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Background. Amino acid metabolism, including ATP production, nucleotide synthesis, and redox homeostatic processes, are
associated with proliferation and diferentiation of tumor cells. Tis study aimed to identify novel prognostic biomarkers and
potential therapeutic targets of amino acid metabolism-related genes for stomach adenocarcinoma (STAD). Methods. RNA se-
quencing transcriptome data in the TCGA-STAD (training set) and GTEx datasets (validation set) were used. Te LIMMA R
program enabled the diferentially expressed amino acid metabolism-related genes (AAMRGs) to be found. A prognostic risk score
model based on clinical phenotypic features was built using LASSO regression and step multi-Cox analyses. Gene set enrichment
analysis (GSEA) was used to fnd potential molecular pathways associated with STAD. Hierarchical cluster analysis was used to
evaluate pyrimidine metabolism. Cultured STAD cells assessed the proliferation of STAD and upregulation of GPX3 expression by
CCK8 and fow cytometry. Transwell and wound healing assays assessed the impact of GPX3 on invasion and migration of STAD
cells. Western blot and qRT-PCR were used to measure changes in pyrimidine metabolism-related markers and active molecules
involved in the AMPK/mTOR signaling pathway. Results. Tree AAMRGs, DNMT1, F2R, and GPX3, could independently predict
the course of STAD. Pyrimidine metabolism appeared to be signifcantly associated with these by GSEA and clustering analyses.
Pyrimidine metabolism was negatively correlated with GPX3. Functional studies using an overexpressed GPX3 plasmid showed an
enhanced migration and invasion of STAD cells as well as the expression of genes associated with pyrimidine metabolism and the
AMPK/mTOR signaling pathway. By using a CAD siRNA, it was found that that GPX3 afected 5-fuorouracil resistance during de
novo synthesis of pyrimidine through the CAD-UMPS signaling axis. Conclusions. GPX3 which regulates the level of pyrimidine
metabolism through the AMPK/mTOR pathway was found to be closely associated with STAD. Our fndings demonstrate GPX3 is
a reliable biomarker for the prognosis of amino acid metabolism and a probable target for STAD therapy.

1. Introduction

Stomach adenocarcinoma (STAD) is the most prevalent type
of digestive tumor. According to data from the International
Agency for Research on Cancer (IARC), East Asia has the
highest incidence and mortality rate of STAD in the world
and almost half of the patients in China [1]. In China, STAD
ranks third among cancer-related deaths, which greatly
jeopardizes the health of Chinese residents [2]. STAD is
a multifactorial and multiprocess malignant tumor in which

many factors act on related genes and regulatory factors at
diferent stages of the development of the disease [3, 4],
causing abnormalities in the structure and expression levels
of related genes [5–7]. Although STAD-related marker
studies are constantly being explored, the processes involved
remain incompletely understood, and thorough in-
vestigations still lack systematic analyses regarding genetic
factors associated with its prognosis. Terefore, it is urgent
and critical to fnd new molecular targets to control the
growth and invasion of STAD cells.
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Amino acids, the basic units of proteins, are essential for
the biosynthesis of nucleotides, glutathione, glucosamine,
and polyamines [8], and they drive the formation of tumors.
Most oncogenic drivers are known to upregulate nucleotide
biosynthesis capacity, and many of the aggressive properties
of cancer cells [9], including uncontrolled proliferation,
chemoresistance, immune escape, and metastasis, are largely
dependent on enhancing their metabolism [10]. Nucleotide
metabolic pathways include both purine and pyrimidine
metabolism [11]. In recent years, it has been shown that
purines act as signaling ligands in many human cancers and
that pyrimidines are key factors in tumor cell proliferation
[12]. Excessive synthesis and use of nucleotide triphosphates
(NTPs) and their deoxy counterparts (dNTPs) in cancer cells
allow for abnormal metabolic changes. In overactive nu-
cleotide reactions, dNTPs also become rate-limiting factors
in several fundamental biological processes, including DNA
replication, repair, and transcription, and they are critical for
cancer initiation and progression downstream of oncogene
activation [13]. Although there are some drug sensitivity
studies on NTPs and dNTPs [14–16], relatively few were
with respect to targeting amino acid metabolism genes to
regulate nucleotide metabolism. Terefore, this study was
undertaken to investigate pyrimidine metabolism with
a view to provide fresh perspectives on the diagnosis and
therapy of STAD and the development of related drugs.

Glutathione peroxidase 3 (GPX3) is found in the 5q32
region of chromosome 5 and comprises of fve exons that span
10kb and encode a 23 kDA protein that forms a homotetramer
[17]. GPX3, as the only exocrine member of the GPX family,
has a signifcant impact on oxygen radical detoxifcation. Its
serum level can also be an important marker for detecting
tumors [18]. Reactive oxygen species (ROS) are highly reactive
molecules that regulate important signaling pathways in the
body [19]. A moderate increase in ROS leads to various
pathological conditions in the body, including tumor devel-
opment. ROS are also involved in diferent signaling pathways
and induce DNA mutations [20]. In recent years, it has been
shown that GPX3may play a role in ROS generation, including
the enhancement of lipid hydroperoxide production near
lipoxygenase (LOX) on the cell surface [21, 22]. Hence, GPX3
may be involved in cancer by regulating the levels of ROS and
may afect tumor progression by acting as a potent inhibitor of
cancer development and progression. Although several ex-
perimental studies in recent years have shown that GPX3 can
be used as a prognostic biomarker afecting the migration and
invasion of STAD cells [23], its specifc role in STAD remains
to be investigated.Tere have also been reports that theAMPK/
mTOR signaling pathway is crucial for controlling anticancer
drug resistance [24] and basic cellular metabolism [25–27].

