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Immunogenic cell death (ICD) regulators exert a crucial part in quite a few in numerous biological processes. Tis study aimed to
determine the function and diagnostic value of ICD regulators in acute ischemic stroke (AIS). 31 signifcant ICD regulators were
identifed from the gene expression omnibus (GEO) database in this work (the combination of the GSE16561 dataset and the
GSE37587 dataset in the comparison of non-AIS and AIS patients). Te random forest model was applied and 15 potential ICD
regulators were screened to forecast the probability of AIS. A nomogram, on the basis of 11 latent ICD regulators, was performed.
Te resolution curve analysis indicated that patients can gain benefts from the nomogram.Te consensus clustering approach was
applied, and AIS patients were divided into 2 ICD clusters (cluster A and cluster B) based on the identifed key ICD regulatory
factors. To quantify the ICD pattern, 181 ICD-related dissimilarly expressed genes (DEGs) were selected for further investigation.
Te expression levels of NFKB1, NFKB2, and PARP1 were greater in gene cluster A than in gene cluster B. In conclusion, ICD
regulators exerted a crucial part in the progress of AIS.Te investigationmade by us on ICD patterns perhaps informs prospective
immunotherapeutic methods for AIS.

1. Introduction

Data from the Global Burden of Disease (GBD) in 2019
indicate that, after ischemic heart disease, stroke is the
second leading cause of tertiary death (11.6% of total deaths)
[1]. AIS is the most common form of stroke, and its in-
cidence has been on the rise in recent years [2]. Te in-
fammatory cascade triggered by cell death plays a signifcant
role in the pathogenesis of AIS [3]. Te levels of cytokines
and oxidative stress markers also drive infammation, such
as IL-1 and IL6 [4–6]. In AIS, hypoxia activates HIF-1α,
enabling HIF-lα the primary pathway to regulate

angiogenesis after ischemia [7]. Matrix metalloproteinase-9
(MMP9) and interleukin (IL6, IL8, and IL10) are frequently
associated to the prognosis of AIS [8]. Circulating immune
cells and brain immune cells play a crucial dual function in
the breakdown of the blood-brain barrier following AIS [9].

Immunogenic cell death (ICD) was recognized as a form
of regulating cell death (RCD) [10]. Tis procedure induces
an adaptive immune response in the face of necrosis or
predetermined death. Numerous in-depth investigations in
the clinical utility of ICD have been performed recently. ICD
stimulation results in the production of primitive antigenic
epitopes and the release of damage-associated molecular
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patterns (DAMPs) by dying cells [11]. DAMPs can bind to
antigen-presenting cells, for instance, dendritic cells (DC),
detect and phagocytose dead cell antigens, and deliver them
to T cells to excite the adaptive immune response [12].
Synergistic augmentation of immunogenic cell death and
macrophage transformation is a novel cancer treatment
combo [13]. A novel genetic profle of aneurysms based on
ICD features in non-neoplastic illness suggests that ICD
patterns and the immune microenvironment are strongly
associated with aneurysms [14]. Earlier investigations have
merely discovered the value of a modest number of immune
cells and immunological-related chemicals in AIS. Never-
theless, AIS’s ICD perspective is wanted.

Terefore, we systematically investigated ICD regulators
in AIS in this work. Immunoassays between normal tissue
and AIS blood samples, as well as a thorough analysis of
several subtypes of AIS, will reveal the alterations in the
occurrence of ICDs and their associated genes. We de-
veloped a gene model to forecast AIS susceptibility on the
basis of 11 candidate ICD regulators and observed that
patients were capable to get substantial advantages in the
model. We made a comparison of biological functions in
light of the fact that the two clusters share distinct immu-
nological properties. We found that ICD modifcation mode
exercised a substantial efect on AIS. It would provide brand
new information to the investigation into the pathogenic
mechanism of AIS.

