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Background. Variceal rebleeding is a signifcant and potentially life-threatening complication of cirrhosis. Unfortunately,
currently, there is no reliable method for stratifying high-risk patients. Liver stifness measurements (LSM) have been shown to
have a predictive value in identifying complications associated with portal hypertension, including frst-time bleeding. However,
there is a lack of evidence to confrm that LSM is reliable in predicting variceal rebleeding. Te objective of our study was to
evaluate the ability of generating a extreme gradient boosting (XGBoost) algorithm model to improve the prediction of variceal
rebleeding. Methods. Tis retrospective analysis examined a cohort of 284 patients with hepatitis B-related cirrhosis. XGBoost
models were developed using laboratory data, LSM, and imaging data to predict the risk of rebleeding in the patients. In addition,
we compared the XGBoost models with traditional logistic regression (LR) models. We evaluated and compared the two models
using the area under the receiver operating characteristic curve (AUROC) and other model performance parameters. Lastly, we
validated the models using nomograms and decision curve analysis (DCA). Results. During a median follow-up of 66.6 weeks, 72
patients experienced rebleeding, including 21 (7.39%) and 61 (21.48%) patients who rebleed within 6weeks and 1 year, re-
spectively. In brief, the AUC of the LR models in predicting rebleeding at 6 weeks and 1 year was 0.828 (0.759–0.897) and 0.799
(0.738–0.860), respectively. In contrast, the accuracy of the XGBoost model in predicting rebleeding at 6weeks and 1 year was
0.985 (0.907–0.731) and 0.931 (0.806–0.935), respectively. LSM and high-density lipoprotein (HDL) levels difered signifcantly
between the rebleeding and nonrebleeding groups, with LSM being a reliable predictor in those models. Te XGBoost models
outperformed the LR models in predicting rebleeding within 6weeks and 1 year, as demonstrated by the ROC and DCA curves.
Conclusion. Te XGBoost algorithm model can achieve higher accuracy than the LR model in predicting rebleeding, making it
a clinically benefcial tool. Tis implies that the XGBoost model is better suited for predicting the risk of esophageal variceal
rebleeding in patients.

1. Introduction

Acute hepatitis B is a major health burden, with an estimated
240 million chronic carriers of hepatitis B virus (HBV)
surface antigen (HBsAg) worldwide and 815,000 deaths
annually due to its complications [1, 2]. Cirrhosis is the end
stage of various chronic liver diseases, and esophageal
variceal bleeding in cirrhosis is the main life-threatening
complication of the decompensated phase. However, frst
variceal bleeding occurs at a rate of 10–15% per year, and
recurrent bleeding occurs at a rate of up to 60% per year [3],
which is enough to warrant attention to variceal rebleeding.

Tanks to advanced noninvasive approaches, such as
transient elastography, it is possible to conveniently and
efciently determine the degree of liver fbrosis in patients
[4]. In addition, there was a good correlation between liver
stifness measurements and portal hypertension [5, 6].
Furthermore, portal hypertension is a consequence of cir-
rhosis and is an important determinant of the course and
prognosis of esophageal varices [7, 8]. However, there are
still gaps in the use of noninvasive means to predict patients
with hepatitis B cirrhosis experiencing recurrent bleeding.

Modern medicine faces the challenge of using available
knowledge to solve clinical problems consisting of
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sophisticated data. Moreover, the interactions between in-
dependent risk factors are nonlinear, and it is relatively
inaccurate to analyze the prognostic performance of dif-
ferent factors using traditional linear discriminations [9].
Extreme gradient boosting (XGBoost) is a machine learning
technique with the remarkable features of efcient and
fexible handling of missing data and combining weak
prediction models into accurate prediction models [10]. Te
algorithm relies on combining predictions from a collection
of weak decision and regression trees, which are sequentially
added to the model to maximize prediction performance
and minimize model complexity. Te algorithm is based on
predictions from a collection of weak decision and re-
gression trees, and these results are added to the model to
maximize prediction performance and minimize model
complexity. However, the ability of the XGBoost algorithm
in predicting variceal rebleeding in cirrhosis is not yet clear.

Te increase in the computing power of smart terminals
and the spread of information technology has created the
potential for using machine learning models in regular
practice. Tis study aimed to construct an XGBoost model
for predicting esophageal variceal rebleeding in cirrhosis and
to compare it with the traditional logistic regression model.
It also provides a preliminary insight into the clinical fea-
tures of patients who may experience rebleeding.