In this study, GPX3 was identifed as a key target for
regulating ROS in tumor cells, whose expression is down-
regulated in STAD and this could afect the prognosis of
patients with this disease. Our data suggest that GPX3
mediates the AMPK/mTOR signaling pathway by regulating
the level of ROS in tumor cells and triggering an imbalance
of oxidative stress in the organism. Tis subsequently im-
pacts pyrimidine metabolism levels and resistance to 5-
fuorouracil (5-Fu), a drug used in chemotherapy. Our

data would suggest that GPX3 can be a promising prognostic
indicator as well as a potential therapeutic target for STAD.

2. Materials and Methods

2.1. Data Source. Te data were obtained from the STAD
dataset in Te Cancer Genome Atlas (TCGA, https://www.
cancer.gov/tcga) database, which contains 375 and 32 tissue
and paraneoplastic tissue samples obtained from STAD pa-
tients. In addition, the whole gene transcriptome sequencing
data and patient clinical information data are also available.Te
GSE84437 dataset from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) was then used to
verify the analytic fndings obtained from the TCGA database.
Te gene expression profles were fltered and normalized using
the Perl, EdgeR, and gplot R software packages. Te “sva”
package in R software was specifcally designed to eliminate
batch efects. Screening of diferentially expressed genes
(DEGs) between paracancerous and STAD tissues was per-
formed with adjusted P values <0.01 and |log2(FC)|> 1). Te
expression of GPX3 was extracted using the Perl and LIMMA
software packages. Amino acid metabolism-related genes
(AAMRGs) were downloaded through the GSEA database
(https://www.gsea-msigdb.org/gsea/login.jsp).

2.2. IndependentPrognosticAnalysis. Genes having a P value
of less than 0.05 were screened for stomach cancer using
UniCox regression analysis. From the 480 amino acid
metabolism-related genes obtained, 59 were screened, and
a gene expression matrix was constructed based on these for
subsequent screening and construction of prognostic risk
models.

2.3. Construction and Validation of Prognostic Risk Models.
Te fnal prognostic model was constructed by building
stable AAMRGs after UniCox regression analysis had
screened for those that were diferentially expressed in
STAD. Te LASSO algorithm was then used to prevent the
model from being overftting, and a stepwise multi-Cox
regression analysis was carried out to determine which
prognostic genes were best for this model. Te following
formula, which combines the regression coefcients and the
expression values for each AAMRG, was used to determine
the risk score: (index gene expression 1× gene1) + (index
gene expression 2× gene2) +. . .+ (index gene expression
10× gene10). All treated STAD patients in the TCGA da-
tabase were divided into two subgroups of high and low
based on their median risk ratings. Kaplan–Meier curves
were used to ascertain the prognostic variations among the
groups. Ten, using receiver operating characteristic (ROC)
curves, the one-, three-, and fve-year survival rates of the
patients were determined. Finally, the prognostic risk model
that was created was verifed using the GEO dataset.

2.4. Evaluation of Prognostic Risk Models. Te model was
analyzed for diferences by using R software to determine
whether the AAMRGs involved in the model construction
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difered in the high- and low-risk groups of patients with STAD
by plotting box line plots. To determine the diference in
survival between the high- and low-risk groups, survival analysis
was carried out using the Kaplan–Meier analysis with P< 0.05
being judged as statistically signifcant. Risk analysis was per-
formed by using the “pheatmap” program in R software to see
how the risk of the patients increased and how it was related to
their gene and survival status as well as their risk score.Te area
under the ROC curve served as a proxy for the model’s ac-
curacy. Te independence of the models was assessed by using
univariate and multivariate COX regression analyses.

2.5. Construction and Validation of a Predictive Model for
Column-Line Graphs. We combined the patients’ clinical
information, including age, gender, pathologic grade, clinical
stage, and TNM stage, with risk scores to create a line graph
prediction model using the “rms” package in R software to
predict the survival of patients at diferent stages of the disease.
We also generated calibration curves to show the agreement
between the column-line graphs in predicting the patient
survival and the actual patient survival at years 1, 3, and 5.

2.6. Gene Set Enrichment Analysis (GSEA). Upon dividing
the gene set data of the 407 patients in the TCGA database
into risk-scored high- and low-risk groups, the enrichment
pathways in the two subgroups were ascertained by using the
GSEA software to analyze the “c2.cp.kegg.v7.1.symbols.gmt”
collection that was obtained from the molecular signature
database. Te phenotype labels for high-risk and low-risk
groups were applied, 1000 permutations were allowed and
all other choices were left at their default settings. Te top
fve biological processes in each subgroup which were
substantially enriched were visualized using the R software’s
“ggplot2” tool. Data from the Kyoto Encyclopedia of Ge-
nomes (KEGG) database were selected to analyze the sig-
naling pathways mediated by GPX3 in STAD using the
single-gene GSEA enrichment analysis function in the
Sangerbox 3.0 tool (https://sangerbox.com/login.html).