2. Materials and Methods

2.1. Data Gathering. Te GSE16561 combined GSE37587
dataset of 24 healthy adult subjects and 107 AIS patients
were obtained from the GEO database (https://www.ncbi.
nlm.nih.gov/geo). Clinical data for both datasets can be
found in previous studies [15, 16]. All patients from the two
datasets met the following criteria: age ≥18 years, MRI di-
agnosis of AIS, and blood drawn within 48 hours of onset of
stroke symptoms.Te datasets were chosen to elucidate gene
expression in peripheral whole blood from patients with
acute ischemic stroke in order to identify a set of genes for
the diagnosis of acute ischemic stroke. Moreover, the data
structure and characteristics of both datasets are identical.
All patients met the following criteria: age ≥18 years, MRI
diagnosis of AIS, and blood drawn within 48 hours of onset
of stroke symptoms. Consequently, we combined and
normalized the gene expression matrices of the two datasets
to investigate the role of ICD-associated genes in acute is-
chemic stroke. 31 ICD moderators in the terminal normal
dataset were annotated [17]: ATG5, BAX, CALR, CASP1,
CASP8, CD4, CD8A, CD8B, CXCR3, ENTPD1, FOXP3,
HMGB1, HSP90AA1, IFNA1, IFNB1, IFNG, IFNGR1, IL10,
IL1B, IL1R1, IL6, LY96, MYD88, NLRP3, NT5E, P2RX7,
PDIA3, PIK3CA, PRF1, TLR4, and TNF.

2.2. Variations in ICDRegulators amongVarious Samples and
Associated Analysis. We analyzed the variation in the gene
expression between normal and AIS samples by applying the
“limma” package. We used Spearman’s rank association

analysis to determine the relationship of the expression of
ICD regulators in AIS.

2.3. Te Establishment of a Random Forest Model and a No-
mogram Model. Random forest (RF) and support vector
machine (SVM) models were developed by applying the
random forest software package as training models to
forecast the happening of AIS. “PROC” package performed
receiver operating characteristic (ROC) curve as well. We
used a ten-fold cross-validation curve to make an estimation
of the predictive quality of the RF model for ischemic stroke.
Te red line stood for the experimental group’s error, the
black line was on behalf of the error of all samples, and the
green line represented the error of the control group.
Tereafter, we analyzed the importance of 15 ICD regulators
and selected 11 suitable ICD regulators. On the basis of the
11 ICD regulators that were selected, the nomogram model
was established by applying the “rms” package. Te cali-
bration curve was employed to evaluate the congruence
between the anticipated and real values separately. Decision
curve analysis (DCA) was carried out, and a clinical efect
curve was produced to determine whether the decisions on
the basis of the model were benefcial to the patient.

2.4. Identifcation of Molecular Subtypes on the Basis of the
Momentous ICD Regulators. Consensus clustering is a kind
of technique, which is applied to identify every member and
its subgroup fgure, as well as to validate clustering rationale
on the basis of resampling. Using the “Consensu-
sClusterPlus” package in R [18], the consensus clustering
method was employed to fnd ICD-related patterns on the
basis of the signifcant ICD regulators.

2.5. Identifcation and Functional Enrichment of Variously
Expressed Genes in Various ICD Models. Te “limma”
package was employed in R and variously expressed genes
among diverse ICD patterns were recognized (p< 0.01). We
employed principal component analysis (PCA) algorithms
to calculate out the ICD score for every sample to quantify
the ICD patterns. Trough applying the “clusterProfler”
package, gene ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were made to fnd out the latent mecha-
nism of variously expressed genes. Gene set enrichment
analysis (GSEA) was also performed by the “clusterProfler”
package. Te MSigDB C2 set was applied as the reference
gene set.

2.6. Evaluation of Immune Cell Infltration. We used the
“ESTIMATE” package [19] to measure the immune cell
infltration score in every sample. We made heat maps on
account of the gene expression and immune scores of the
samples and analyzed the distinctions in immune scores in
cluster A and cluster B as well. In addition, we also examined
the correlations between signifcant ICD regulators and
immunological ratings.
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2.7. Statistical Analysis and Visualization. All statistical
analyses were carried out by the use of R version 4.1.3.
Kruskal–Wallis test was used to make a comparison of the
distinctions between groups. Te Spearman correlation
coefcient was used throughout this study, and signifcant
correlations met the criteria |Spearman r|> 0.3 and p< 0.05.
Te “ComplexHeatmap2” and “ggplot2” R packages were
employed to visualize.

