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Objective. We conducted a meticulous bioinformatics analysis leveraging expression data of 226 PANRGs obtained from previous
studies, as well as clinical data fromAML patients derived from theHOVON database.Methods.Troughmeticulous data analysis
andmanipulation, we were able to categorize AML cases into two distinct PANRG clusters and subsequently identify diferentially
expressed genes (PRDEGs) with prognostic signifcance. Furthermore, we organized the patient data into two corresponding gene
clusters, allowing us to investigate the intricate relationship between the risk score, patient prognosis, and the immune landscape.
Results. Our fndings disclosed signifcant associations between the identifed PANRGs, gene clusters, patient survival, immune
system, and cancer-related biological processes and pathways. Importantly, we successfully constructed a prognostic signature
comprising nineteen genes, enabling the stratifcation of patients into high-risk and low-risk groups based on individually
calculated risk scores. Furthermore, we developed a robust and practical nomogram model, integrating the risk score and other
pertinent clinical features, to facilitate accurate patient survival prediction. Our comprehensive analysis demonstrated that the
high-risk group exhibited notably worse prognosis, with the risk score proving to be signifcantly correlated with infltration of
most immune cells. Te qRT-PCR results revealed signifcant diferential expression patterns of LGR5 and VSIG4 in normal and
human leukemia cell lines (HL-60 andMV-4-11). Conclusions. Our fndings underscore the potential utility of PANoptosis-based
molecular clustering and prognostic signatures as predictive tools for assessing patient survival in AML.

1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease
characterized by a broad spectrum of cytogenetic and mo-
lecular abnormalities [1]. While the survival rate for pediatric
AML in high-income countries has reached 70%, it remains
below 60% in low-income countries [2]. A signifcant challenge
in AML treatment is the occurrence of relapses [3]. Te de-
velopment of inhibitors targeting specifc cell death pathways
has revolutionized the management of both newly diagnosed
and relapsed/refractory AML. Conventional chemotherapeu-
tics primarily induce necroptosis and have been themainstay of
AML treatment. However, emerging evidence suggests
promising roles for inhibitors targeting apoptosis, such as
venetoclax, as well as molecules associated with pyroptosis, in

the treatment of AML [4, 5]. Pediatric clinicians are currently
faced with the task of developing a diverse range of novel
antileukemia agents to overcome these challenges.

Programmed cell death mechanisms play pivotal roles in
the pathogenesis of tumors and the development of che-
motherapy resistance [6, 7]. PANoptosis, a novel and in-
tricate programmed cell death pathway, exhibits the unique
ability to concurrently trigger and orchestrate three distinct
forms of cell death: pyroptosis, apoptosis, and necroptosis
[8]. Notably, singular inhibitors of cell death are inefective
against PANoptosis [9]. Te formation of a multiprotein
complex, known as the PANoptosome, serves as a critical
initiator of PANoptosis [10]. Te PANoptosome facilitates
extensive interplay and coordinated regulation between
pyroptosis, apoptosis, and necroptosis. Perturbations in key
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PANoptotic proteins within cancer cells have been observed,
potentially contributing to their survival and resistance
against conventional therapies. For example, in colorectal
cancer, phosphorylated cysteine desulfurase (NFS1) has
been demonstrated to impair the chemosensitivity of
oxaliplatin-based treatments through the inhibition of
PANoptosis [11]. Furthermore, targeting PANoptosis-
induced cardiomyocyte death holds promise as a therapeu-
tic strategy to mitigate doxorubicin-induced cardiotoxicity
[12]. Nevertheless, the underlying mechanisms that un-
derpin the association between PANoptosis and AML re-
main largely obscure. Terefore, unraveling the involvement
of PANoptosis in AML could potentially unveil novel
therapeutic approaches and enhance the prognosis for pe-
diatric AML patients.

An investigation was conducted in our study to con-
struct a prognostic PANoptosis-related risk score signature,
designated as PAN2RS, which comprised 19 genes associ-
ated with PANoptosis. Tis signature was based on the
analysis of transcriptional and clinical data obtained from
AML patients in the HOVON database. To further elucidate
the functionality and prognostic signifcance of diferentially
expressed genes, multiple bioinformatics analyses were
performed. Additionally, the prognostic value of the
PAN2RS signature was validated in independent cohorts,
including the Cancer Genome Atlas (TCGA), GEO, and
BeatAML databases. Furthermore, in vitro experiments were
conducted to assess the expression levels of the 19 genes in
AML cell lines. Our fndings provide a comprehensive
theoretical framework for the identifcation of novel ther-
apeutic targets and prognostic biomarkers for AML.

2. Materials and Methods

2.1. Collection and Preprocessing of AML Patient Cohorts and
PANoptosisGeneList. All the AML patient cohorts including
the gene expression data and the clinical traits were gathered
from the public databases, such as the TCGA database, GEO
database, and ArrayExpress database. Te HOVON cohort
was collected from the ArrayExpress database (E-MTAB-
3444, https://www.ebi.ac.uk/biostudies/arrayexpress). Te
clinical characteristics, RNA-seq data, methylation data, and
somatic mutation data of the TCGA-LAML cohort were
obtained from the UCSC Xena website (https://xenabrowser.
net/datapages/). GSE37642-GPL96 (n� 422), GSE12417-
GPL96 (n� 163), and GSE106291 (n� 250) were gathered
from the Gene Expression Omnibus (GEO, https://gdc.
cancer.gov/access-data/gdc-data-portal). Te BeatAML co-
hort was gathered from the GDC data portal (https://gdc.
cancer.gov/access-data/gdc-data-portal). Te AML patients
with completive survival information and the survival time
>0 were retained. In BeatAML cohort, the AML patients
from the therapy-näıve adults were reserved. Finally, we got
six AML patient cohorts including HOVON (n� 618),
TCGA-LAML (n� 147), BeatAML (n� 143), GSE37642-
GPL96 (n� 421), GSE12417-GPL96 (n� 162), and GSE10
6291 (n� 250). Considering the size of the dataset, the
HOVON cohort was used as the training set and the other
cohorts were used as the testing set. All relevant RNA-

sequencing data were normalized with the R package
limma and the raw count was transformed into log2 (the
transcripts per million (TPM)+ 1), which was usually used to
measure the gene expression level. And for the expression
data from microarrays, background adjustment and nor-
malization were performed with R package afy.

Te PANoptosis-related genes were combination of the
pyroptosis-related genes, apoptosis-related genes, and
necroptosis-related genes. All of them were obtained from
the Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb). Te pyroptosis and apo-
ptosis gene lists were gathered from the Reactome Pathway
Database with searching for the keywords “pyroptosis” and
“apoptosis,” respectively. Te necroptosis gene list was
collected from the Gene Ontology database with searching
for the words “GOBP_PROGRAMMED_NECROTIC_CEL
L_DEATH.” Te three gene lists were merged and the
overlapping genes were excluded, forming the fnal PAN-
optosis gene list (n� 226), the detailed information of which
is summarized in Supplementary Table 1.

2.2. Consensus Clustering Analysis. In order to identify the
transcriptome characterization of the PANoptosis-related
patterns, the consensus clustering analysis with the “pam”
algorithm and Euclidean correlation distance was performed
with the R package “ConsensusClusterPlus.” Additionally,
the clustering algorithm with resampling 80% of the samples
was repeated for 1000 times. Te principal component
analysis (PCA) was adopted to investigate the distribution of
the PANoptosis patterns.