2.7. Non-Negative Matrix Factorization (NMF) Clustering.
TeKEGG pyrimidine metabolism gene set was used for NMF
clustering. Te “NMF” package in R software was used for
unsupervised cluster analysis of AAMRG expression to create
molecular subtypes of pyrimidine metabolism for genes as-
sociated with amino acid metabolism and to assess the
prognosis of various subgroups. Te optimum K values were
determined using consensus heat maps and NMF rating
surveys, and TCGA samples were divided into two groups
according to the signifcance of pyrimidine metabolism.
Kaplan–Meier survival analysis was used to investigate vari-
ations in the survival of patients between the clusters.

2.8. Single Sample GSEA (ssGSEA). ssGSEA analysis was
performed using the “GSVA” and “GSEABase” program in
the R software package based on the KEGG pyrimidine
metabolism genes in the GSEA database. Te results were
plotted by using the ggplot2 program of the R software.

2.9. Cell Culture and Transfection. Te Chinese Academy of
Sciences (Shanghai, China) provided the HGC-27 and SGC-
7901 cells, and Guangzhou Saiku provided the GES-1 cells. Te
cells were revived and cultured with RPMI 1640 complete
medium, which included 10% newborn fetal bovine serum and
1% penicillin-streptomycin. Te cells were then incubated at
37°C in an atmosphere of 5% CO2 and the culture media
replaced every two to three days. Plasmids (Genepharma,
Suzhou, China) were transfected by using HighGene plus
Transfection reagent (Abclonal, USA) to overexpress GPX3 in
SGC-7901 cells. Te transfection efciency was confrmed by
western blotting and real-time fuorescence quantitative po-
lymerase chain reaction (qRT-PCR).

2.10. Cell CountingKit-8Assay. 1.5×104 cells/well were used
to inoculate the 96-well plates, and the cells were kept at 37°C
in an atmosphere of 5% CO2 for 24 hours. Ten microliters of
CCK8 solution were added to each well at a designated time.
After three hours, a multiscan spectrophotometer was used
to measure absorbance at 450 nm.

2.11. Migration and Invasion Assays. Te capacity of STAD
cells to invade and migrate was evaluated by using a trans-
well membrane (Corning 3422, pore size 8 μm) in the
presence and absence of Matrigel. In summary, 200 μL of
FBS without mediumwas placed in the upper chamber of the
transwell, and 2–4×104 cells were put into it. Concurrently,
the bottom chamber was flled with 500 μL of culture media
containing 10% FBS. After incubation for 24 hours at 37°C,
the cells were fxed with 4% paraformaldehyde for
30minutes and then washed with PBS. After scraping the
cells from the top side of the membrane with a cotton swab,
the cells were stained with crystal violet for 30minutes at
room temperature. After drying, the membranes were
washed with PBS and imaged by using the ImageJ software.

2.12.WoundHealingAssay. A sterile plastic pipette was used
to scrape the cell layer after cells were aliquoted into 6-well
plates for the wound healing experiment. After that, cells
were grown in media without FBS, and at 0 h and 48 h,
respectively, electron microscopic images were captured.
Te cells’ migratory potential was evaluated by calculating
the changes in the size of the injured area.

2.13. Total RNA Isolation and Quantitative RT-PCR. Te kit
Axy Prep Multisource Total RNA Miniprep Kit (Suzhou
Youyi Landi Biotechnology Co., Ltd.) was used to extract
total RNA from cells. Te cDNA was synthesized by reverse
transcription according to the instruction steps of the re-
verse transcription kit MonScript RTIII All-in-OneMix with
dsDNase (Mona Biotechnology Co., Ltd.). Reverse tran-
scription was performed to synthesize cDNA, cDNA was
used as a template and qRT-PCR was performed according
to the instructions of the MonAmp SYBR Green qPCR Mix
(None ROX) kit. GAPDH was used as an internal reference
to calculate the relative expression of individual genes by
using the 2−ΔΔCt method. Each measurement was repeated
three times.
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2.14.WesternBlottingAnalysis. A protease inhibitor mixture-
containing RIPA lysis bufer (Biyuntian Biotechnology, China)
was used to lyse STAD cells. Te protein content was de-
termined using the BCA protein quantifcation kit (Vazame,
China). Equivalent amounts of protein samples were separated
using SDS-PAGE and then transferred onto PVDF mem-
branes. Following 0.5 hours of equilibration in a protein-free
quick closure solution (Vazame, China), the membranes were
incubated with the relevant primary antibodies overnight at
4°C. Primary antibodies were purchased fromABclonal (GPX3,
1 : 2000; mTOR, 1 :10000; P-mTOR, 1 :10000), Proteintech
Group (CAD, 1 : 5000; AMPK, 1 : 2000; P-AMPK, 1 :1000), and
ImmunoWay (GAPDH, 1 :1000). After washing with PBS, the
membranes were incubated for 1hour at room temperature
with HRP-labeled secondary antibodies. Te secondary anti-
bodies were purchased from Elabscience (goat anti-rabbit IgG
(H+L), 1 :1000; goat anti-mouse IgG (H+L), 1 :1000). Fol-
lowing further washes with PBS and incubation with
a chemiluminescence reagent, the membranes were visualized
and analyzed by using the ImageJ software.