3. Results

3.1. Expression Landscape of ICD Regulators among Various
Samples. Te participation covered in this survey ranged
from thirty-one various ICD regulators. Figure 1(a) high-
lighted the AIS samples and the normal samples’ expression
levels of 15 genes’ substantial variations.Tese genes covered
CASP1, CASP8, CD8A, CD8B, CXCR3, ENTPD1, IFNGR1,
IL1R1, LY96, MYD88, NLRP3, P2RX7, PIK3CA, TLR4, and
TNF. We employed a heat map to depict the distribution of
15 key ICD regulators among the samples that were esti-
mated (Figure 1(b)). It demonstrated each location of 15
regulators in the chromosomes, which was conducted by the
“RCircos” package (Figure 1(c)).

3.2. Correlation between Diferent ICD Regulators in AIS.
In order to study the associate degree that exists among ICD
regulators working in various AIS, we analyzed correlation
coefcients between ICD regulators based on gene expres-
sion and plotted a heat map (Figure 2(a)). Our investigation
revealed that IL10, CXCR3, HSP90AA1, CD80A, NT5E,
HMGB1, PIK3CA, ATG5, and PRF were related with each
other strongly. A strong positive association can also be
observed among NLRP3, IFNGR1, MYD88, TLR4, IL1B,
and ENTPD1. In addition, substantial positive associations
were discovered among four distinct pairs of genes
(Figure 2(b)).

3.3. Establishment of the RFModel and SVMModel. In order
to provide a precise forecast regarding the occurrence of AIS,
an RF was established and SVM was selected to choose
candidate ICD regulators from the 15 ICD regulators. RF
model is a random forest model that generates a fnal result
based on the output of multiple decision trees generated at
random. Te RF model has a potent capacity for capturing
global data characteristics, a strong capacity for model
generalization, and the capacity to parallelize calculations
swiftly. SVM model is a common classifcation model that is
suited for small samples with clear classifcation boundaries
to determine the optimal segmentation plane. Terefore,
these two models are an excellent ft for our investigation.
Boxplots of residual, as shown in Figure 3(a), manifested the
fact that the RF model’s residuals were minimal. Te re-
siduals of majority of model cases were correspondingly tiny.
Terefore, the RFmodel was selected as the optimal model to
forecast the occurrence of AIS. We established the ROC
curve to appraise the model, and its AUC value suggested
that the RF model enjoyed more precision than the SVM

model (Figure 3(b)). Te ten-fold cross-validation curve
uncovered a truth that the RF model was most accurate.
Nevertheless, we depicted 11 top signifcant genes of the 15
ICD regulators after these genes were ranked by themeans of
their signifcance (Figure 3(d)).

3.4. Establishment of the Nomogram Model. On the basis of
11 candidates for the ICD regulations, a nomogram model
was created to estimate the prevalence of AIS (Figure 4(a)).
CD8B, P2RX7, IFNGR1, TLR4, ENTPD1, and CD8A were
protective factors, while NLRP3, MYD88, IL1R1, PIK3CA,
and LY96 were hazard elements for AIS. Te nomogram
model’s predictivity was appeared to be accurate by applying
calibration curves (Figure 4(b)). Te DCA curve demon-
strated that judgments, on the basis of the nomogrammodel,
may be benefcial to AIS patients (Figure 4(c)). Te clinical
infuence curve uncovered the nomogram model’s out-
standing prediction potential capacity (Figure 4(d)).

3.5. Signifcant ICD Regulators Identifed Two Distinct ICD
Patterns. Te “ConsensusClusterPlus” program was utilized
to identify two unique ICD patterns on the basis of 15 major
ICD regulators by employing the consensus clustering
technique (Figures 5(a)–5(d)). 15 key ICD regulators’ ex-
pression levels were compared in the two clusters, and af-
terward a heat map and histogram were generated to indict
the variations (Figure 5(e)). Tere were discernible varia-
tions between cluster B and cluster A in the expression level
of CD8A, CD8B, CXCR3, ENTPD1, IFNGR1, LY96, and
TLR4 (Figures 5(e) and 5(f)). Te PCA results revealed that
the 15 key ICD regulators were able to difer between the two
ICD patterns totally (Figure 5(g)).