2. Methods

2.1. Study Cohort. Tis study was a retrospective study of
patients with hepatitis B-related cirrhosis hospitalized at the
First Afliated Hospital of Nanchang University between
September 2017 and October 2020. Te inclusion criteria for
patients were as follows: (1) those aged ≥18, (2) those with
positive hepatitis B surface antigen and diagnosed with cir-
rhosis by liver biopsy or imaging examinations together with
clinical features, (3) thosewho frst bled in the past and received
secondary prevention of variceal rebleeding, (4) and those who
had a liver transient elastography measurement before the next
episode of variceal bleeding.Te exclusion criteria included the
following: (1) those with a diagnosis of HCC at inclusion or
during the frst 6months of follow-up, (2) those with known
HIV, (3) those whose frst bleeding is nonesophagogastric vein
bleeding under digestive endoscopy, (4) those with history of
liver transplantation, (5) those who had a combination with
other types of liver disease, (6) the patient had a large amount of
ascites that afects the performed liver stifness measurements,
and (7) those who had severe heart and lung disease. Te
treatment of the included patients was individualized according
to the Baveno VII standards [11]. Te study protocol was
approved by the Institutional Ethics Committee of the First
Afliated Hospital of Nanchang University.

2.2. Secondary Prevention, Liver Stifness Measurement,
ClinicalDataCollection, andOutcome. Specifc details of the
secondary prevention practices, liver stifness measure-
ments, and clinical data collection are provided in the
supplementary materials (available here).

Te primary outcome was a rebleeding event due to
esophageal variceal. Patient survival and special procedures
such as TIPS will also be recorded during follow-up periods.
Te longest follow-up period is 3 years.

2.3. Strategies forModelDevelopment. For traditional logistic
regression models, we use univariate and multivariate lo-
gistic regressions to identify the modeling variables and
construct nomograms from the variables. Constructing
a nomogram is a method of visualizing the selected features,
which intuitively displays the contribution level and mutual
cumulative relationship of variables to the outcome and can
predict the probability of the outcome. LR model evaluation
is done using the area under ROC, C-index, and
calibration curve.

Te selection of features for the XGBoost model was
determined based on clinical importance, scientifc
knowledge, and previous publications in similar articles. To
prevent model overftting, patients in the cohort were
randomly assigned to the derivation set in a ratio of 70%, and
the remaining 30% of patients were randomly divided into
the validation and test sets in a 1 :1 ratio. Before constructing
the XGBoost model, the data were normalized and the
categorical variable data were processed using one-hot
coding. Te XGBoost model contains various hyper-
parameters that need to be tuned to the dataset to improve
its performance. We perform a grid search on these
hyperparameters to fnd the best combination. To better
explain the XGBoost model, the SHapley Additive exPla-
nations (SHAP) [12] score was estimated to explain the
XGBoost predictions. SHAP plots are drawn to represent the
contribution of individual predictors to the fnal model.

Finally, we use AUC, sensitivity, specifcity, accuracy,
precision, recall, and F1 to evaluate model performance and
compare between LR and XGBoost models. To identify the
net beneft of both models in clinical practice, the LR and
XGBoost models were evaluated using a clinical decision
curve (CDA).

2.4. Statistical Analysis. Continuous variables are shown as
the mean and standard deviation (SD) or median and
interquartile range (IQR), while categorical variables are
shown as frequencies (%). We tested whether the explan-
atory variable had an interaction and found no signifcant
interactions within the included variables. Student’s t-tests
or Mann–Whitney U-test were performed for group com-
parisons. Te diagnostic accuracy of rebleeding was assessed
by receiver operating characteristic (ROC) analysis. Areas
under the ROC curves (AUCs) were compared by the
method of DeLong et al. All levels of signifcance were set at
a two-sided 5% level. All analyses were performed using
SPSS 25.0 IBM (IBM Corp., Armonk, NY, USA) and R 3.5.2
(R Project for Statistical Computing, Vienna, Austria).Te R
statistical packages tidyverse, pROC, rms, compareGroups,
caret, XGBoost, SHAPforXGBoost, and rmda were used to
model construction and statistical analysis.
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3. Results

3.1. Baseline Characteristics. A total of 284 patients with
hepatitis B-related cirrhosis patients who received secondary
prevention of esophageal variceal rebleeding and liver
stifness measurement between 2017 and 2020 were included
in this study. Figure 1 shows a fowchart depicting the
subject selection procedure, and Table 1 shows the baseline
characteristics of the cohort population.