2.15. Detection of Reactive Oxygen Species in Cells.
SGC-7901 cells were loaded using the DCFH-DA fuorescent
probe from the Reactive Oxygen Species Assay Kit. Te
DCFH-DA probe stock solution was frst diluted with serum-
free culture medium at a ratio of 1 :1000 to a fnal concen-
tration of 10mM, and then 2mL of DCFH-DA dilution was
added to each well of a six-well plate. Te SGC-7901 cells were
incubated for 20min in a cell culture incubator at 37 degrees
Celsius, and then the cells were washed three times with serum-
free cell culture medium. Finally, laser confocal microscopy
and a fuorescent enzyme marker were used to measure the
amount of ROS in diferent groups of cells.

2.16. Statistical Analysis. We generated statistical visuali-
zations of the data using GraphPad Prism8 and the ggplot2 R
software package. In all cases, a P value of less than 0.05 was
considered to be statistically signifcant.

3. Results

3.1. Identifcation and Screening of AAMRGs. Figure 1 di-
agrammatically illustrates the protocol used in the study.
Using data from the TCGA-STAD cohort of the TCGA
database, we frst identifed 94 AAMRGs expressed difer-
ently in gastric cancer tissues when compared to normal
tissues. Next, we used the “survival” R package to perform
univariate COX regression analysis to examine the 59 genes
linked to the prognosis of STAD. 16 AAMRGs which were
observed to be DEGs in STAD and normal gastric tissues,
and these were considered to be capable of infuencing the
prognosis of STAD (with 9 and 7 AAMRGs highly and lowly
expressed in STAD, respectively; Figures 2(a)–2(d)).

3.2. Construction and Evaluation of a Prognostic Model Based
on the Risk Profles of 3 AAMRGs. Te 16 AAMRGs were
selected after diferential expression analysis and univariate

COX regression analysis based on a dataset of 407 STAD
patients obtained from the TCGA database, which was com-
bined with 480 AAMRGs from the GSEA database. From these
genes, a 10-fold cross-validation by the “glmnet” software
package and LASSO regression analysis were performed to
screen for prognostically relevant AAMRGs. Finally, three core
AAMRGs associated with prognosis were obtained by multi-
variate COX regression analysis and these were DNA meth-
ylation transferase 1 (DNMT1), prothrombin II (F2R), and
GPX3. Based on these 3 genes, we constructed a prognostic
amino acid metabolism risk model, generated LASSO co-
efcient profles (Figure 3(a)) and partial likelihood deviation
plots (Figure 3(b)) for the relevant core genes involved.We used
the following formula to determine each STAD patient’s risk
score: risk score� (0.28× F2R expression)+ (−0.27×DNMT1
expression)+ (0.19×GPX3 expression). Finally, based on the
median risk score, the prognostic model was divided into two
subgroups: high- and low-risk groups.

According to survival analysis, patients in the low-risk
group outlived those in the high-risk group by a substantial
margin (P< 0.01, Figure 3(c)). With respect to predicting the
prognosis of STAD based on the three AAMRGs, the risk
model’s AUC values for the three genes were 0.725, 0.684,
and 0.683 in the 1-, 2-, and 3-year ROC curves, respectively
(Figure 3(d)).Tese values were highly sensitive and specifc.
Te distribution of risk scores and the survival status of these
three AAMRGs in the TCGA dataset are shown by the risk
curves in Figure 3(e). Te PCA analysis in Figure 3(f ) then
shows the distribution of risk scores for these 3 genes in the
TCGA dataset. To validate the model’s predictive perfor-
mance, we used the GSE84437 dataset from the GEO da-
tabase as an externally validated dataset and the 407 STAD
patients from the test cohort as the validation cohort and
calculated their risk scores using the above formula. As with
the training cohort, the validation group was subgrouped
based on the training group’s risk score threshold, which
showed that overall survival (OS) was worse in the low-risk
group (n� 213) than that in the high-risk group (n� 220)
(P< 0.01, Figure 3(g)). Te AUC values at 1, 2, and 3 years
were >0.5 (Figure 3(h)). Te risk curves in Figure 3(i)
demonstrate the distribution of risk scores and survival
status of these 3 AAMRGs in the GSE84437 dataset. Te
PCA analysis in Figure 3(j) demonstrates the distribution of
risk scores for these 3 genes in the GSE84437 dataset. All
these results show that the prognostic model has good
predictive ability and accuracy.

3.3. Evaluation and Validation of Biomarkers as Key Targets
Infuencing the Prognosis of Gastric Cancer. Using this
prognostic model, we performed univariate and multivariate
Cox regression analyses (Figures 4(a) and 4(b)) to see
whether the predictive values of the three genes from the
screening (DNMT1, F2R, and GPX3) was unafected by
these clinical parameters. Te results showed that the amino
acid metabolism prognostic model constructed based on
these three genes could be used as an independent prog-
nostic factor for predicting the occurrence of STAD (HR> 1,
P< 0.01). Subsequently, the box line plots were used to
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demonstrate the diferential expression levels of these three
AAMRGs in STAD and normal tissues (Figure 4(c)), and the
results of qRT-PCR (Figures 4(d) and 4(e)) and western
blotting (Figure 4(f)) validated the above analysis. We also
used proteomics data from the CPTAC database to analyze
the diferential expression of these three AAMRGs at the
protein level. Te analysis results (Figure 4(g)) we obtained
were generally consistent with the experimental results in
Figure 4(f).