A sum of 181 ICD-related DEGs were chosen for pro-
spective investigation between the two ICD patterns. GO
functional annotation and KEGG pathway analysis were
made for a better comprehension of the latent mechanism
behind these DEGs in AIS (Figure 5(h)). We discovered that
the majority of the gene sets were enriched in the processes
of T cell activation, leukocyte activation, regulation of im-
mune efector, and diferentiation of lymphocytes and other
processes. We discovered that the diferentially expressed
genes became enriched in certain biological pathways by
using GSEA analysis, for instance, the cytotoxic pathway, the
lymphocyte pathway, the cell adhesion pathway, the T cell
receptor pathway, the MHC and IL17 pathway, and so on
(Figure 5(i)). It suggested that the immunological activity of
cluster A was considerably greater than that of cluster B.

After that, we utilized “ESTIMATE” to compute the
quantity of immune cells presented in the AIS samples, and
we investigated the degree to which the 15 most signifcant
ICD regulators which were correlated with the immune cells
(Figure 6(a)). We compared the two ICD patterns and
observed the distinctions in immune cell infltration.
Neutrophils and eosinophils were more prevalent in cluster
B than they were in cluster A, while T cells and MDSC were
the opposite (Figure 6(b)). In addition, the link between four
major ICD regulators and immune cell infltration was
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demonstrated (Figures 6(c)–6(f)). Tese fndings reafrmed
that ICD alteration played a crucial regulatory function in
the formation of distinct blood immunological microenvi-
ronments in AIS patients.

3.6. Recognition of Two Distinct ICD Gene Patterns and
Role of ICD Gene Patterns in Distinguishing AIS. Te
consensus clustering method was utilized to classify AIS

patients into distinct genomic subgroups on the basis of the
181 ICD-associated DEGs for the prospective validation of the
ICD patterns (p< 0.05) (Figures 7(a)–7(d)). Two unique
ICD gene patterns were identifed, which covered gene
cluster A and gene cluster B. Figure 7(e) depicted the ex-
pression levels of 181 DEGs that associated to ICD in gene
cluster A and gene cluster B. Te 15 signifcant ICD regu-
lators’ distinctive expression levels were exhibited as well
(Figure 7(f)). Moreover, immune cell infltration between
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Figure 1: Landscape of the 31 ICD regulators in AIS. (a) Diferential expression bar graph of the 31 ICD regulators recognized in non-AIS
and AIS patients (∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001). (b) 31 ICD regulators’ expression heat map in non-AIS and AIS patients.
(c) 31 ICD regulators’ chromosomal locations.
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gene cluster A and gene cluster B was similar to ICD patterns
(Figure 7(g)). Tis proved the precision of the grouping on the
basis of the process of consensus clustering once more. We
applied a Sankey diagram to describe the association among
ICD patterns, ICD gene patterns, and ICD scores
(Figures 7(h)). We studied the correlation between ICD pat-
terns and interleukins for the prospective relationship in ICD
patterns and AIS. Te results illustrated that the expression
levels of NFKB1, NFKB2, and PARP1 were higher in gene
cluster A than those in gene cluster B, which demonstrated that
gene cluster A enjoyed high relevance to AIS (Figures 7(i)).

4. Discussion

Te transformation of nonimmunogenic cells into immu-
nogenic cells to bring an immune reaction in the course of
cell death is referred to as immunogenic cell death (ICD)
[20]. ICDs can be triggered by a variety of stimuli, such as
viral infections, anthracyclines, certain types of radiation
therapy, and photodynamic therapy[21]. DAMPs, generated
when cells are stimulated, can attach to pattern recognition
receptors (PRRs) on the surface of DC cells, triggering
a cascade of physiological events that ultimately activate
innate and adaptive immune responses [22]. Te ICD
pattern was primarily discovered and examined in the feld

of tumour therapy. Nevertheless, the role that ICD played in
AIS was still not fully appreciated.