2.3. Immune-Related Analysis. Here, to compare immuni-
zation between the various subgroups, we performed multiple
methods associated with the immunity analysis including the
expression of the immune check point gene, antitumor im-
munity cycle, infltration of immune cells, objective response
rate (ORR), and so on.Te 75 immune check points belong to 7
groups, such as antigen presentation, cell adhesion, coinhibitor,
costimulator, ligand, receptor, and others. Te antitumor cycle
including 7 steps and corresponding gene signatures are also
shown in Supplementary Table 2. To more accurately describe
the infltration of immune cells in the tumor microenviron-
ment, we had adopted 7 common approaches, consisting of
ESTIMATE, xCell, quanTIseq, ssGSEA, Cibersort, EPIC, and
MCP-counter. Tose algorithms were carried out with the R
packages including GSVA, CIBERSORT, ESTIMATE, and
immunedeconv. Te ORR of anti-PD-1/PD-L1 therapy across
the cancers in TCGAwas obtained from the previous literature
and is summarized in Supplementary Table 3.

2.4. Pathway Enrichment Analysis. For the up and down
expressed DEGs, the Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway en-
richment analyses were performed to explore the potential
biological function, respectively. Also, to ensure the re-
liability of the enrichment analysis results, based on the gene
sets, other algorithms such as Gene Set Enrichment Analysis
(GSEA) and Gene Set Variation Analysis (GSVA) were
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carried out with the R package GSVA and clusterProfler.
Te four gene sets including REACTOME, KEGG, GO-BP,
and HALLMARK were downloaded from MSigDB.

2.5. Machine Learning Framework for Development of
PANoptosis Signature. Although the features of PANoptosis
patterns were identifed, the limitation of using the all the
transcriptome profle was not convenient to accurately and
clinically predict the prognosis of each patient. So, it was urgent
to develop a relatively streamlined but powerfully predictive
model. (a) Based on the diferent PANoptosis patterns, the
diferently expressed gene (DEG) analysis was subsequently
carried out with the R package limma between the PANoptosis
cluster with the worst prognosis and the PANoptosis cluster
with the best prognosis. In order to retain as many genes as
possible for the subsequent selection, the DEGs were screened
out with FDR <0.05. (b) If a gene was robustly expressed in the
cohort and had a small range of fuctuations in expression, then
we preferred to consider the gene to be of low importance. So,
we therefore excluded DEGs with a variance less than or equal
to 0.3 in HOVON cohort. (c) To screen for the DEGs with the
predictive efcacy, two diferent strategies were consecutively
executed. Firstly, the univariate Cox regression analysis was
performed for the DEGs in HOVON and the DEGs with the p

value less than 0.01 were identifed as the signifcantly prog-
nostic DEGs. (d) Subsequently, we categorized the patients in
the HOVON cohort into two subgroups based on the ex-
pression levels of the prognostic DEGs identifed above,
namely, the subgroup with high gene expression and the
subgroup with low gene expression. Te division was made
using the median expression value as a threshold. Ten, we
performed a log-rank test to compare the overall survival time
between these two subgroups and calculated the statistical
signifcance of the diferences. Finally, DEGs with a p value less
than 0.05 were designated as the prognostic DEGs. Te DEGs
with p value less than 0.05 were fnally identifed as the
prognostic DEGs. (e) To develop a highly robust and accurate
PANoptosis signature (PANS), we further ftted the 101 pre-
dictivemodels with the candidate prognostic DEGs through the
leave-one-out cross-validation (LOOCV) framework, consist-
ing of 101 combinations of 10 machine learning algorithms
including least absolute shrinkage and selection operator
(lasso), elastic network (Enet), Ridge, supervised principal
components (SuperPC), StepCox, Gradient Boosting Machine
(GBM), CoxBoost, partial least squares regression for Cox
(plsRcox), Random Survival Forest (RSF), and Survival Support
Vector Analysis (SurvivalSVM). Te four cohorts (HOVON,
TCGA-LAML, GSE12417-GPL96, and GSE37642-GPL96)
were detected, and Harrell’s concordance index (C-index) of
each predictive model was calculated across all cohorts. Te
optimal and bestmodel was themodel with the highestmean of
the C-index in all detected cohorts. (f) Random Survival Forest
(RSF), which was a machine learning and nonparametric al-
gorithm that could handle high-dimensional data and complex
interactions between the variables, was then performed to
screen the candidate genes which were the most important
features related with prognosis. Specifcally, the function
“var.select” in the R package randomForestSRC was utilized to

help select the candidate genes and interpret the contribution of
each candidate gene to the model prediction. With the mul-
tivariate Cox regression analysis in HOVON cohort, the co-
efcients of the candidate genes were calculated. So ultimately,
we developed a PANoptosis signature scoring system, the
formula of which was as follows:

Risk Score � 􏽘
N

i�1
(Expi∗Coei), (1)

where N, Exp, and Coe represented the number, gene ex-
pression, and the corresponding coefcient of the candidate
genes, respectively. Te risk score of the patients in all
cohorts was calculated with the above formula.

2.6. Evaluation and Validation of the Developed PANoptosis
Signature. In order to comprehensively assess the developed
PANoptosis scoring system, the PANoptosis-related signature
risk scores (PAN2RSs) were frst calculated for each patient in
all cohorts based on the profle of the PANoptosis signature
and the corresponding coefcients. Andwith the optimal cutof
value determined by the R package survminer, the patients in
each cohort were divided into two subgroups, named high
PAN2RS group and low PAN2RS group. Te Kaplan–Meier
survival analysis was performed in the training cohort and the
testing cohorts with the R package survival and the log-rank
test. Te time-dependent ROC analysis was also carried out in
all cohorts, through the R package survivalROC andwith the 1-
year, 3-year, and 5-year area under curve (AUC) calculated.
Moreover, the C-index and the 95% confdence interval of it
were calculated in all cohorts with the R package “survcomp.”
To evaluate the robustness and the independence of the sig-
nature, the multivariate Cox regression analysis was adopted
based on the clinical information and the PAN2RS inHOVON
cohort and TCGA-LAML cohort through the function coxph
in R package survival. In order to systematically synthesize and
analyze the existing studies and thus yield more accurate and
objective conclusions, the meta-analysis was carried out to
investigate the HR of the all six cohorts for the PANoptosis
signature, through the R package meta.

2.7. Comparison of the PANoptosis Signature and the Previous
Signatures. In order to assess the superiority of the pre-
dictive performance of the developed PANoptosis signature,
we retrospectively collected 89 AML-related signatures and
their corresponding coefcients from the published litera-
ture [13, 14], which is detailed and summarized in Sup-
plementary Table 4. Te patients in all cohorts were scored
based on the gathered signatures and then the 1-year, 3-year,
and 5-year AUC and the C-index were computed in the six
cohorts. Andwith themean value of the indicators across the
six cohorts, we compared the predictive performance of each
signature. Furthermore, with the risk scores calculated by 90
signatures and the clinical information, the multivariate Cox
regression analysis was performed in HOVON cohort and
TCGA-LAML cohort, and the p value of the risk score for
each signature was computed and compared to show the
independence and the robustness.
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2.8. Construction of the PANoptosis-Related Nomogram.
In order to improve clinical guidance and precision medi-
cine for patients, including the accurate assessment of pa-
tient risk and the selection of individualized treatment
strategies, a nomogram was established based on the
common clinical variables (age, gender, cytogenetic risk,
NPM1mutation, and FLT3-ITDmutation) and the PAN2RS
through the R package “rms.” To better visualize the dis-
crimination and the prediction of the value for the developed
nomogram, the curves of 1-year, 3-year, and 5-year cali-
bration were drawn.