3.4. Exploration of Signaling Mechanisms Associated with
Prognostic Models. We explored the potential molecular
mechanisms by which risk scores infuence tumor pro-
gression based on the biophenotypes of correlations in-
volved in high- and low-risk groups in the prognostic
models. Te results of enrichment analysis by GSEA showed
that prognostic model-related genes were signifcantly
enriched in many pathways. Te calcium-related signaling
pathways, dilated cardiomyopathy, adhesive plaques,
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Figure 1: Flowchart of the research.
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hypertrophic cardiomyopathy, and neuroactive ligand-
receptor interactions may be associated with high-risk
scores in the amino acid metabolism prognostic model
(Figure 5(a)). In contrast, base excision repair, cell cycle,
Huntington’s disease, pyrimidine metabolism, and spli-
ceosomes were associated with low-risk scores in the
prognostic model. Figure 5(b) demonstrates the correlation
between the prognostic model of amino acid and pyrimidine
metabolic processes. Te NMF algorithm was then applied
to a cluster of the TCGA-STAD cohort based on the en-
richment scores of pyrimidine metabolism in GSEA, and
based on the coefcients, we determined that the optimal k
value was 2 (Figure 5(c)). Te NMF clustering algorithm
categorized patients with TCGA-STAD into cluster 1 and
cluster 2. Te heatmap demonstrates that the expression of
patients with cluster 2 is overall slightly higher than that of
patients with cluster 1 (Figure 5(d)). Te clustering results
showed that patients in cluster 2 had signifcantly shorter OS
compared to those in cluster 1 (Figure 5(e)). Tis suggested
that pyrimidine metabolism is a key factor contributing to
the poor prognosis of STAD patients. Finally, we calculated

the correlation between DNMT1, F2R, and GPX3, and
pyrimidine metabolism based on ssGSEA scores derived
from their profles. It appears that DNMT1 has the strongest
positive correlation with pyrimidine metabolism in STAD
patients (R� 0.50, P< 0.01) and GPX3 has the strongest
negative correlation (R� −0.48, P< 0.01; Figure 5(f)). Hu
et al. [28] showed a link between the expression level of
GPX3 and resistance to a chemotherapeutic drug, 5-
fuorouracil (5-Fu), which can afect pyrimidine meta-
bolism [29]. Terefore, we chose GPX3 as the target of
interest for conducting further validation experiments.

3.5. Prognostic Columnar Plot of the AAMRG-Associated Risk
Models. We constructed a column-line plot of risk scores
including age, stage, and TNM grading using the three
AAMRGs to forecast the survival rates of STAD patients in
the frst, third, and ffth years (Figure 6(a)). Te calibration
curves in Figure 6(b) show that the predicted and current
status of one-, three-, and fve-year survival values are
consistent.
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Figure 2: Screening of 16 AAMRGs. (a) Te Venn diagram shows that 16 AAMRGs were selected after diferential expression analysis and
univariate COX regression analysis. (b) Heat maps showed the diferential expression of these 16 AAMRGs in normal tissues and tumor
tissues. (c) Trough univariate COX regression analysis, these 16 AAMRGs can afect the prognosis of patients with gastric cancer. (d) Te
correlation between the 16 AAMRGs is shown through the network diagram.
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3.6. GPX3 Afects STAD Cell Proliferation and Invasion.
In the aforementioned investigation, we used the western
blot assay and qRT-PCR to determine the GPX3 expression
levels in cell lines (HGC-27, SGC-7901, and GES-1) asso-
ciated with STAD. It was found that, in comparison to the
normal gastric mucosal epithelial cell line, GES-1, GPX3
expression levels were reduced in HGC-27 and SGC-
7901 cells (Figures 4(d) and 4(e)). To further investigate
the biological role of GPX3 in STAD cells, we upregulated
the expression level of GPX3 in SGC-7901 cells by trans-
fecting them with the overexpression plasmid of GPX3 (OE-
GPX3). We measured the overexpression efciency of this

plasmid by qRT-PCR and western blotting (Figures 7(a) and
7(b)). We confrmed by using CCK8 assays that the ex-
pression level of GPX3 could signifcantly afect the pro-
liferative capacity of STAD cells and that the SGC-7901 cells
were more proliferative after transfection with the over-
expression plasmid (Figures 7(c) and 7(d)). Ten, the impact
of GPX3 on the migration and invasion capacity of STAD
cells were examined using the transwell and wound healing
assays. Tese demonstrated that overexpression of GPX3
markedly improved the migration and invasion capacity of
SGC-7901 cells (Figure 7(e)). Flow cytometry results further
indicated that the GPX3 overexpression group of cells (OE-
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GPX3) had an increased proportion of cells at the G2/M
stage when compared to the control STAD cell group (NC-
GPX3) (Figure 7(f )). Overall, these results suggested that