In a median follow-up time of 66.6weeks, 72 (25.4%)
patients presented with endoscopically confrmed rebleed-
ing. In the whole cohort, the majority were male patients,
accounting for 68.7%.Teir liver stifness measurements and
portal vein diameter were increased compared to the normal
population with a median of 14.2 kPa, 1.5 cm. 98 patients, or
34.5% of the cohort, were not taking NSBB drugs because of
poor adherence or drug intolerance. In terms of blood cell
analysis, the mean values of hemoglobin, white blood cell
count, and platelet count in the cohort were 99.4 g/L,
4.33×109/L, and 93.3×109/L, respectively. In terms of liver
function assessment, the majority of patients had a Child-
–Pugh grade A, accounting for 68.7%. Child–Pugh grades B
and C accounted for 26.4% and 4.9%, respectively. In ad-
dition, the median MELD score for this cohort of patients
was 9.87.

Of the patients frst hospitalized, 118 patients had
symptoms of hypovolemia that did not progress to nonshock
and improved with rehydration. 6 patients presented with
stage II or less hepatic encephalopathy and their symptoms
were corrected before discharge. 5 patients presented with
signs and symptoms of spontaneous peritonitis during
hospitalization and confrmed by blood culture or lapa-
rotomy. 4 patients completed TIPS before rebleeding, and 1
patient underwent liver transplantation.

3.2. Clinical Baseline Comparison between 6 Weeks and
1 Year. To further investigate the diferences in baseline
clinical characteristics between patients in the esophageal
variceal rebleeding group and those in the nonrebleeding
group, we compared the baseline diferences between patients
at two-time points (Table 1). In terms of rebleeding within
6weeks, clinical baseline variables such as patient follow-up
time, liver stifness values, portal vein diameter, use of NSBB
drugs, hemoglobin, platelet count, glutamate transaminase,
alkaline phosphatase, glutamine aminotransferase, cholesterol,
and LDL difered between the two groups. Similarly, in patients
who rebled within 1 year, their clinical baseline variables such
as time to follow-up, liver stifness measurements, portal vein
diameter, use of NSBB drugs, hemoglobin, white blood cell
count, platelet count, glutamyl transpeptidase, and low-density
lipoprotein difered in the two groups.

Notably, at two diferent time points, clinical baseline
variables such as liver stifness measurements and portal vein
diameter were higher in the rebleeding group than in the
nonrebleeding group. However, clinical variables such as
follow-up time, the proportion of patients on NSBB drugs,
hemoglobin, platelet count, glutamyl transpeptidase, and LDL
were lower in the rebleeding group than in the
nonrebleeding group.

3.3. Development and Validation of Logistic Regression
Models. We investigated clinical variables associated with
variceal rebleeding within the 6weeks in a univariate logistic
regression analysis using enter methods to include all clinical
baseline variables. Tis process identifed 9 clinical variables
such as liver stifness measurements, portal vein diameter,
use of NSBB drugs, hemoglobin, platelet count, alkaline
phosphatase, cholesterol, and LDL associated with variceal
rebleeding. Ten, we included the abovementioned 9 vari-
ables in a multivariate logistic regression and identifed 3
variables, the use of NSBB drugs (OR: 0.170 (0.062–0.470),
P � 0.01), hemoglobin (OR: 0.979 (0.960–0.998),
P � 0.029]), and platelets (OR: 0.985 (0.971–0.999),
P � 0.032), as independent risk factors for variceal bleeding
(Table 2).

A similar approach was applied to the 1-year observation
points. 7 variables, BMI, liver stifness measurement, portal
vein diameter, use of NSBB drugs, hemoglobin, white blood
cell count, and platelet count, were identifed in a univariate
logistic regression analysis. Multifactorial logistic regression
analysis identifed BMI (OR: 1.146 (1.031–1.273), P � 0.011),
liver stifness measurements (OR: 1.042 (1.011–1.075),
P � 0.008), use of NSBB drugs (OR: 0.274 (0.127–0.482),
P< 0.001), hemoglobin (OR: 0.976 (0.963–0.998),
P< 0.001), and platelet count (OR: 0.989 (0.982–0.996),
P< 0.001) as independent risk factors for rebleeding in
patients within 1 year (Table 2).