2.9. Prediction of the Response to the Immunotherapy for
PANoptosis Signature. Te datasets of Braun_2020 (renal
cell carcinoma), PRJEB23709 (melanoma), phs000452
(melanoma), Nathanson_2017 (melanoma), GSE106128
(melanoma), GSE100797 (melanoma), GSE91061 (mela-
noma), GSE78220 (melanoma), the IMvigor210 (bladder
cancer), and PRJNA482620 (glioblastoma) were collected
and utilized to describe the prediction of response to im-
munotherapy. Te core information of the immunotherapy
datasets is summarized in Supplementary Table 5, and the
PAN2RS was computed in the ten cohorts based on the
PANoptosis signature, respectively.

2.10. Prediction of the Potential Drug Targets and Prospective
Terapeutic Agents. Transcriptome data of human cancer
cell lines (CCLs) were downloaded from the Broad Institute-
Cancer Cell Line Encyclopedia project (CCLE, https://sites.
broadinstitute.org/ccle/) and the CERES scores, the score to
evaluate the dependency of the certain gene in the CCL,
which indicated that the score was negative correlation with
the possible signifcance of the gene in cell proliferation of
the certain CCL, were downloaded from the dependency
map portal (DepMap, https://depmap.org/portal/). For the
CERES scores of the 18333 genes and 739 cell lines, we
selected the leukemia-associated cell lines and scored them
based on the PANoptosis signature. For each drug target,
Spearman’s rank-order correlation of the CERES score and
the PAN2RS based on the leukemia-related cell lines was
calculated. According to the computed correlation, the
potential drug targets were further identifed (r<−0.45 and
p value <0.05).

In order to investigate the ex vivo drug sensitivity, we
collected the transcriptome data and corresponding drug
sensitivity assay data including the IC50 and the AUC of the
122 small-molecule inhibitors from the previous literature.
After excluding objects with more than 50% missing data,
there remained a total of 337 patients and 106 inhibitors in
the dataset. Te PAN2RS of each patient in the cohort was
computed based on the PANoptosis signature. Additionally,
in order to identify the sensitive agents for the PAN2RS, not
only the diferential analysis between AUC of the high
PAN2RS patients (top decile) and the low PAN2RS patients
(tail decile) (Wilcoxon test, R package stats) but also the
correlation of the PAN2RS and the AUC of the patients (top
and tail deciles) (Spearman’s rank-order correlation, R
package stats) were performed. We further ensured the

prospective and sensitive agents for the high PAN2RS AML
patients with the correlation’s r< 0, correlation’s p value
<0.05, and the p value of the Wilcoxon test <0.05.

Acquired from the CancerTerapeutics Response Portal
(CTRP, https://portals.broadinstitute.org/ctrp.v2.1/) and
PRISM repurposing dataset (https://www.theprismlab.org/),
the agent sensitivity data of CCLs including the AUC values
which indicated the drug sensitivity were utilized to fnd the
potential drugs. After getting rid of the agents with more
than 20% of missing information, the missing values of the
AUC were extrapolated with the K-nearest neighbor im-
putation method (R package impute) in the both CTRP and
PRISM datasets. Te Ridge regression with the R package
pRRophetic was carried out to develop a model for drug
sensitivity prediction based on the transcriptome data and
the drug sensitivity data in CTRP and PRISM. Based on the
drug sensitivity model and the PANoptosis signature, we
scored the AUC values of drugs and the PAN2RS of samples
in the 337-patient cohort mentioned above, respectively.
Similar to the above, once the 337 patients had been sorted
according to PAN2RS, the top and bottom decile of patients
had been extracted, and then the diferential drug response
analysis (Wilcoxon rank sum test) and the correlation of
PAN2RS and AUC (Spearman rank correlation) had been
used to identify the potential candidate drugs for the poor
prognosis AML patients with the overlap of the drugs with
lower AUC in the high-risk score group and the drugs with
negative correlation (R< 0.3 or R< 0.4).

Apart from the above methods, with the Connectivity
Map (Cmap, https://clue.io/query) dataset including 2424
perturbational drug sensitivity signatures, the Kolmogor-
ov–Smirnov (KS) scores and eXtreme Sum (XSum) scores
were computed based on the 300 diferently expressed genes
between the top risk decile and the tail risk decile of patients
in the 337-patient cohort. A drug with the score closer to −1
(mapping transformed) or −100 was more likely to be a drug
that reverses a poor prognosis for the high PAN2RS AML
patients.

2.11. Pan-Cancer Analysis of Prognosis Prediction, Immune
Microenvironment, and Somatic Mutation. To investigate
the ubiquitous applicability of this model across diverse
tumors, the pan-cancer analysis was performed based on the
pan-cancer data including 33 diferent cancers in TCGA,
which were acquired from the UCSC Xena database (https://
xenabrowser.net/datapages/). Excluding the patients with-
out the survival information, 10295 patients whose overall
survival time and OS are at least preserved were retained.We
frst explored the predictive performance of the PANoptosis
signature across the 33 cancers with the univariate Cox
regression analysis and the Kaplan–Meier survival analysis.
Tumor mutation burden (TMB) varies across the diverse
cancers. Since the high values of TMB indicated a pro-
spective response to the immunotherapy [15], we explored
the values of TMB and the correlation of the PAN2RS and
the TMB values across the cancer types (Spearman rank
correlation). Moreover, the somatic mutation and the copy
number alterations of the PANoptosis signature genes were

4 International Journal of Clinical Practice

https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
https://depmap.org/portal/
https://portals.broadinstitute.org/ctrp.v2.1/
https://www.theprismlab.org/
https://clue.io/query
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/


also investigated across the cancers with R package maftools.
To determine the transcriptome profle of the signature
genes in other cancer types, the diferential expression
analysis between the tumor and the normal was carried out
for the identifed genes. We also investigated the potential
biological functional pathways that the signature genes
might involve in with the GSEA algorithm andHALLMARK
gene set (R package clusterProfler). Specifcally, for one
given cancer type, the patients were sorted based on the
expression of the certain gene. Te diferently expressed
analysis was performed between the patients with the top
and tail 35% expression of the gene. And then, the GSEA
method was carried out based on the result of the diferential
expression analysis. More importantly, the tumor immunity,
including the immune infltration and the correlation of the
immune checkpoint genes and the PAN2RS, was explored
across the cancer types, with the R package IOBR.

2.12. Cell Culture. HL-60 and MV-4-11 cells (Xiangya
School of Medicine Type Culture Collection, China) were
cultured in RPMI 1640 medium supplemented with 10%
heat-inactivated FBS (Life Technologies, NY, USA) in 5%
CO2. HL-60 is a promyelocytic leukemia cell line [16]. MV-
4-11 is a FLT3-ITD -positive myelomonocytic leukemia cell
line [17]. All cells were incubated at 37°C in a humidifed
atmosphere of 5% CO2 and 95% air.