GPX3 can serve as an independent biological prognostic
marker for STAD, where it appears to infuence the pro-
liferation and invasion of these cancer cells.
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Figure 5: Pyrimidine metabolism is a key factor leading to poor prognosis in patients with gastric cancer. (a) Multi-GSEA enrichment
analysis showed the results of enrichment analysis in the high-risk and low-risk groups in the prognostic model. (b) GSEA enrichment
analysis showed that pyrimidine metabolism was related to the prognosis model of amino acid metabolism. (c) NMF ranking survey of
unsupervised clustering results and consensus matrix heat map of two clusters was produced by unsupervised clustering. (d) Heatmap
demonstrating the variability in expression between patients with Cluster 1 and Cluster 2. (e) Survival curve of Cluster 1 and Cluster 2
groups (P � 0.011). (f ) Correlation between expression of prognostic factors DNMT1, F2R, and GPX3 in STAD and pyrimidinemetabolism.

10 International Journal of Clinical Practice



35 40 45 50 55 60 65 70 75 80 85 90
Age***

T1

T2

T4

T3

T

Stage I

Stage II

Stage III

Stage IV

Stage

G1

G2

G3Grade

N0

N1

N2

N3

N

FEMALE

MALE

Gender

low

high

risk

M0

M1

M
0 20 40 60 80 100

Points

Total points

320 340 360 380 400 420 440 460 480 500 520 540

0.9350.960.980.990.9940.9970.998
Pr (futime > 1) 

0.910.950.970.9850.9920.9960.9980.999
Pr (futime > 3) 

0.910.950.970.9850.9920.9960.9980.999
Pr (futime > 5) 

431

0.994

0.992

0.992

(a)

0.90 0.92 0.94 0.96 0.98 1.00

0.90

0.92

0.94

0.96

0.98

1.00

Nomogram−predicted OS (%)

O
bs

er
ve

d 
O

S 
(%

)

1−year
3−year
5−year

(b)

Figure 6: Prognostic nomogram combined with risk score model and clinicopathological features. (a) Age, stage, grade, TNM grade, and
risk score histogram were used to predict 1-year, 3-year, and 5-year survival (∗∗∗P < 0.001). (b) 1-, 3-, and 5-year calibration curves of the
TCGA data set.

3
*

2

1

0

Re
la

tiv
e G

PX
3 

Ex
pr

es
sio

n

N
C-

G
PX

3

O
E-

G
PX

3

(a)

GPX3

NC-GPX3 OE-GPX3

GAPDH

23 Kda

36 Kda

(b)

1.0

0.8

0.6

0.4

O
D

 4
50

 n
m

0.2

0.0

1.0

0.8

0.6

0.4

O
D

 4
50

 n
m

0.2

0.0

0 1 2
Day

****

****

****

****

3 4

1 2
Day

3 4

5

NC-GPX3
OE-GPX3

NC-GPX3
OE-GPX3

(c)
Figure 7: Continued.

International Journal of Clinical Practice 11



3.7. GPX3 Inhibits Pyrimidine Metabolism Levels in STAD.
We calculated the correlation between GPX3 and pyrimidine
metabolism by calculating the ssGSEA score. Te results in-
dicated that GPX3 plays an inhibitory role with respect to the
level of pyrimidine metabolism in STAD (Figure 5(e)). Tus,
changes in the expression of pyrimidine metabolism-related
markers could be detected when the level of GPX3 was altered
in STAD cells. Carbamoylphosphate synthase 2 (CAD), as-
partate transcarbamoylase (ATC), and dihydrolactamase
(DHA) form a multifunctional protein complex within cells

that participates in the initial three rate-limiting steps of py-
rimidine nucleotide synthesis, and it also plays a key role in the
initial synthesis of pyrimidine nucleotides [30]. We detected
a signifcant downregulation of CAD expression levels with the
upregulation of GPX3 expression in GPX3 overexpression of
HGC-27 and SGC-7901 cells as measured by qRT-PCR and
western blotting (Figures 8(a) and 8(b)). In addition, we an-
alyzed the correlation between GPX3 and CAD in STAD using
the TIMER 2.0 online database and found that GPX3 was
negatively correlated with CAD (R� −0.52) (Figure 8(c)). Tis
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Figure 7: Efect ofGPX3on invasion andmigration of STADcells. (a, b)Te expression level ofGPX3 in STADcells transfectedwithOE-GPX3was
analyzed by qRT-PCR and Western blot (∗P < 0.05). (c) Te cell proliferation ability of the untransfected group (NC-GPX3) and the transfected
overexpression plasmid group (OE-GPX3)was detected by theCCK8 assay in SGC-7901 cells (∗∗∗∗P< 0.0001). (d) Troughwound healing assays, we
examined the efect of GPX3 expression level on cell migration ability (∗∗∗P < 0.001). (e) Representative data from Transwell migration andMatrigel
invasion assays performed with the GPX3 is overexpressed (∗∗∗∗P < 0.0001). (f) Te changes of cell cycle between NC-GPX3 and OE-GPX3 group
were detected by fow cytometry. When GPX3 is overexpressed, the proportion of G2/M phase cells increases (∗P < 0.05, ∗∗∗P < 0.001).
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was consistent with our experimental results, thereby further
demonstrating that GPX3 exerts an inhibitory efect on the
level of pyrimidine metabolism in STAD.

