 468 (100%) 24 (100%)
Black 3,986 (10.9%) 134 (7.5%) 1,671 (11.3%) 44 (5.4%) 0 (0%) 0 (0%)
Others 720 (2.0%) 27 (1.5%) 299 (2.0%) 12 (1.5%) 0 (0%) 0 (0%)
White 29,686 (81.2%) 1,488 (83.6%) 11,975 (80.6%) 696 (85.5%) 0 (0%) 0 (0%)
T_stage
T1 24,358 (66.6%) 190 (10.7%) 10,281 (69.2%) 84 (10.3%) 393 (84.0%) 8 (33.3%)
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Table 2: Continued.

Variables
Training cohort Internal test cohort External test cohort

Non-LM LM Non-LM LM Non-LM LM
Total N � 34,775 N � 1,780 N � 14,853 N � 814 N � 468 N � 24
T2 3,920 (10.7%) 310 (17.4%) 1,550 (10.4%) 140 (17.2%) 29 (6.2%) 7 (29.2%)
T3 7,580 (20.7%) 1,012 (56.9%) 2,855 (19.2%) 476 (58.5%) 42 (9.0%) 6 (25.0%)
T4 697 (1.9%) 268 (15.1%) 167 (1.1%) 114 (14.0%) 4 (0.9%) 3 (12.5%)
N_stage
N0 34,928 (95.5%) 1,171 (65.8%) 14,437 (97.2%) 557 (68.4%) 452 (96.6%) 18 (75.0%)
N1 1,627 (4.5%) 609 (34.2%) 416 (2.8%) 257 (31.6%) 16 (3.4%) 6 (25.0%)
Tumor_size
Mean (SD) 53.6 (37.4) 102 (48.9) 51.1 (34.4) 101 (55.6) 42.9 (22.0) 68.6 (27.0)
Histology
8120 126 (0.3%) 24 (1.3%) 45 (0.3%) 11 (1.4%) 0 (0%) 0 (0%)
8255 926 (2.5%) 80 (4.5%) 373 (2.5%) 45 (5.5%) 0 (0%) 0 (0%)
8260 4,202 (11.5%) 70 (3.9%) 1,777 (12.0%) 28 (3.4%) 22 (4.7%) 0 (0%)
8310 24,731 (67.7%) 1,146 (64.4%) 10,164 (68.4%) 535 (65.7%) 427 (91.2%) 21 (87.5%)
8312 4,060 (11.1%) 269 (15.1%) 1,544 (10.4%) 113 (13.9%) 16 (3.4%) 3 (12.5%)
8317 1,550 (4.2%) 14 (0.8%) 654 (4.4%) 6 (0.7%) 0 (0%) 0 (0%)
Others 960 (2.6%) 177 (9.9%) 296 (2.0%) 76 (9.3%) 3 (0.6%) 0 (0%)
Grade
I 4,111 (11.2%) 42 (2.4%) 1,724 (11.6%) 19 (2.3%) 69 (14.7%) 0 (0%)
II 18,545 (50.7%) 330 (18.5%) 7,799 (52.5%) 146 (17.9%) 266 (56.8%) 5 (20.8%)
III 10,779 (29.5%) 747 (42.0%) 4,260 (28.7%) 324 (39.8%) 109 (23.3%) 12 (50.0%)
IV 3,120 (8.5%) 661 (37.1%) 1,070 (7.2%) 325 (39.9%) 24 (5.1%) 7 (29.2%)
LM, lung metastasis; 8120, transitional cell carcinoma; 8255, adenocarcinoma with mixed subtypes; 8260, papillary adenocarcinoma; 8310, clear cell ad-
enocarcinoma; 8312, renal cell carcinoma; 8317, chromophobe renal carcinoma.

Table 3: Univariate and multivariate logistic regression analysis.