2.13. Quantitative Real-Time PCRAnalysis. Te cell samples
from AML cell lines were collected in the logarithmic phase
of cell growth. Peripheral blood mononuclear cells (PBMCs)
were collected from a healthy donor from Xiangya Hospital.
Total RNA was extracted by using the Tiangen RNA ex-
traction reagent kit, following the manufacturer’s in-
structions. Subsequently, the extracted RNA samples were
reverse transcribed into complementary DNA (cDNA) using
a reverse transcription (RT) reagent kit (Dingguo, Beijing,
China). Real-time PCR was conducted utilizing SYBR
Premix ExTaq (Takara) on a StepOnePlus Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). Te
obtained data were duly normalized against the β-actin
internal control. Transcript levels were analyzed using the
comparative threshold cycle method. All experiments were
repeated in triplicates. Te primer sequences for the chosen
19 genes can be found in Supplementary Table 6.

2.14. Statistical Analysis. All statistical analyses were carried
out with R software (version 4.1.3). Te continuous variables
and the categorical variables were compared with Wilcoxon
rank sum test and chi-square test, respectively. Tree or
more groups of continuous variables are compared using the
Kruskal–Wallis test. Te correlation analysis was performed
with Spearman’s rank-order correlation. Te two-sided p

value <0.05 was considered signifcant for all statistical
analyses and shown as ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001,
and ∗∗∗∗p< 0.0001. Te other detailed methods were
summarized in supplementary methods.

3. Results

3.1. Identifcation of the Diverse Patterns Based on the
PANoptosis Gene List. A total of 226 PANRGs belonging to
necroptosis, apoptosis, and pyroptosis were collected for
downstream analysis (Figure 1(a)). To explore the prog-
nostic performance and internal relationship of the
PANRGs, univariate Cox regression analysis and Spear-
man’s sum rank test were performed in the HOVON cohort,
which was set as the training cohort. 28 genes with prog-
nostic prediction were screened out with p value <0.05
(Figure 1(b), Supplementary Table 7). Te correlation of the
predictive PANoptosis genes was also investigated and
shown (Figure 1(c)). And then, the 618 patients in HOVON
cohort were divided into three clusters, named cluster A
(n� 202), cluster B (n� 248), and cluster C (n� 168),
according to the consensus clustering analysis based on the
transcriptome profle of PANRGs (Figure 1(d), Supple-
mentary Figures 1A–1I). Te PCA analysis showed the
distribution of the diferent clusters (Supplementary
Figure 1J). Each cluster corresponded to a specifc expres-
sion pattern of the PANRGs. To investigate whether diferent
expression patterns had an impact on the prognosis of AML
patients, Kaplan–Meier survival analysis was applied, and
the Kaplan–Meier curves indicated that there was a defnite
and signifcant diference in prognosis among the identifed
patterns (Figure 1(e)). Patients with pattern A had a better
prognosis than those with pattern B (p< 0.05). Furthermore,
the expression of prognostic PANRGs was shown to in-
vestigate the diference of each gene expression and the
clinical features in diferent patterns (Figure 1(f )).

3.2. Description of the Clinical Traits, Immune Features, and
Biological Function for theDiversePatterns. Among the three
patterns, the clinical features including French-American-
British (FAB) classifcation, molecular features, and cyto-
genetic risk were also investigated in the HOVON cohort
(Figures 2(a)–2(d)). Te FAB classifcation system is
a morphologic classifcation system for classifying acute
leukemia into subtypes based on the type of cells that have
developed and the degree of maturation of the cells. FAB in
the worst prognosis pattern A was dominated byM2 andM4
subtypes, while FAB in the best prognosis pattern B is
dominated by M5 subtype (Figure 3(a)). FLT3-ITD is
a common driver mutation that manifests as a high leukemia
burden in patients with acute myeloid leukemia with a poor
prognosis. FLT3-ITD is closely associated with an un-
favorable prognosis, leukocytosis, high white blood cell
count, increased risk of relapse, and shortened overall
survival. Te FLT3-ITD-negative subtype was most com-
mon in pattern A and least common in pattern B
(Figure 3(b)). Based on the treatment outcome, AML pa-
tients can be classifed into three diferent cytogenetic risk
groups, including favorable, intermediate, and unfavorable.
Te favorable subtype patients were mainly included in
pattern A, while the unfavorable (ADV) subtype patients
were mainly included in pattern B (Figure 3(c)). As
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previously described in the literature, some cytogenetic al-
terations such as (8; 21) (q22; q22), t (15; 17) (q24; q21), and
inv (16) (p13; q22) are associated with longer palliation and
life expectancy. Terefore, the specifc molecular features
were analyzed and the results showed that alterations of t (15;
17) (q24; q21), t (8; 21) (q22; q22), and inv (16) (p13; q22)
occurred more frequently in pattern A, which had the best
outcome among the patterns (Figure 3(d)). To explore the
potential reasons contributing to the diferent prognosis
among the PANoptosis-related patterns, pathway enrich-
ment analysis and immune-related analysis including im-
mune checkpoint gene expression, immune cell infltration,

and antitumor cycle were performed in the HOVON cohort.
Te 231 downregulated and 400 upregulated diferently
expressed genes were identifed between pattern B and
pattern A with |logFC|> 1 and p value <0.05. Te results of
the pathway enrichment analysis based on the identifed
genes, GO gene set and KEGG gene set, indicated that it was
very likely that tumor immunity was the primary contrib-
utor to the deterioration of AML patients because those
DEGs were enriched in the immune-related pathways, such
as T cell activation, macrophage activation, T cell diferen-
tiation (GO BP), immunological synapse (GO MF), T cell
receptor signaling pathway, primary immunodefciency, and
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Figure 2: Description of the clinical traits, immune features, and biological function for the diverse patterns. Te clinical features including
French-American-British (FAB) classifcation (a), molecular features (b), cytogenetic risk (c), and the specifc molecular features (d) were
also investigated in the HOVON cohort in diferent patterns. GO and KEGG pathway enrichment analysis of the upregulated (e) and
downregulated (f) diferential expression genes between pattern B and pattern A, respectively. (g) Using four algorithms, including
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<0.05 was considered signifcant for all statistical analyses and shown as ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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Figure 3: Continued.
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complement and coagulation cascades (KEGG) (Figures 2(e)
and 2(f )). Terefore, we further investigated the diferences
in immunologic aspects between the diferent patterns.
Using four algorithms, including ESTIMATE, quanTIseq
XCell, and ssGSEA, the infltration of immune cells was
calculated, and the results showed that the infltration of
most immune cells difered among the three patterns, and it
was particularly noteworthy that the distribution of Tcells or
macrophage-associated cells calculated by almost all
methods difered among the three, with signifcantly higher
expression in pattern B in particular (Figure 2(g)). Te
expression of immune checkpoint genes was also examined
(Supplementary Figure 2A). Some common and classical
immune checkpoint genes such as LAG3, CD27, and TIGIT
were most and signifcantly expressed in pattern B. Te
antitumor immune cycle works by activating and enhancing
the immune system’s ability to recognize and destroy cancer
cells. Tis cycle involves seven steps, including release of
cancer cell antigens, antigen presentation, Tcell priming and
activation, T cell trafcking to the tumor, T cell infltration

into the tumor, T cell recognition of tumor cells, and T cell
killing of tumor cells. We also analyzed the cycle steps
among the diferent patterns and found that except for
cancer cell antigen release and antigen presentation, the rest
of the cycle steps were signifcantly diferent among the three
patterns (Supplementary Figure 2B).