3.8. Exploration of the Mechanism by Which GPX3 Afects 5-
Fu Resistance. Hu et al. [28] found an association between
GPX3 and drug sensitivity to the antitumor drug, 5-Fu.
Moreover, our experimental results demonstrated that GPX3
may afect 5-Fu resistance in STAD by afecting the ex-
pression of CAD and inhibiting the level of pyrimidine
metabolism. However, the mechanism whereby how CAD
afects 5-Fu resistance is ongoing. Uridine-phosphate syn-
thase (UMPS) is a bifunctional enzyme in humans that
functionally catalyzes the last two steps of the pyrimidine
biosynthetic process [31]. It has been shown that when 5-Fu
exerts its antitumor mechanism of action, UMPS can convert
a part of 5-Fu into components with cytotoxicity, thus
inhibiting the activity of the proapoptotic protein, Bok. Tis
allows cancer cells in a nonproliferative state to escape the
damaging properties of 5-Fu and develop secondary drug
resistance [32–35]. Yu et al. also verifed the modulation of 5-
Fu drug sensitivity by UMPS expression through their
fndings [36]. Terefore, we frst constructed a PPI network
associated with CAD through the STRING database, and this
showed a correlation between it and UMPS (Figure 9(a)).
Subsequently, we verifed the correlation between CAD and
UMPS in STAD using the TIMER 2.0 online database
(R� 0.7) (Figure 9(b)). We then found that in SGC-7901 cells,
both CAD and UMPS expression were downregulated, by
using qRT-PCR and western blotting analysis (Figures 9(c)
and 9(d)). Terefore, based our results and others in the
literature, we suggest that GPX3 plays a signifcant role in
pyrimidine metabolism, possibly through the CAD-UMPS
signaling axis, in infuencing 5-Fu resistance.

3.9. GPX3 Mediates the AMPK/mTOR Pathway in STAD.
GPX3 is known to play a key role in regulating the levels of
ROS in vivo [37].Te level of ROS in the body is infuenced by
the expression activity of AMPKα via its signaling pathway
[38]. We performed GSEA enrichment analysis of single
genes by using the Sangerbox 3.0 tool, targeting GPX3. Te
GSEA data indicated a connection between GPX3 and the
mTOR signaling pathway (Figure 10(a)). Ben-Sahra et al. also
found that the downstream mTORC1 receptor in the mTOR
signaling pathway [39] can alter the S6K kinase activity
downstream of the pathway, afecting the expression level of
CAD and the process of pyrimidine synthesis. Terefore, we
reasonably hypothesized that GPX3, in STAD, may infuence
the level of pyrimidine metabolism by regulating the amount
of ROS in the organism and this is mediated by the AMPK/
mTOR signaling pathway (Figure 10(b)).

To confrm the regulatory role of GPX3 in the AMPK/
mTOR signaling pathway, we used western blotting and
ROS detection kits to verify this hypothesis and selected
AMPKa1 and mTOR as markers of the AMPK/mTOR
pathway. We frst used the TIMER 2.0 online database to
analyze the correlation of GPX3 with AMPKa1 and mTOR,
and this showed that GPX3 showed a positive correlation
(R� 0.56) with mTOR but a negative correlation (R� −0.33)
with AMPKa1 (Figure 10(c)). By western blotting analysis,
we determined that after overexpression of GPX3 in SGC-
7901 cells, the protein level of phospho-AMPK was greatly
suppressed, and the protein level of phospho-mTOR was
markedly raised. In contrast, the total amount of AMPK and
mTOR expression did not change (Figure 10(d)). We also
observed that the ROS content in GPX3 overexpressing
SGC-7901 cells (OE-GPX3) was signifcantly lower than that
in normal SGC-7901 cells (NC-GPX3) by laser confocal
microscopy and a fuorescent enzyme marker (Figures 10(e)
and 10(f)).
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Figure 8: Efect of GPX3 on pyrimidine metabolism. (a) qRT-PCR was used to detect the efect of GPX3 expression on CAD in HGC-27 and
SGC-7901 cells (∗∗∗∗P < 0.0001). (b) Western blot was used to detect the efect of GPX3 expression on CAD in SGC-7901 cells. (c) Te
correlation between GPX3 and CAD expression level was analyzed through TIMER2.0 online database.
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Based on these results, we hypothesized that GPX3
mediates the AMPK/mTOR signaling pathway by regulating
the level of ROS in tumor cells and triggering an imbalance
of oxidative stress in the body, which subsequently has an
impact on the level of pyrimidine metabolism and 5-Fu
resistance in patients with STAD.

4. Discussion

Tumor cells have a higher requirement for exogenous amino
acids when compared to normal cells. Hence, alterations in
amino acid metabolism can have a signifcant impact on
tumor cells and the tumor immune microenvironment
[40–44]. Clinical induction of cancer cell apoptosis by amino
acid depletion therapy has also become a research hotspot in
recent years [45].Terefore, we use AAMRGs as the target of

STAD treatment in order to explore their infuence on the
mechanism of this disease with a view to providing potential
new avenues for tumor research.