Based on the independent risk factors obtained above,
we developed the nomograms (Figures 2(a) and 2(b)).
Evaluating this nomogram using the R2 and C-index and the
results showed an R2 of 0.228 and a C-index of 0.828
(0.761–0.896) for the model in predicting rebleeding within
6weeks. Similarly, in the nomogram predicting rebleeding
within 1 year, the R2 and C indices were 0.286 and 0.799
(0.738–0.859), respectively. To further evaluate the model,
the accuracy of the model and potential model overft were
assessed by bootstrap validation with 1000 resamplings, the
50-sample bootstrapped calibration plot for the prediction of
6 weeks rebleeding rate and 1-year rebleeding rate
(Figures 2(c) and 2(d)). Te calibration plots demonstrated
excellent consistency between the actual rebleeding rate and
the nomogram prediction.

3.4. Development and Validation of XGBoost Models. We
developed XGBoost models for rebleeding within 6weeks
and rebleeding within 1 year. In the model for predicting
rebleeding within six weeks, the top fve relative importance
features were aspartate aminotransferase, use of NSBB
drugs, liver stifness measurement, prothrombin time, and
blood creatinine level. Similarly, in the model predicting
rebleeding within 1 year, the top fve relatively important
features were liver stifness measurements, age, blood cre-
atinine, platelet count, and urea nitrogen levels (Figures 3(a)
and 3(b)). SHAP analysis values were calculated to compute
the contribution of each parameter to the performance of the
prediction model. It showed that the top fve features were
aspartate aminotransferase, use of NSBB drugs, liver stifness
measurements, blood creatinine, and hemoglobin levels in
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413 patients with decompensated cirrhosis
enrolled between September 2017 and

October 2020

297 patients were recruited

284 patients were eventually included in the
analysis

116 patients were excluded due to the following reasons:
2 patients co-infected with HIV
41 patients did not receive secondary preventive 

treatment after first bleeding
48 patients had missing liver stiffness measurements or 

had ascites that interfered with the data obtained
The first bleeding in 18 patients was non-esophageal 

variceal bleeding
5 patients had severe cardiopulmonary disease
2 patients have undergone liver transplantation

8 patients excluded due to loss to follow-up
5 patients excluded due to liver cancer detected within 6 
months of follow-up

Figure 1: Te fowchart of our study.

Table 1: Baseline characteristics of the cohort and baseline comparisons between the nonbleeding and rebleeding groups.

Baseline
Rebleeding within 6 weeks Rebleeding within 1 year

No Yes
P. overall No Yes

P. overallN� 263 N� 21 N� 223 N� 61
Follow-up (weeks) 66.6 (24.3–135) 90.3 (66.0) 4.40 (1.59) <0.00 102 (64.8) 17.8 (14.8) <0.00 
Age (years) 52.24 (12.89) 52.4 (13.1) 50.5 (9.13) 0.383 52.9 (13.1) 50.0 (11.8) 0.108
Gender 0.597 0.848
Male 195 (68.7%) 179 (68.1%) 16 (76.2%) 152 (68.2%) 43 (70.5%)
Female 89 (31.3%) 84 (31.9%) 5 (23.8%) 71 (31.8%) 18 (29.5%)

BMI 22.0 (3.07) 21.9 (3.03) 22.2 (3.61) 0.736 21.8 (2.98) 22.6 (3.33) 0.11
Baseline LSM (kPa) 14.2 (10.6–19.2) 13.8 (10.4–19.0) 18.3 (11.8–23.8) 0.024 13.4 (10.0–17.7) 18.8 (13.4–22.9) <0.00 
Portal vein diameter (cm) 1.50 (1.30–1.60) 1.50 (1.30–1.60) 1.60 (1.50–1.70) 0.038 1.50 (1.30–1.60) 1.50 (1.40–1.70) 0.028
PVT 0.731 0.384
No 249 (87.7%) 231 (87.8%) 18 (85.7%) 198 (88.8%) 51 (83.6%)
Yes 35 (12.3%) 32 (12.2%) 3 (14.3%) 25 (11.2%) 10 (16.4%)

Using NSBB drugs 0.00 <0.00 
No 98 (34.5%) 83 (31.6%) 15 (71.4%) 64 (28.7%) 34 (55.7%)
Yes 186 (65.5%) 180 (68.4%) 6 (28.6%) 159 (71.3%) 27 (44.3%)