Variables
Univariate analysis Multivariate analysis

OR P OR P

Age 1.012 <0.001 1.007 0.003
Laterality
Left Reference Reference Reference Reference
Right 0.968 0.515
Sex
Female Reference Reference Reference Reference
Male 1.49 <0.001 1.184 0.004
Race
Asian Reference Reference Reference Reference
Black 0.539 <0.001 0.613 <0.001
Other 0.604 0.019 0.604 0.037
White 0.818 0.033 0.821 0.063
T_stage
T1 Reference Reference Reference Reference
T2 10.922 <0.001 4.591 <0.001
T3 19.599 <0.001 5.885 <0.001
T4 79.462 <0.001 11.172 <0.001
N_stage
N0 Reference Reference Reference Reference
N1 17.245 <0.001 4.415 <0.001
Tumor_size 1.024 <0.001 1.009 <0.001
Histology
8120 Reference Reference Reference Reference
8255 0.401 <0.001 1.083 0.782
8260 0.071 <0.001 0.462 0.007
8310 0.206 <0.001 1.217 0.451
8312 0.301 <0.001 1.419 0.192
8317 0.038 <0.001 0.196 <0.001
Other 0.96 0.868 1.497 0.142

International Journal of Clinical Practice 5



Table 3: Continued.

Variables
Univariate analysis Multivariate analysis

OR P OR P

Grade
I Reference Reference Reference Reference
II 1.755 <0.001 1.235 0.214
III 7.213 <0.001 2.264 <0.001
IV 26.042 <0.001 3.438 <0.001
Te bold values indicate that the p value is less than 0.05.

1 0.1 0.08 0.08 0.03 0.04 −0.04 0.02 −0.05

0.1 1 0.39 0.39 0.23 0.21 0.07 0 0.03

0.08 0.39 1 0.67 0.28 0.29 0.09 0.03 0.06

0.08 0.39 0.67 1 0.24 0.26 0.08 0.02 0.07

0.03 0.23 0.28 0.24 1 0.33 0.02 −0.01 0.04

0.04 0.21 0.29 0.26 0.33 1 0.03 0.01 0.05

−0.04 0.07 0.09 0.08 0.02 0.03 1 0.05 −0.03

0.02 0 0.03 0.02 −0.01 0.01 0.05 1 0.06

−0.05 0.03 0.06 0.07 0.04 0.05 −0.03 0.06 1
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Figure 2: Correlation analysis based on Spearman analysis. Te brighter the colors, the higher the relevance among variables. In the center
of each small square is displayed the index of correlation. Lung_mets: lung metastasis.
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Figure 3: Receiver operating characteristic curve of six algorithms in the internal (a) and external test cohorts (b).
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SVM, in the internal test set, while it performed the best in
the external test set. Overall, the XGB algorithm out-
performed the others in terms of performance.

As indicated in Figure 4, DCA curves suggested that
XGB had the highest clinical applicability, which meant that
clinicians would make a more accurate judgment using the
XGB model rather than other ML algorithms. Te proba-
bility density plot showed that the predictive probability
distribution in non-LM patients was extremely high;
whereas it was relatively fat in LM patients (Figure 5). A
CUC was used to detect the optimal threshold of each
predictive cohort. As shown in Figure 5, when the value of
the x-axis was >0.05, the XGB model could accurately
predict patients with LM.

3.5. Feature Importance Evaluation. Based on the permu-
tation test, we ranked variable importance for prediction in
the three best-performing models (ANN, XGB, and LR). It is
not difcult to observe that although the three ranks difer
slightly, Tstage, N stage, tumor size, and grade still ranked in
the top fve (Figure 6).

3.6. Calculator Online Establishment. To generalize the pre-
dictive model based on the XGB, which performed best among
the six algorithms, we built a web-based online predictor,
which is available at https://medicalmachinelearning.
shinyapps.io/ModelForLungMetastasis/. As shown in Fig-
ure 7, as long as the accessible variables are entered into the
option box, we can predict the risk of LM inKC. For example, if
we select “female” for gender, “60” for age, “Asian” for race,
“T1-N0” for stage, “44millimeters” for tumor size, “8120
(transitional cell carcinoma)” for histology, and “grade I” in the
calculator’s input felds, and then press the “Predict” button,
the predicted outcome for developing LM will be “No.” Tis
indicates that, based on these inputs, it is less likely for the
patient to develop LM.

3.7. Survival Analysis. Based on the predictive results of the
XGB model, we performed a survival analysis using the
Kaplan–Meier method. As suggested in Figure 8, those who
were determined to have LM had a signifcantly shorter
survival time (P< 0.0001) than those who did not, sug-
gesting a good discriminative ability of the XGB model.
Tus, the XGB model can also help clinicians judge the
prognosis of patients with KC.