3.3.Development of the PANoptosis Signature. As mentioned
in the Materials and Methods section, 5127 DEGs curated
from the diferential expression analysis between pattern B
and pattern A were screened, and only 262 genes were
retained by analysis of variance, univariate Cox regression
analysis, and Kaplan–Meier survival analysis (Supplemen-
tary Table 8). RSF was considered as the optimal algorithm
with the highest mean C-index by the LOOCV framework
(Figure 3(a)). Among the 262 candidate genes, 19 genes were
confrmed as signature genes by the RSF algorithm
(Figure 3(b)). Ranking these genes in order of relative im-
portance, the top fve genes are CALCRL, DOCK1, CLCN5,
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Figure 3: Development of the PANoptosis signature. (a) RSF was considered as the optimal algorithm with the highest mean C-index by the
LOOCV framework. 19 genes were confrmed as signature genes by the RSF algorithm (b). Ranking these genes in order of relative
importance, the top fve genes are CALCRL, DOCK1, CLCN5, LSP1, and NRIP1 (c). (d) Te coefcients of the 19 signature genes were
calculated by multivariate Cox regression analysis. (e) Te survival curves showing the signifcantly diferent overall survival between the
high and low risk score subgroups.
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LSP1, and NRIP1 (Figure 3(c)). Te coefcients of the 19
signature genes were calculated by multivariate Cox re-
gression analysis (Figure 3(d), Supplementary Table 9). Te
PAN2RS of each patient was calculated in all cohorts. Te
patients with high PAN2RS had a signifcantly worse
prognosis than those with low PAN2RS (Figure 3(e)).

3.4. Evaluation and Validation of the Developed PANoptosis
Signature. To assess the robustness of the signature, the
1-year, 3-year, and 5-year AUCs were calculated in six cohorts.
Te 1-year, 3-year, and 5-year AUCs were 0.7, 0.713, and 0.712
in the TCGA-LAML cohort, 0.747, 0.772, and 0.761 in the
HOVON cohort, 0.689, 0.717, and 0.719 in GSE37642-GPL96,
0.657, 0.695, and 0.689 in GSE12417-GPL96, 0.657, 0.692, and
0.677 in GSE106291, and 0.514, 0.606, and 0.601 in BeatAML.
All results indicated that the signature was robust and had
a strong performance of outcome prediction (Figure 4(a)).Te
C-index was another index to evaluate the performance, and
the result showed that the signature allowed a good prediction
of the prognosis of AML patients, although the C-index in the
BeatAML cohort was not satisfactory, which might be at-
tributed to its relatively small cohort capacity (Figure 4(b)).
Te meta-analysis result based on the univariate Cox re-
gression analysis result in each cohort also suggested that the
PAN2RS had a stable, robust, and independent performance
of prognosis prediction (Figure 4(c)). Te multivariate Cox
regression analysis regarding the PAN2RS and the clinical
variables including age, gender, cytogenetic risk, NPM1
mutation, and FLT3-ITD mutation was adopted in HOVON
cohort and TCGA-LAML cohort, suggesting the powerful and
independent predictive ability (Figure 4(d)). In addition, and
based on the optimal cutof value, the patients in each cohort
were divided into low and high PAN2RS subgroups (Sup-
plementary Figures 3A and 3B). Te Kaplan–Meier curves in
the validation cohorts all indicated that patients with low
PAN2RS had longer survival and better median survival
(Figures 4(e)–4(i)).

3.5. Comparison of the PANoptosis Signature against the
Published Signatures. Four metrics, including 1-year AUC,
3-year AUC, 5-year AUC, and C-index, were used to
compare the developed PANoptosis signature with other
published signatures (Supplementary Figures 4–7). By
comparing the average of each metric across all cohorts, we
found that the developed signature (“12345678”) had
a strong advantage, second only to the signature constructed
by the article with PMID 30089916 in terms of performance
in all aspects (Figures 5(a)–5(d)). In fact, from a certain point
of view, the signature we constructed was even better. When
we focused our attention on the performance of each in-
dicator across all cohorts, it became clear that for the de-
veloped PANoptosis signature, the low value of the average
of each indicator was due to the poor performance in the
BeatAML cohort and the TCGA-LAML cohort. We ex-
cluded the indicator values of the signature when the sig-
nature genes did not match in the cohort.Te signature with
PMID 30089916 was only tested in the HOVON cohort and
was inferior to the developed PANoptosis signature. Tis

condition was observed in all four metrics (Supplementary
Figures 4–7). Tese results indicated that the PANoptosis
signature was a robust signature with a high level of pre-
dictive accuracy for the AML patients. Based on the collected
signatures, multivariate Cox regression analysis was com-
plemented in the HOVON cohort and the TCGA-LAML
cohort, and the p value of PAN2RS of the signatures was
compared (Supplementary Figures 8A and 8B).

3.6. Construction of a Clinically Useful Nomogram for AML
Patients. According to the multimethod analysis, a nomo-
gram including PAN2RS and some clinical characteristics
such as age, sex, cytogenetic risk, NPM1 mutation, and
FLT-ITD mutation was constructed in the HOVON cohort
to better guide clinical work and precision medicine
(Figure 6(a)). Tere was almost no deviation from Platt
calibration curves for 1-year, 3-year, and 5-year curves,
indicating that the nomogram had excellent predictive ac-
curacy (Figures 6(b)–6(d)).

3.7. Immune Profle and the Mutation Characteristics of
Diferent PAN2RS Subgroups. Infuenced by the previously
described signifcant diferences in immune cells and im-
mune cell-related pathways between the diferent PAN-
optosis patterns, we proposed here that the immune profles
should also be signifcantly diferent between the diferent
PAN2RS groups. To test this hypothesis, we comprehen-
sively investigated the mRNA expression, correlation of
expression and methylation, amplifcation frequency, and
deletion frequency of immune checkpoint genes in the high
and low PAN2RS subgroups of the TCGA-LAML cohort
(Figure 7(a)). Overall, there was no signifcant diference in
the expression of these immune checkpoint genes at the
mRNA level between the high and low PAN2RS groups, with
only some genes such as CD28, IL12A, and IL2RA being
more highly expressed in the high PAN2RS group. Te
methylation results showed opposite methylation status of
most genes in the high-risk and low-risk groups, suggesting
that these genes may be involved in the progression and
prognosis of AML by altering the methylation status. Te
amplifcation frequency and deletion frequency of these
genes were almost at a relatively high level in both the high
PAN2RS group and the low PAN2RS group. A few genes,
such as IDO1, IL4, and IL13, which showed higher am-
plifcation or deletion frequency in the high PAN2RS sub-
group than in the low PAN2RS subgroup, might play
a central role in the prognosis of AML patients. Seven al-
gorithms were used to quantify the level of immune cell
infltration in all cohorts. We compared the level of immune
cell infltration in the high and low PAN2RS groups and also
calculated the correlation between the level of immune cell
infltration and PAN2RS in all cohorts (Figures 7(b) and
7(c), Supplementary Figures 9–12). Based on the results of
the analysis of diferent cohorts in multiple algorithms, we
found that the PAN2RS was mainly positively associated
with the infltration of hematopoietic stem cells, CD8 Tcells,
endothelial cells, M2 macrophages, and regulatory T cells
(Tregs) and mainly negatively associated with the infltration
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of NK T cells and M1 macrophages. In addition, the re-
lationship between the 19 signature genes and the ORR of
immunotherapy was explored, and the results indicated that
NRIP1 could be a therapeutic target for adjuvant immu-
notherapy, which may provide new opportunities for the
treatment of AML patients with high NRIP1 activity
(Figures 7(d) and 7(e), p � 0.032, Supplementary Table 10).
With the mutation data in TCGA-LAML cohort, the gene
mutation characteristic in high PAN2RS group and low
PAN2RS group was investigated, and the top 20 of the
mutated genes were focused and displayed (Supplementary
Figures 13A and 13B). Te gene mutation rate of RUNX1
and TP53 was higher in the high PAN2RS subgroup.Te top
5 of mutation genes were NPM1, RUNX1, TP53, ASXL1,
and IDH2 in high PAN2RS subgroup, while the top 5 of
mutation genes were KIT, NPM1, TTN, ARID1A, and
CACNA1C in low PAN2RS subgroup. Te somatic muta-
tion of RUNX1 and TP53 had been proven to be associated
with the worse outcome in AML, which was consistent with
the results of our analysis. Previous studies had shown that
TMB was low in AML, with less meaningful reference value
to guide immunotherapy. Here, we investigated the corre-
lation between PAN2RS and TMB in the TCGA-LAML
cohort. PAN2RS was not signifcantly associated with TMB
in AML (Supplementary Figure 13C, Spearman’s sum rank
correlation r� 0.04, p � 0.6457), and there was no signif-
cant diference of TMB between the patients with high and
low PAN2RS (Supplementary Figure 13D, Wilcoxon’ test,
p � 0.94). Tese TMB-related analysis results were consis-
tent with previous expectations.