Hemoglobin (g/L) 99.4 (27.6) 100 (27.7) 86.0 (24.0) 0.0 5 102 (27.5) 88.2 (25.2) <0.00 
White blood count (109/L) 4.33 (2.25) 4.38 (2.25) 3.71 (2.25) 0.202 4.55 (2.21) 3.53 (2.22) 0.002
Platelet count (109/L) 93.3 (66.2) 96.3 (67.1) 56.0 (37.7) <0.00 101 (70.2) 64.9 (37.9) <0.00 
PT (second) 14.0 (3.44) 13.9 (3.50) 14.5 (2.59) 0.399 13.9 (3.70) 14.2 (2.25) 0.48
Albumin (g/L) 35.1 (6.07) 35.1 (6.06) 35.0 (6.39) 0.954 35.0 (6.18) 35.2 (5.70) 0.818
TBIL (μmol/L) 19.2 (12.8–29.6) 19.0 (12.8–29.6) 20.0 (13.3–28.5) 0.774 18.5 (12.3–31.1) 20.2 (13.9–29.5) 0.611
ALT (U/L) 24.5 (16.0–41.5) 25.0 (17.0–43.5) 17.0 (14.0–28.0) 0.094 25.0 (17.0–44.0) 22.0 (16.0–35.0) 0.192
AST (U/L) 35.0 (26.0–52.2) 35.0 (27.0–53.0) 26.0 (19.0–39.0) 0.043 35.0 (27.0–53.5) 32.0 (23.0–49.0) 0.096
ALP (U/L) 88.0 (62.8–130) 89.0 (64.0–134) 72.0 (50.0–96.0) 0.025 90.0 (64.5–136) 83.0 (56.0–113) 0.068
GGT (U/L) 32.0 (19.0–74.2) 34.0 (20.0–81.5) 21.0 (13.0–33.0) 0.007 34.0 (20.0–90.0) 27.0 (18.0–52.0) 0.039
BUN (mmol/L) 5.05 (4.00–6.43) 5.00 (4.00–6.35) 5.70 (4.00–6.50) 0.681 5.10 (4.00–6.55) 5.00 (3.70–6.30) 0.402
Creatinine (μmol/L) 65.6 (55.7–77.9) 65.4 (55.8–77.2) 67.8 (51.1–88.9) 0.885 65.5 (56.4–78.2) 65.7 (52.2–75.5) 0.329
Sodium (mmol/L) 139 (5.12) 137 (15.2) 139 (6.21) 0.269 137 (16.3) 137 (6.65) 0.844
Potassium (mmol/L) 3.88 (0.53) 5.91 (16.5) 3.95 (0.67) 0.057 5.82 (16.5) 5.57 (13.5) 0.905
Triglycerides (mmol/L) 0.96 (0.60) 0.96 (0.58) 0.91 (0.75) 0.761 0.96 (0.49) 0.95 (0.89) 0.961
Cholesterol (mmol/L) 3.50 (1.58) 3.54 (1.63) 2.95 (0.77) 0.005 3.56 (1.72) 3.27 (0.91) 0.074
HDL 1.06 (0.45) 1.07 (0.45) 1.00 (0.54) 0.567 1.06 (0.44) 1.07 (0.49) 0.945
LDL 1.96 (1.03) 1.98 (1.05) 1.63 (0.56) 0.0 5 2.00 (1.12) 1.78 (0.55) 0.035
HBeAg 0.328 0.886
Negative 246 (86.6%) 226 (85.9%) 20 (95.2%) 194 (87.0%) 52 (85.2%)
Positive 38 (13.4%) 37 (14.1%) 1 (4.76%) 29 (13.0%) 9 (14.8%)
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the 6-week model. Te top fve SHAP value features were
liver stifness measurements, platelet count, BMI, urea ni-
trogen, and cholesterol levels in the 1-year model
(Figures 3(c) and 3(d)).

Based on these results, we plotted the ROC curves of this
model at diferent follow-up time points in the training and
test sets to evaluate the accuracy of the model. In predicting
the rebleeding XGBoost model within six weeks, the AUCs
of the XGBoost model in the training and test sets were 0.985
(0.907–1.000) and 0.731 (0.705–0.769), respectively. Simi-
larly, in predicting the rebleeding XGBoost model in 1 year,
the AUCs of the XGBoost model in the training and test sets
were 0.931 (0.806–0.953) and 0.767 (0.667–0.818), re-
spectively (Figures 4(c) and 4(d)).