It is worth noting that infammation and immunological
pathways play a signifcant role in the pathophysiology of the
onset, acute damage cascades, and chronic course of is-
chemic stroke [23–25]. Te mechanism of secondary injury
after ischemia may be due to the generation of intracerebral
infammation after ischemic stroke, which accelerates the
formation of ischemic injury and afects neuronal mortality
and nerve tissue regeneration [26]. Neuroinfammatory
response after cerebral ischemia is characterized by acti-
vation of microglia, activation of astrocytes, and increase of
infammatory bodies. Malignant edema and hemorrhagic
transformation are the most common clinical symptoms,
and their mechanisms have been characterized in detail in
animal models [27]. A plasma exosome (CircOGDH) has
been recognized as a therapeutic target and penumbral
biomarker for acute ischemic stroke [28]. Consequently,
diagnostic and prognosis evaluation on the basis of pe-
ripheral blood biomarkers will exert a signifcant efect on
the mortality control of AIS patients. We believe that our
research will contribute to a greater understanding of the
crucial role of ICD-related genes and pathways and provide
novel diagnosis, prevention, and immunotherapy for stroke
patients as well.
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Figure 2: Correlations among 31 ICD regulators. (a) Heat map of association for 31 ICD regulators. (b–e) Four pairs of ICD supervisors
with the highest correlation and scatter plots of their correlation (Spearman rank coefcient r> 0.7).
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First, based on the expression of ICD-related genes, we
calculated the ICD score of each sample using the PCA
algorithm. Using consensus clustering and the ICD scores of
the sample, we then quantifed the ICD pattern, resulting in
two main ICD clusters. Using the diferentially expressed
genes between the two ICD clusters, two ICD gene patterns
were constructed in order to validate the preceding ICD gene
patterns. ICD scores, ICD patterns, and ICD gene patterns
are step-by-step analysis results that are used to validate each
other. Te expression of the majority of the ICD regulators
was found to difer signifcantly between normal and AIS

samples in this investigation. We were able to identify ICD
regulatory gene patterns on the basis of machine learning
models. Tese gene patterns included CASP1, CASP8,
CD8A, CD8B, CXCR3, ENTPD1, IFNGR1, IL1R1, LY96,
MYD88, NLRP3, P2RX7, PIK3CA, TLR4, and TNF. AIS
samples and normal samples were easily distinguished from
one another after the validation of the model, which
highlighted the variations in ICD genetic traits between the
two types of samples. A nomogram comprised of eleven
latent ICD regulators was established, and the DCA curve
revealed that the decision on the basis of line graph model
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Figure 3: RF model construction. (a) Te residual spread of the RF and SVM models was illustrated by employing boxplots of residuals.
(b) ROC curves demonstrated the precision of the RF and SVMmodels. (c) RF model’s quality of ischemic stroke forecast was estimated by
Ten-fold cross-validation curve. (d) Te importance of the 15 ICD regulators on account of RF model.
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could be advantageous to the AIS. CD8B, P2RX7, IFNGR1,
TLR4, ENTPD1, and CD8A were protective factors, while
NLRP3, MYD88, IL1R1, PIK3CA, and LY96 were hazard
elements for AIS.

As an essential component of innate immunity, NLRP3
infammasome plays a crucial role in the immunological
response of the body and the development of illness [29]. It
can be triggered by diverse infections or danger signals. A
prior work employing bioinformatics and in vivo experi-
ments confrmed that the suppression of IL1R1 or CASP4
ameliorated pyroptosis triggered by NLRP3 infammasomes
[30]. MYD88 performs a critical signal transduction role in
innate and adaptive immune responses. Recent research has
demonstrated that mesencephalic astrocyte derived neuro-
trophic factor (MANF) inhibits the production of proin-
fammatory factors and relies on the TLR4/MyD88/NF-B

pathway to maintain the integrity of the blood-brain barrier
in a geriatric mousemodel following an ischemic stroke [31].