3.8. Prediction of the Response to the Immunotherapy for AML
Patients. AML is one of the diseases with immunologic
treatment in the form of allogeneic stem cell transplantation.

Tere are two primary treatment approaches in current
practice: immunotherapy, including allogeneic hematopoietic
stem cell transplantation, and the repositioning of efector
cells (such as T cells, NK cells, and macrophages) to induce
a rapid, potent, and long-lasting cytotoxic response, poten-
tially resulting in immune memory [18, 19]. Despite their
prolonged exposure to host immune cells, including cytotoxic
T cells and natural killer cells, AML cells are able to evade
immune attack, allowing them to inactivate cytotoxic lym-
phocytes both in direct and distant contact. Some mecha-
nisms such as these make immunotherapy almost useless for
some AML patients. Terefore, it is extremely important and
economical to assess the efcacy of immunotherapy before
administering it to AML patients. Here, we evaluated the
association between PAN2RS and response to immuno-
therapy in ten cohorts that received immunotherapy. Based
on PAN2RS, the patients were divided into high and low
groups, and the patients with high PAN2RS all had worse
survival time in all ten immunotherapy cohorts (Supple-
mentary Figure 14). Moreover, Patients in the high PAN2RS
group showed signifcantly lower levels of response to im-
munotherapy (signifcant in 7/10 cohorts) (Figure 8). Un-
surprisingly, the patients responding to the immunotherapy
showed signifcantly lower PAN2RS (Figure 8).Tough it was
a pity that there was no analyzed cohort of AML patients who
had received immunotherapy, these results were still very
informative. Overall, we proved that PAN2RS was highly
associated with the response to the immunotherapy and high
PAN2RS usually meant less response to the immunotherapy.

3.9. Prediction of theTerapeutic Targets and Agents for High
PAN2RS AML Patients. To identify potential druggable
targets for poor prognosis AML patients, information on 2249
targets for 4484 compounds was collected and analyzed to
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Figure 4: Evaluation and validation of the developed PANoptosis signature. (a) Te 1-year, 3-year, and 5-year AUCs were calculated in six
cohorts including TCGA-LAML, HOVON, GSE37642, GSE12417, GSE106291, and BeatAML. (b) Te C-index of the developed signature
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Figure 5: Comparison of the PANoptosis signature against the published signatures. Four metrics, including 1-year AUC (a), 3-year AUC
(b), 5-year AUC (c), and C-index (d), were used to compare the developed PANoptosis signature with other published signatures. Te left
number indicated the PMID of each signature. 12345678 represented the signature developed in this study.
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Figure 6: Construction of a clinically useful nomogram for AML patients. (a) A nomogram including PAN2RS and some clinical
characteristics such as age, sex, cytogenetic risk, NPM1mutation, and FLT-ITDmutation was constructed in the HOVON cohort. (b–d)Te
Platt calibration curves for 1-year, 3-year, and 5-year curves.
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Figure 8: Continued.
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fnd candidate targets. We then investigated the correlation
between CERES score and PAN2RS based on AML cell lines
and fnally identifed 9 potentially druggable targets for the
poor survival AML patients (Spearman’s r<−0.45, p< 0.05)
(Figure 9(a)). We found that the CERES values of some genes,
including THBD, SLC36A2, P4HA2, KCNK1, and ENPP2,
were greater than 0 in most AML cell lines, suggesting that
these genes may not be very essential for the growth and
proliferation of AML cells. Te CERES scores of other genes,
such as RAF1, ABCB11, LIG3, and IARS, were less than 0 in
most AML cell lines, suggesting that AML patients with
poorer prognosis may beneft from treatment targeting these
genes. Te CERES scores of the PANoptosis signature genes
were also calculated. ADRM1, which had the lowest CERES
score, might play an important role in the development and
progression of AML (Supplementary Figure 15A). Given the
signifcantly high association between high PAN2RS and poor
patient survival, we further investigated whether patients with
high PAN2RS scores could beneft from pharmacological
treatment strategies. A comprehensive ex vivo drug sensitivity
analysis was performed for AML patients with PAN2RS based
on existing transcriptomic data and corresponding drug
sensitivity data from previous literature (Figure 9(b)). To
verify the reliability of this analysis, we had a number of drugs
as positive controls. Te drugs were sunitinib, foretinib,
sorafenib, KW-2449, crenolanib, quizartinib, cabozantinib,
dovitinib, NVP-TAE684, and Vargatef. Tese drugs had been
shown in previous studies to be more efective than wild-type
drugs in the treatment of AML patients with NPM1 muta-
tions or FLT3-ITD mutations. And we compared the AUC of
the drug between mutation type and wild type and found that
the drugs as positive controls showed lower AUC value in
NPM1 or FLT3-ITD mutation type than in wild type, in-
dicating that the patients with NPM1 or FLT3-ITD mutation
type were more sensitive to the drugs, which was consistent
with the previous studies (Supplementary Figures 15B and
15C). And then a two-step analysis was carried out to fnd the
high PAN2RS-dependent and sensitive agents (Figure 10(b)).
Finally, three drugs including crenolanib, JNJ-7706621, and
INK-128 were identifed as the potential therapeutic agents
for the patients with high PAN2RS. All of them showed lower
AUC values in the high PAN2RS group compared to the low
PAN2RS group and were signifcantly negatively correlated