3.5. Models’ Performance Comparisons and Optimal Models’
Analysis. In the model development and validation phase,
the traditional logistic regression model showed good dis-
criminatory power in diferent follow-up time points with
AUCs of 0.828 (0.759–0.897) and 0.799 (0.738–0.860), re-
spectively (Figures 4(a) and 4(b)). However, the XGBoost
model has a better diferentiation ability than the traditional
logistic regression model with AUCs of 0.985 (0.907–0.731)
and 0.931(0.806–0.935), respectively (Figures 4(c) and 4(d)).
Other parameters used to evaluate the model such as sen-
sitivity, specifcity, accuracy, precision, recall, and F1 are
detailed in the Table 3.

To visualize the abovementioned results, we developed
a nomogram based on traditional logistic regression models
to predict rebleeding within 6weeks and 1 year. Plotting the
DCA curves for the logistic regression model and the
XGBoost model (Figure 5), it can be visually learned that the
net beneft of the XGBoost model is consistently higher than
that of the logistic regression model at both time points,
which means the XGBoost model is the optimal and the
logistic regression model inferior.

4. Discussion

In this study, we developed the traditional logistic regression
model and the XGBoost algorithm model using common
clinical indicators and our study has several novel contri-
butions. For the frst time, our study included the XGBoost

algorithms’ model for comprehensive analyses and com-
pared their predictive performance with the traditional lo-
gistic regression model. Whether it is evaluated from the
model performance parameters or from the DCA curve to
evaluate the patient’s net beneft, the results suggest that the
XGBoost algorithm model performs better than the tradi-
tional LR model. Such results are promising, and this model
has the potential to be integrated into electronic medical
records and made available in healthcare settings.

In an LR model to predict rebleeding within 6weeks and
1 year, the presence or absence of NSBB used, platelet count,
and hemoglobin were established as common independent
risk factors. Te guidelines recommend the use of NSBB
drugs for secondary prevention of variceal rebleeding [11].
NSBB drugs have been reported not only in secondary
prophylaxis but also in the prevention of primary variceal
bleeding [13]. Of the predictors of esophageal varices and
variceal bleeding in patients with acute upper gastrointes-
tinal bleeding, platelets appear to diferentiate between
patients with and without esophageal varices [14] and
predict patient mortality and rebleeding rates [15]. In-
terestingly, hemoglobin levels predicted rebleeding in pa-
tients at 6weeks and 1 year. On the one hand, splenic
phagocytic activity may lead to anemia and leukopenia in
cirrhotic splenomegaly, and other more intricate factors lead
to thrombocytopenia [16]. On the other hand, Piano et al.
[17] found that baseline hemoglobin levels were an in-
dependent risk factor for the development of ACLF. Te
underlying pathophysiological mechanism can be explained
by the fact that low hemoglobin concentrations may further
reduce peripheral oxygen delivery, either directly and/or by
further impairing macrovascular dysfunction, thereby ex-
acerbating the development of organ failure.

Currently, LSM are promising predictors of progression
of compensated cirrhosis to decompensation and predictors
of progression of decompensated cirrhosis and are widely
validated worldwide [11, 18–20]. Mechanistically, LSM has
a good consistency with the degree of liver tissue fbrosis and
portal pressure, while PH is the result of liver cirrhosis and is
an important determinant of EVB disease course and
prognosis [21]. Previous studies [19] have indicated that
LSM predicts survival in NAFLD. For that matter, similar
results were obtained in our study, where LSM predicted
rebleeding over a relatively long time, within one year, in the

Table 1: Continued.

Baseline
Rebleeding within 6 weeks Rebleeding within 1 year

No Yes
P. overall No Yes

P. overallN� 263 N� 21 N� 223 N� 61
Child–Pugh 0.309 0.708
A 195 (68.7%) 183 (69.6%) 12 (57.1%) 153 (68.6%) 42 (68.9%)
B 75 (26.4%) 67 (25.5%) 8 (38.1%) 60 (26.9%) 15 (24.6%)
C 14 (4.9%) 13 (4.94%) 1 (4.76%) 10 (4.48%) 4 (6.56%)

MELD 9.87 (8.59–12.1) 10.6 (2.41) 9.93 (1.86) 0.13 10.6 (2.46) 10.2 (2.03) 0.156
Signifcance (P value) is listed for comparisons between bleeders and nonbleeders at diferent observation points. BMI: body mass index; baseline LSM:
baseline liver stifness measurements; PVT: portal vein thrombosis; NSBB: nonselective beta-blockers; PT: prothrombin time; TBIL: total bilirubin; ALT:
alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; GGT: glutamyl transpeptidase; BUN: blood urea nitrogen; HDL:
high-density lipoprotein; LDL: low-density lipoprotein; HBeAg: hepatitis B virus e antigen; MELD: model for end-stage liver disease.
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traditional logistic regression model and the XGBoost al-
gorithm model. Interestingly, LSM was not an independent
risk factor in the LR model for predicting rebleeding within
6weeks. A potential explanation is that LSM is positively
related to the degree of liver fbrosis, but it is not a simple
linear relationship [22]. In logistic regression analysis,
handling such variables and screening is indeed inferior to
machine learning models.