Te connection between ICD regulators and AIS im-
munological features was studied subsequently. Te ex-
pression of various immune response gene sets and
infltrating immune cells was investigated by the means of
using GSEA, ESTIMATE, GO, and KEGG analyses. Tese
immunological characteristics were found to be tightly as-
sociated with ICD regulators, which represented that ICD
was essential in controlling the blood immune milieu of AIS.
Two clusters with distinctive ICD patterns were discovered
on the basis of the expression profle of core ICD regulators
and ICD-associated DEGs in AIS. Each cluster possesses its
unique immunological properties. For example, cluster A
patients had a higher proportion of Tcells in their blood.Te
classifcation of immunological clusters contributes to the
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elucidation of immune regulation’s underlying mechanisms.
Te association between ICD regulatory patterns and sig-
nifcant immune biomarkers of AIS was also examined. Te
pathological process of AIS is overwhelmingly tanglesome,
including cell excitotoxicity, oxidative stress, cell death
processes, and neuroinfammation [32]. Simultaneously,
a great number of neurotoxic or neuroprotective signalling
pathways are intricately involved in the aforementioned
pathophysiological processes. In addition, these signalling
pathways have therapeutic potential, as targeting them was
likely to be a therapeutic approach for ischemic strokes. Te
expression features of cytokines regulating infammatory

responses and proteins involved in angiogenesis in the brain
and peripheral circulation gave a highlight of the need for
the identifcation of original biomarkers in the circulatory
system [33]. Nuclear factor-κB (NF-κB) signalling pathway
was essential for maintaining the blood-brain barrier’s in-
tegrity and therefore was used as a therapeutic target for AIS
[34]. As a member of the sirtuin family, SIRT1 regulated
a broad physiological process, covering apoptosis and in-
fammatory reaction, and may be protective factors for
stroke [35]. Poly (ADP-ribose) polymerase-1 (PARP-1)
regulated cell apoptosis and tissue necrosis in AIS and was
associated with prognosis [36]. Te fndings demonstrated
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Figure 6: Immune-related enrichment analysis of individual sample gene set (∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001). (a) Infltrating
immune cells and the 15 essential ICD regulators’ association. (b) Cluster A and cluster B’s distinctive immune cell infltration. (c–f) High
and low ICD regulators’ distinctive immune cell infltration, which is evidently linked with infltrating immune cells.
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Figure 7: 181 ICD-associated DEGs’ consensus clustering in AIS (∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001). (a–d) 181 ICD-associated DEGs’
consensus matrices for k� 2–5. (e) Expression heat map of the 181 ICD-related DEGs in gene cluster A and gene cluster B. (f ) 15 essential
ICD regulators’ distinctive expression histogram in gene cluster A and gene cluster B. (g) Diferential immune cell infltration between gene
cluster A and gene cluster B. (h) Te relationship among ICD patterns, ICD gene patterns, and ICD scores was demonstrated by Sankey
diagram. (i) AIS-associated markers’ distinctive expression between gene cluster A and gene cluster B.
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a fact that NFKB1, NFKB2, and PARP1’s expression levels
were higher, but the expression levels of SIRT1 were lower in
gene cluster A than in gene cluster B, which suggested that
gene cluster A was strongly correlated with AIS.

Tis study assessed the function of ICD regulators in
patients with AIS. Tis study demonstrated that ICD reg-
ulators can easily diferentiate AIS patients from wholesome
controls. Two distinct ICD clusters were identifed according
to 15 ICD regulators, and the model was enhanced by ICD-
related DEG expressions, which helped to discovering fea-
sible predictive indicators for the therapy of AIS. ICD ex-
pression, immune scores, and biological functional pathways
were signifcantly diverse between the two ICD clusters of
AIS. Tese fndings can bring innovative immunothera-
peutic concepts for AIS.

Nevertheless, there are certain limitations to the study.
First, the data were obtained from a limited sample size GEO
data set. It may take a considerable amount of time to collect
a great number of samples to get a total comprehension of
ICD in AIS. Second, we did not conduct experimental
verifcation because of the difculties in the process of ac-
quiring AIS samples.

5. Conclusion

In conclusion, the study identifed 15 potential ICD regu-
lators and a nomogrammodel, which was capable to forecast
the prevalence of AIS with accuracy. Tis could have sig-
nifcant implications for clinical screening of AIS suscep-
tibility genes and disease course monitoring. Moreover, we
discovered signifcant disparities between the two ICD
modes in the blood immune microenvironment. Tese
fndings can guide the development of diagnosis and in-
dividualized immunotherapies for AIS patients.
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