4. Discussion

KC is a prevalent urinary cancer with a relatively long
survival time in patients without distant metastasis. How-
ever, the prognosis was severely impaired in the case of
distant metastases, and the 5-year survival rate of those
patients was only 12% [19, 20]. As reported in prior studies,
the lung was the most common site for distant metastasis,
covering approximately 45–50% of all metastatic cases with
a poor prognosis of only 7months [6, 21–23]. Regarding
treatment, due to the high resistance to chemoradiotherapy

exhibited by this disease, surgical resection was still deemed
the most efective treatment for curing KC. However, many
patients who underwent surgical treatment were still at risk
for LM. Recently, Choueiri et al. demonstrated that adjuvant
pembrolizumab after surgical resection signifcantly pro-
longed the disease-free survival to 24months, but adverse
events were common (with an incidence of 21.3%) and
reduced the OS owing to these adverse efects [24].

In the era of targeted therapy, numerous targeted
treatments have been successfully developed, leading to
improved clinical outcomes for patients with KC. Multi-
targeted, small-molecule tyrosine kinase inhibitor (TKI)
drugs that act against vascular endothelial growth factor
receptors, platelet-derived growth factor receptors, and
other kinases are recommended for patients with previously
untreated advanced KC.Tese therapies have contributed to
a signifcant improvement in median progression-free
survival (PFS) from 5.5 to 11months, as well as an in-
crease in median OS from 23 to 26months [25]. In recent
years, immune checkpoint inhibitors (ICIs) have emerged as
a crucial therapeutic approach. A meta-analysis has revealed
that combining TKI drugs with immunotherapies signif-
cantly enhances tumor responses and improves survival
outcomes for patients with metastatic KC. Tis fnding
suggests a promising future for the treatment of advanced
KC [26]. With a personalized therapeutic schedule, the
survival of patients with KC may be improved because it
could prevent unsuitable patients from adjuvant treatment’s
adverse efects. Hence, early attention to those at risk for LM
and taking personal preventative measures are important. To
the best of our knowledge, risk factors for LM have been
examined in several studies [27, 28]. However, there are only
a few established predictive models. Lu et al. [20] used the
SEER database, in which 10,929 patients were eligible for
a nomogram construction, to predict the LM of renal cell
carcinoma. Teir study demonstrated that clear cell carci-
noma pathology was a risk factor for LM compared to other
subtypes of KC, which is consistent with our results. Tey
also suggested that parameters such as race, grade, Tstage, N
stage, surgery, tumor size, and distant metastasis in other
sites were independent variables for LM. Similarly, Xu et al.
[29] developed machine learning-based models to evaluate
the risk of developing lung metastasis in kidney cancer
patients using the SEER database. Tey performed multi-
variate logistic regression and found that grade, T and N
stage, tumor size, and metastasis to other sites, including the
bone, brain, and liver, were all risk factors. Ultimately, they
established a prediction model with a high AUC. However,
Chan’s study also had some limitations. For instance, their
study was only conducted using the SEER database, and the
model was validated using 10-fold cross-validation without
being split into an internal test set. Furthermore, it did not
undergo external validation, both of which may limit the
generalizability of the model. Besides, these prediction
models irrationally included variables of other metastatic
sites, which is unsuitable for preoperative evaluation and
would dramatically reduce the model’s utility. Molecularly,
certain circRNAs such as circ-EGLN3 and SCARB1 [30, 31]
were demonstrated to promote efectiveness and predictive

8 International Journal of Clinical Practice

https://medicalmachinelearning.shinyapps.io/ModelForLungMetastasis/
https://medicalmachinelearning.shinyapps.io/ModelForLungMetastasis/


value for LM, but these molecular entities are difcult to
examine in each person and include a high cost, thus greatly
hampering their clinical application value.

As a technological tool, ML has yielded remarkable
results in assisting epidemiologists [32]. Using ML algo-
rithms, Handelman predicted a reduction in diagnostic
errors by addressing complex and tedious clinical work [14].
Compared with conventional CT images frequently used in
preoperative screening, ML models were good at assigning
risk levels for developing LM with high accuracy and
convenience. Here, we successfully developed a web-based
predictor to predict the risk for LM in patients newly di-
agnosed with KC, which used easily accessible clinical
characteristics and proved to be highly accurate and
applicable.