To facilitate the implementation and interpretation of
the XBGoost model in clinical practice, SHAP analysis,
which is a new way to describe the contribution of the
predictor’s value to the overall prediction of an individual in
the XGBoost model, was used for this model. In the XGBoost
model for predicting rebleeding within 6weeks, AST and
creatinine levels were both presents in the frst fve items of
the SHAP analysis. Te abovementioned results suggest that
patients with liver [23] and kidney injury [24] are more likely
to have rebleeding within 6weeks. From another perspec-
tive, the use of AST with platelet ratio index (APRI) for the

noninvasive diagnosis of clinically signifcant portal hy-
pertension and esophageal varices has been reported for
a long time [25], implying that this parameter plays an
important role in predicting rebleeding. In the XGBoost
model for predicting rebleeding within 1 year, LSM was the
feature that contributed the most to predicting rebleeding.
Tis result is not astonishing, as LSM is not only associated
with a good correlation with HVPG [26] but also with its
ability to predict liver failure in patients with cirrhosis
[17, 27].

In our study, when comparing patients in the bleeding
group with those in the nonbleeding group at baseline, LDL
levels were found to be signifcantly lower in patients in the
bleeding group than in the nonbleeding group. Xiao et al.
[28] found that reduced serum LDL levels were an in-
dependent risk factor for survival in patients with HBV-
associated ACLF. In this regard, our study expands the
predictive disease spectrum of LDL and reveals the potential
value of LDL not only in ACLF but also in cirrhotic
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Figure 2: Nomogram and calibration curve for logistic regression model construction: (a) nomogram developed for logistic regression
model predicting rebleeding within 6weeks, (b) nomogram developed for logistic regression model predicting rebleeding within 1 year, (c)
calibration curve for predicting rebleeding within 6weeks, and (d) calibration curve for predicting rebleeding within 1 year.
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Figure 3: Factors efect size: (a, b) importance evaluation of the XGBoost model for predicting rebleeding within 6weeks and 1 year.
Histogram describes the proportion of factoric importance of diferent predictors in the model. (c, d): Te SHapley Additive exPlanations
(SHAP) summary plots show the efect of individual predictors on the output of the XGBoost model for predicting rebleeding within
6weeks and within 1 year, respectively, as well as the total SHAP score. Diversion on x-axis represents impact on model output, with colors
used to represent low (yellow) to high (purple) value of predictors.
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Figure 4: Evaluation of the predictive LR and XGBoost models: (a) receiver operating characteristic curve (ROC) of LRmodel for predicting
rebleeding within 6weeks. (b) Receiver operating characteristic curve (ROC) of LR model for predicting rebleeding within 1 year. (c)
Receiver operating characteristic curve (ROC) of XGBoost model for predicting rebleeding within 6weeks. (d) Receiver operating
characteristic curve (ROC) of XGBoost model for predicting rebleeding within 1 year.

Table 3: LR and XGBoost models performance parameters.