with PAN2RS (Figure 9(c)). Crenolanib, a receptor tyrosine
kinase (RTK) inhibitor, may inhibit FLT3 kinase. JNJ-
7706621, a novel and potent cell cycle inhibitor of CDK family
members, may prevent tumor cell proliferation in multiple
cancers. INK-128, a potent mTOR inhibitor, has shown
encouraging potential in the treatment of cancer. We hy-
pothesized that PAN2RS may represent underlying biological
functions based on the fact that the three compounds asso-
ciated with cell cycle and energy metabolism showed diferent
AUC values in the high and low PAN2RS groups. To confrm
this hypothesis, we frst performed diferential gene expres-
sion analysis in patients with the highest and lowest deciles of
PAN2RS, followed by enrichment analysis based on four
collected gene sets using two methods (GSEA and GSVA) to
explore the underlying biological pathways. GSEA results
based on KEGG, CO-BP, REACTOME, and HALLMARK
gene sets showed high levels of biological signaling such as cell
cycle-related pathways, glycolysis, and mTOR1 signaling in
the high PAN2RS AML group, explaining the potential of
these drugs to treat patients with high PAN2RS (Figure 9(d),
Supplementary Figures 15D–15G). Similarly, with the GSVA
algorithm, signifcant diferences in cell division and energy
metabolism pathways were found between the high and low
PAN2RS groups (Supplementary Figure 16A). Ridge re-
gression analysis then identifed 8 and 5 drugs with high
PAN2RS and poor prognosis using the CTRP and PRISM
datasets, respectively (Figures 9(e)–9(g), Supplementary
Figure 16B). All of these drugs were signifcantly negatively
associated with PAN2RS and showed signifcantly lower AUC
values in the high PAN2RS group (Figures 10(e)–10(g)). Te
XSum score and the KS score were calculated to search for the
potential drugs that could reverse the process of AML
(Figure 9(h)). Based on the XSum score and KS score, clo-
fbrate and alvespimycin were identifed as most likely to be
clinically efective in the treatment of AML patients with high
PAN2RS (Figure 9(i)).

3.10. Extending the PANoptosis Signature to Pan-Cancer.
Te correlation of the PANoptosis signature and the
tumor-related pathway signaling had been comprehen-
sively analyzed above. We speculated that this association
would also exist in other tumors. In order to verify this, we
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frst tested the prediction accuracy of the PANoptosis
signature in other cancers, using the univariate Cox re-
gression analysis and survival analysis. Te PANoptosis
signature had an excellent prediction performance in
THYM, READ, UVM, LAML, ESCA, LIHC, ACC, KIRC,
PCPG, and KICH (Figures 10(a) and 10(b)). 1-year, 2-year,
3-year, 4-year, and 5-year AUCs of the PANoptosis sig-
nature were calculated across the cancer types, and the
results indicated that the PANoptosis signature had a high
prediction accuracy in some cancers such as THYM,
TGCT, UVM, and READ (Figure 10(c), Supplementary
Figures 17A–17E). Moreover, the correlation of the
PAN2RS and the expression of immune check point genes
was investigated across the cancers, suggesting that the
association in SKCM, OV, UCS, GBM, and UVM was
similar to the correlation in LAML, while that in READ,
THCA, PAAD, LUAD, and COAD was opposite to that in
LAML (Figure 10(d)). Tis revealed diferent patterns of
expression of immune checkpoint genes and signature
genes in diferent cancers. From the previous analysis, the
TMB measurement in AML was found to be of low pre-
dictive value; however, the study of TMB in other tumors
with high levels of TMB is important as a measure of the
level of response to immunotherapy. PAN2RS was sig-
nifcantly and positively associated with TMB in THYM,
OV, KIRP, BRCA, and UCEC, whereas UVM, LUAD,
ACC, PRAD, LIHC, SKCM, LGG, and COAD showed the
opposite (Figure 10(e)). And then, the correlation of the
PAN2RS and the hallmarks of the tumor was investigated.
All the hallmark gene sets were at a high level in the high
PAN2RS patients of LAML, UCS, and UVM. Metabolism-
related pathways including xenobiotic metabolism, fatty
acid metabolism, and oxidative phosphorylation were
present at high levels in patients with high PAN2RS across
the cancer types. Te levels of these pathways were largely
consistent and high in PAN2RS AML patients; however,
this consistency was rarely seen in solid tumors, and some

pathways were even downregulated in the high PAN2RS
groups, which could be due to the great heterogeneity
between solid tumors and hematologic tumors and re-
quired further investigation (Figure 10(f )). In addition, the
expression of the signature genes was examined across
cancer types. Te results showed that IL2RA, DNMT3B,
ADRM1, and NRIP1 were highly expressed in tumor tissue
compared to normal tissue, while ALDH2, NYNRIN, LSP1,
and CALCRL were the opposite (Figure 10(g)).Te somatic
mutation of the signature genes was also explored, and
NYNRIN, DOCK1, DNMT3B, NRIP1, CLCN5, and
CALCRL had higher mutation frequency among the 19
genes and the main type of mutation was missense mu-
tation (Figure 11, Supplementary Figure 18). Finally, we
examined the correlation of the PAN2RS and the immune
cell infltration quantifed by fve algorithms including
CIBERSORT, EPIC, ESTIMATE, quanTIseq, and xCell.
PAN2RS was signifcantly and positively associated with
the infltration of CD4 T cells, Tregs, and M2 macrophages
while negatively associated with the infltration of NK cells,
memory B cells, and T1 cells across cancer types (Sup-
plementary Figure 19A–19E), consistent with the previous
conclusion.

3.11. Validation of 19-Gene Signature Expression in Acute
Myeloid Leukemia. We compared the mRNA expression of
the candidate genes with the combination analysis of the
TCGA-LAML and the GTEx data (Supplementary Figure 20).
Te qRT-PCRwas performed to validate themRNA expression
levels of 19 genes in our signature. As shown in Figure 11,
upregulated NYNRIN, DNMT3B, GPRC5C, DOCK1, ETFB,
ADRM1, MAML1, and ETS2 were found in both HL-60 and
MV-4-11 cells while ALDH1, CALCRL, JAM3, PGRMC1,
PDE4D, LSP1, and SESN1 were downregulated in AML. Te
genes NRIP1, IL2RA, SPINT2, and CLCN5 were upregulated
in MV-4-11 cell and downregulated in HL-60 cell.
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Figure 9: Prediction of the therapeutic targets and agents for high PAN2RS AML patients. (a) Te correlation between CERES score and
PAN2RS was investigated based on AML cell lines, and 9 potentially druggable targets for the poor survival AML patients were fnally
identifed. (b) Te workfow of a comprehensive ex vivo drug sensitivity analysis for AML patients with PAN2RS based on existing
transcriptomic data and corresponding drug sensitivity data from previous literature. (c) Tree drugs including crenolanib, JNJ-7706621,
and INK-128 were identifed as the potential therapeutic agents for the patients with high PAN2RS. All of them showed lower AUC values in
the high PAN2RS group compared to the low PAN2RS group and were signifcantly negatively correlated with PAN2RS. (d) GSEA result of
the KEGG cell cycle pathway. (e) Te workfow of the ridge regression analysis for selecting the potential drugs. (f, g) Ridge regression
analysis identifed 8 and 5 drugs with high PAN2RS and poor prognosis using the CTRP and PRISM datasets, respectively. (h)Te workfow
of the drug selection based on the XSum score and KS score. (i) Based on the XSum score and KS score, clofbrate and alvespimycin were
identifed as most likely to be clinically efective in the treatment of AML patients with high PAN2RS. Te two-sided p value <0.05 was
considered signifcant for all statistical analyses and shown as ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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Figure 10: Extending the PANoptosis signature to pan-cancer. (a, b)Te prediction accuracy of the PANoptosis signature was tested in other cancers, using
the univariate Cox regression analysis and log-rank sum test. Te PANoptosis signature had an excellent prediction performance in THYM, READ, UVM,
LAML, ESCA, LIHC, ACC, KIRC, PCPG, and KICH. (c) Te 2-year AUC of the PANoptosis signature was calculated across the cancer types. (d) Te
correlation of the PAN2RS and the expression of immune check point genes was investigated across the cancers. (e)Te correlation of the PAN2RS and the
TMBwas investigated across the cancers. (f)Te correlation of the PAN2RS and the hallmarks of the tumor was investigated across the cancers. (g)Te heat
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4. Discussion

PANoptosis is a recently discovered type of programmed cell
death that promotes tumor cell death and perhaps reduces
the efect of aberrant apoptotic pathways on chemo-
resistance in tumors [20]. However, few studies on the re-
lationship between PANoptosis and AML exist. Relapse is
one of the leading causes of AML-related deaths. Abundant
evidence suggests that the abnormal expression of gene
afects the poor prognosis AML cells [21–26]. How gene
expression infuences PANoptosis is yet unknown. In this
study, we established a novel PANoptosis-related prognostic
gene (PANRGs) signature for AML patients.