Tis study used the data of 36,555 patients with KC to
establish the ML models. Tese algorithms have been in-
ternally validated in 15,667 patients from the SEER cohort
and externally tested in 492 patients from a Chinese cohort.
Among the six predictive models, XGB performed the best,
with an AUC of 0.913 and 0.904 in the internal and external
test cohorts, respectively. DCA and CUC curves showed
great discriminative and applicative abilities in the clinic.

Referring to LM risk factors, Tompson and colleagues
suggested that a larger tumor size and an advanced T stage
were signifcantly associated with a higher probability of
metastasis in renal cell carcinoma [33]. Among 781KC
patients with tumors less than 3 cm, they identifed only one
patient with a record of distant metastasis. For every 1 cm
increase in tumor size, the hazard ratio of metastasis-free
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Figure 4: Decision curve analysis curves of algorithms in the training set (a), internal test set (b), and external test set (c).
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survival increased by 0.24, with P< 0.001. Our study also
yielded consistent results, indicating that larger tumor size
was more strongly associated with LM and identifed as an
independent factor for LM. Mikami et al. reported that KC
with higher grades tended to develop epithelial-
mesenchymal transition (EMT), which has been proven
to be critical for metastasis [34]. In our study, we observed
a higher proportion of high-grade (III-IV) cases in the LM
cohort and considered it an independent factor for LM. We
also found that positive lymph nodes were more likely to be
observed in the metastatic cohort and were one of the most
infuential characteristics associated with LM in KC patients.
Similarly, Dudani et al. discovered that lymph node

involvement contributed to distant metastasis and was
common in KC, especially in papillary renal cell carcinoma
[27]. Blacks, Asians, and African Americans have been re-
ported to have a relatively highmortality risk due to KC [35].
Tis result may be resulted by higher probability of LM
which was identifed as a risk factor in this study. Consis-
tently, Vaishampayan et al. found that compared with white
patients with KC, black patients had a signifcantly shorter
survival time (P< 0.0001) [36]. Histology also seemed to
suggest distant metastasis of KC. Wang analyzed 36,365
patients with renal cell carcinoma and found that the clear
cell subtype had a higher risk of distant metastasis, followed
by the papillary and chromophobe subtypes [37]. Rong et al.
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reported that in multivariate analysis, compared with clear
cell carcinoma, sarcomatoid had a relatively high hazard
ratio for generating LM. Chromophobe cell carcinoma and
collecting duct carcinoma are less likely to develop LM in KC
[38]. In this study, we found that the clear cell carcinoma
subtype was a risk estimator of LM, while chromophobe and
papillary cell carcinomas had a relatively low incidence of

LM, similar to previous studies. Moreover, multivariate LR
showed that male patients had a tendency to develop LM,
which may be correlated with a higher smoking rate in males
and requires further investigation.

ML as a black box has a long-term problem of in-
terpretability [39]. To address this problem, we built a web-
based free calculator based on the XGB algorithm trained in

Figure 7: Web-based calculator using the extreme gradient boosting algorithm. Te website was published online with the URL https://
medicalmachinelearning.shinyapps.io/ModelForLungMetastasis/.
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Figure 8: Survival analysis of overall survival (a) and cancer-specifc survival (b) based on the extreme gradient boosting algorithm using the
Kaplan–Meier method. Log-rank analysis was used to determine the P value.
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this study to help clinicians rapidly predict and estimate the
probability of LM in patients with KC.

Although the predictive model performed well in esti-
mating LM in patients with KC, this study has several
limitations. First, this was a retrospective study, inevitably
resulting in a selection bias. Second, the study did not in-
volve common clinical indices, such as marriage and bio-
chemical indices [40]. Finally, the external validation cohort
from China only involved Chinese individuals, so more
validation arms in other countries are needed to examine the
model’s utility further.

5. Conclusions

In this study, we used a mainstream powerful machine
learning tool to identify the high-risk factors of renal cancer
lung metastasis and established a convenient and efcient
web tool to help clinical doctors quickly identify those renal
cancer patients prone to lung metastasis. Tis tool will
greatly help patients in economically underdeveloped areas
or those who are not convenient for puncture biopsy. Te
power behind this study is based on the large population in
the SEER database, and the model has been independently
verifed by an external team. Future work should focus on
increasing the sample size and diversity of ethnicities to
validate the machine learning model. Additionally, in-
corporating more parameters, such as patient symptoms,
may help improve performance. Tese are areas that could
be addressed in future research.
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