Te study of cancer biology has advanced signifcantly in
recent decades due to the introduction of high-throughput
sequencing [46]. Among them, bioinformatics, as one of the
main tools for detecting potential prognostic biomarkers in
cancer-related felds, has helped to screen more bio-
molecules involved in tumor progression [47]. Tus, our
goal was to identify a predictor of amino acid metabolism
afecting STAD metastasis and poor prognosis by using the
bioinformatics approach. In addition, we assessed the efect
of amino acid metabolism on the relevant biological func-
tions in tumors by exploring their specifc molecular
mechanism in STAD cells. We frst screened 16 AAMRGs
which afected the prognosis of STAD patients by analyzing
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Figure 9: Efect of CAD on 5-Fu. (a) PPI network built directly related to CAD through a STRING database. (b)Te correlation between UMPS
and CAD expression level was analyzed through TIMER2.0 online database. (c)Te knockdown efciency of CAD in SGC-7901 cells was detected
by qRT-PCR (∗∗∗∗P < 0.0001). (d) Te efect of CAD expression on UMPS expression in SGC-7901 cells was detected by western blot assay.
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Figure 10: Efect of GPX3 on the AMPK/mTOR signaling pathway. (a) Using Sangerbox 3.0 tool, we performed GSEA enrichment analysis
for GPX3. Te results show that GPX3 is related to mTOR signaling pathway. (b) Specifc mechanism of GPX3 regulation of pyrimidine
metabolism through AMPK/mTOR signaling pathway (picture design by Figdraw). (c) Te correlation between GPX3 and the expression
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the TCGA-STAD cohort dataset using diferential expres-
sion and Kaplan–Meier analyses. LASSO and multivariate
COX regression analyses were then used, and three in-
dependent prognostic variables (DNMT1, F2R, and GPX3)
were found. A prognosis risk model for STAD was then built
using these fndings. Based on the prognostic model’s me-
dian risk score, the TCGA-STAD samples were divided into
low- and high-risk groups. GSEA enrichment analysis
revealed that pyrimidine metabolism was one of the most
enriched gene features in the low-risk population and that
the poor prognosis of STAD patients was primarily asso-
ciated with these heterocyclic compounds.

Clinical pyrimidine-related antimetabolites have pre-
viously been used to treat tumor-like diseases [48], and these
drugs regulate the level of pyrimidine metabolism in the
body through the action of certain key enzymes [49–51]. He
et al. demonstrated that the expression of CAD, a key en-
zyme in de novo synthesis of pyrimidine, plays a critical role
in chemotherapy resistance in STAD [52]. When the py-
rimidine biosynthetic pathway was blocked, the sensitivity of
the drug, 5-Fu, to cancer cells, changed [53, 54]. We used
NMF clustering analysis to identify the genes relevant to
pyrimidine metabolism. Ten, we used this information to
separate the TCGA-STAD samples into two groups
depending on how the genes were associated to pyrimidine
metabolism.Te OS rates of the two clusters were compared
using Kaplan–Meier analysis. Others have shown that high
pyrimidine metabolism levels are linked to a worse prog-
nosis for STAD patients.

To clarify the connection between DNMT1, F2R, and
GPX3 expression and pyrimidinemetabolism, we performed
ssGSEA analysis using pyrimidine metabolism-derived
features. Te ssGSEA score derived from pyrimidine
metabolism characterization showed the strongest negative
correlation between GPX3 and pyrimidine metabolism in
STAD. We then constructed a GPX3-overexpressed SGC-
7901 cell line by transfection of GPX3 into an overexpression
plasmid and employed western blotting and qRT-PCR
measurements to confrm the transfection efciency. We
found that GPX3 overexpression markedly increased the
migration and invasion of STAD cells by using the scratch
test and transwell assays. Concurrently, there was an
upregulation of GPX3 expression and a downregulation of
CAD, P-AMPKa1, and P-mTOR expression. Within py-
rimidine metabolism, qRT-PCR and western blotting
measurements demonstrated a positive correlation between
CAD and UMPS expression. In addition, the efect of GPX3
on 5-Fu resistance may also be linked to the CAD-UMPS
signaling axis. Tese fndings strongly suggest that GPX3 is
an important regulator in STAD, afecting the level of py-
rimidine metabolism and 5-Fu resistance, and it may also be
related to the AMPK/mTOR signaling pathway. However,
the dual role of ROS in cancer, especially their paradoxical
ability to induce proliferation or apoptosis in cancer cells,
has led to disappointing results in the application of anti-
oxidants in clinical cancer therapy. Tus, in relevant ex-
perimental studies, GPX3 sometimes exerts opposite efects
on tumor cells due to diferent intracellular ROS concen-
trations. How to regulate the intracellular ROS

concentration in the organism so as to exert the desired
efect of antioxidants in inhibiting the proliferation of tumor
cells is a question that we need to keep exploring in sub-
sequent studies.

In conclusion, we found that GPX3 could not only
function as a key target of amino acid metabolism in STAD
but also GPX3 could be used as a prognostic biomarker in
patients with STAD. GPX3 inhibited the level of pyrimidine
metabolism in STAD cells via the ROS/AMPK/mTOR
signaling pathway, which could afect the migration and
invasive ability of these cells. Tese results could eventually
lead to improved approaches for treating and diagnosing
stomach cancer and provide ways to lower the antidrug
resistance experienced in some patients.
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