Models AUC Sensitivity Specifcity Accuracy Precision Recall F1
LR (6W) 0.828 (0.759–0.897) 1.000 0.57 0.602 (0.543–0.660) 0.157 1.000 0.271
LR (1Y) 0.799 (0.738–0.860) 0.623 0.848 0.799 (0.748–0.844) 0.528 0.623 0.589
XGBoost (6W) 0.985 (0.907–0.731) 1.000 0.907 0.914 (0.866–0.949) 0.485 1.000 0.653
XGBoost (1 Y) 0.931 (0.806–0.935) 0.957 0.814 0.849 (0.791–0.895) 0.616 0.957 0.750
LR (6W): logistic regression model predicts rebleeding within 6weeks; LR (1 Y): logistic regression model predicts rebleeding within 1 year; XGBoost (6W):
XGBoost model predicts rebleeding within 6weeks; XGBoost (1 Y): XGBoost model predicts rebleeding within 1 year.
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Figure 5: Decision curve analysis (DCA) of LR and XGBoost prediction models. x axis indicates the threshold probability of critical care
outcome and y axis indicates the net beneft. Red solid line�XGboost model; blue solid line� LR model. Its net beneft is larger in XGBoost
than in the range of the LR model: (a) DCA shows a comparison of models predicting rebleeding within 6weeks. (b) DCA shows
a comparison of models predicting rebleeding within 1 year.
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rebleeding. One of the mechanisms of variceal bleeding in
cirrhosis can be explained by infammation and intestinal
bacterial translocation [29]. Previous studies suggest that li-
poproteins are required to bind endotoxins caused by intestinal
bacterial translocation and to reduce the systemic release of
proinfammatory cytokines [30]. Terefore, a decrease in LDL
levels and an increase in systemic infammation in patients are
not inconsistent with a tendency to develop variceal bleeding.
In addition to this, reduced LDL levels may also simply be the
result of liver failure, which is the main source of LDL.

A noteworthy fnding in our study is that the features
included in the XGBoost model and the logistic regression
model show consistency, indicating that the superior per-
formance of the XGBoost model is signifcant, although the
two models ft well and performance may difer. Te strengths
of this study lie mainly in the frst use of the XGBoost model to
predict esophageal variceal rebleeding in patients with hep-
atitis B-related cirrhosis, which was compared with conven-
tional regression analysis and validated by calibration curves
and DCA curves. We acknowledge other limitations of our
study: frst, potential bias may occur due to data from a single
center, although our unit is the largest health care facility in
our region; second, the proposed model was not validated by
other centers or databases; and third, no follow-up mea-
surements of patients’ LSM were made during follow-up, as
some studies have reported that the value of change in LSM
predicts prognosis of patients with postviral hepatitis cirrhosis
[31]. Even so, we believe that the proposed model may help us
to further understand the prognosis of such patients.

In conclusion, this study shows that machine learning
based on the XGBoost algorithm is indeed superior to
traditional logistic regression. Meanwhile, LSM proved to be
a promising parameter for predicting variceal rebleeding in
patients.Tis would mean transplanting the XGBoost model
into an electronic patient management system to scientif-
cally predict the risk of rebleeding and provide personalized
care to patients.
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in the development and mortality of variceal bleeding in
portal hypertension--possible efects of the kidney damage
and malnutrition,” Hepato-Gastroenterology, vol. 53, no. 69,
pp. 420–425, 2006.

[25] P. Salzl, T. Reiberger, M. Ferlitsch et al., “Evaluation of portal
hypertension and varices by acoustic radiation force impulse
imaging of the liver compared to transient elastography and
ASTto platelet ratio index,”Ultraschall in derMedizin, vol. 35,
no. 6, pp. 528–533, 2014.

[26] S. W. Jeong, “Liver stifness measurement: is it a non-invasive
substitution for HVPG?” Clinical and Molecular Hepatology,
vol. 19, no. 4, pp. 367–369, 2013.

[27] C. C.-N. Chong, G. L.-H. Wong, A. W.-H. Chan et al., “Liver
stifness measurement predicts high-grade post-hepatectomy
liver failure: a prospective cohort study,” Journal of Gastro-
enterology and Hepatology, vol. 32, no. 2, pp. 506–514, 2017.

[28] C. Xiao, J. Gong, S. Zhu et al., “Nomogram based on blood
lipoprotein for estimation of mortality in patients with

hepatitis B virus-related acute-on-chronic liver failure,” BMC
Gastroenterology, vol. 20, no. 1, p. 188, 2020.

[29] R. P. Mookerjee, M. Pavesi, K. L. Tomsen et al., “Treatment
with non-selective beta blockers is associated with reduced
severity of systemic infammation and improved survival of
patients with acute-on-chronic liver failure,” Journal of
Hepatology, vol. 64, no. 3, pp. 574–582, 2016.

[30] M. Rauchhaus, A. J. Coats, and S. D. Anker, “Te endotoxin-
lipoprotein hypothesis,” Te Lancet, vol. 356, no. 9233,
pp. 930–933, 2000.

[31] M. Higuchi, N. Tamaki, M. Kurosaki et al., “Changes of liver
stifness measured by magnetic resonance elastography
during direct-acting antivirals treatment in patients with
chronic hepatitis C,” Journal of Medical Virology, vol. 93,
no. 6, pp. 3744–3751, 2021.

International Journal of Clinical Practice 11