We comprehensively investigated the PANoptosis pat-
terns in AML and identifed some key PANoptosis-related
candidate genes, and with the LOOCV framework, we de-
veloped a prognostic signature consisting of 19 genes and
corresponding coefcient.

By comparing the average of each metric across all
cohorts, we found that the developed signature (“12345678”)

had a strong advantage, second only to the signature con-
structed by the article with PMID 30089916 in terms of
performance in all aspects. In fact, from a certain point of
view, the signature we constructed was even better.When we
focused our attention on the performance of each indicator
across all cohorts, it became clear that for the developed
PANoptosis signature, the low value of the average of each
indicator was due to the poor performance in the BeatAML
cohort and the TCGA-LAML cohort. We excluded the in-
dicator values of the signature when the signature genes did
not match in the cohort. Te signature with PMID 30089916
was only tested in the HOVON cohort and was inferior to
the developed PANoptosis signature. Tis condition was
observed in all four metrics. Tese results indicated that the
PANoptosis signature was a robust signature with a high
level of predictive accuracy for the AML patients compared
with the other prognostic signatures of AML patients.

We also compared enrichment score of infltration of
immune cells and immune pathways between the high- and
low-risk groups, investigated functional mechanisms via
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GSEA, and assessed potentially suitable drugs.Tis novel 19-
gene signature may contribute to the improvement in the
prediction of AML prognosis and patient stratifcation for
therapeutic strategies.

Te PGERs NYNRIN, DNMT3B, GPRC5C, DOCK1,
ETFB, ADRM1, MAML1, ETS2, ALDH2, CALCRL, JAM3,
PGRMC1, PDE4D, LSP1, and SESN1 were included in our
signature. Te genes in our signature were related to tumor
predisposition (NYNRIN [27], GPRC5C [24], and CLCN5
[28]), tumorigenesis (JAM3 [29], PGRMC1 [30], and LSP1
[31]), progression (DOCK1 [32], MAML1 [33], PGRMC1,
NRIP1, and PDE4D [34]), migration and invasion (ADRM1
[35] and SPINT2 [36]), and chemotherapy sensitivities
(ALDH2 [25], ETFB [37], ETS2 [38], CALCRL [23], SESN1
[39], and IL2RA [40]). In detail, NYNRIN gene was related
to Wilms tumor predisposition [27]. Wong et al. found that
DNMT3B contributes to the progression and severity of
AML [24]. GPRC5C is consistently elevated exclusively in
neuroblastoma cancer stem cells [32]. DOCK1, as a member
of DOCK family, can encode evolutionarily conserved
guanine nucleotide exchange factors for Rho GTPase to
enhance the progression of AML [41]. Exome array analysis
identifes ETFB as a novel susceptibility gene for
anthracycline-induced cardiotoxicity in cancer patients [37].
ADRM1 gene amplifcation is a candidate driver for met-
astatic gastric cancers [35]. MAML1/2 promotes YAP/TAZ
nuclear localization and tumorigenesis [33]. ETS2 acts by
regulating expression of hematopoietic lineage and tran-
scription factor genes involved in erythropoiesis and meg-
akaryopoiesis and in chemotherapy sensitivities [38].
Inhibition of ALDH2 can sensitize AML cells to chemo-
therapy [25], which means ALDH2 may be a target to
chemoresistance. CALCRL-associated genes could also
potentially mediate the chemoresistance and relapse of AML
[23]. JAM3 functions as a novel tumor suppressor and is
inactivated by DNA methylation in colorectal cancer [29],
and the role in leukemia is unknown. PGRMC1 is an
enigmatic heme-binding protein, is highly expressed in
breast cancer tissue, and may be important in tumorigenesis
[42]. PDE4D binds and interacts with YAP to cooperatively
promote HCC progression [34]. Te distinct morphological
characteristics of hairy cell leukemia (HCL) cells can be
attributed to the overexpression of pp52 (LSP1) and/or its
specifc association with the cytoskeleton. Elevated cyto-
skeleton-binding pp52 (LSP1) protein contributes to the
distinctive morphology of hairy cell leukemia [31]. Sup-
pression of SESN1 reduces cisplatin and hyperthermia re-
sistance through increasing reactive oxygen species (ROS) in
human maxillary cancer cells [39]. Te top fve genes related
to AML are DOCK1, ALDH2, LSP1, NRIP1, and IL2RA.
Focus on chemotherapy sensitivity and resistance may be the
potential target to AML treatment.

In our research, we also conducted a comprehensive
drug sensitivity analysis to identify potential therapeutic
options for AML patients with high PAN2RS expression.
Our results indicated that clofbrate, a fbric acid derivative
primarily used in the treatment of hypertriglyceridemia and
dyslipidemia, may exhibit clinical benefts by modulating
superoxide anion production, lipoperoxidation, and reactive

oxygen species production [43]. Additionally, alvespimycin,
a heat shock protein 90 inhibitor, demonstrated promising
antileukemia activity in advanced AML patients [44]. No-
tably, alvespimycin has also shown efcacy in overcoming
imatinib resistance in chronic myeloid leukemia cell lines
[45]. Tese fndings suggest that both clofbrate and alves-
pimycin could serve as potential therapeutic interventions in
the management of AML.

PANoptosis was frst known in normal cells or tissues
under various physiological or pathological conditions [46].
Several risk signatures of PANoptosis have been established,
which mainly focus on solid tumors. Our research is the frst
signature of PANoptosis related to AML. Although we have
integrated this predictive model into the R package to en-
hance its clinical utility, there are many limitations in our
research. First, only retrospective data were used to develop
and validate the signature. More prospective clinical studies
should be collected to validate the robustness and efec-
tiveness of the constructed signature. Second, a single sig-
nature was used to construct a prognostic model, which may
lead to the loss of many key prognostic genes in AML.Tird,
the detailed roles of PANRGs in AML, including in vivo and
in vitro, should be further investigated in the future. Fourth,
although we collected a large amount of transcriptomic data,
larger samples with multiomic data should be collected to
investigate the role of PANoptosis in AML.

5. Conclusion

Collectively, by integrative analysis of sequencing data of
LAML cohorts, pan-cancer cohorts, and human cancer cell
lines based on a wealth of machine learning algorithms, our
study established a novel, stable, and robust 19-PANRG
prognostic risk signature for AML patients. It is a promising
tool for personalizing treatment and clinical management
for individual AML patients. In addition, FRGs may rep-
resent novel therapeutic targets in AML.
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