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Background and Aim. is study aimed to assess the e�ect of the size of the  eld of view (FOV) on cone-beam computed
tomography (CBCT) artifacts caused by metal objects in the exomass.Materials and Methods. In this in vitro experimental study,
titanium implants, teeth with cobalt-chromium (Co-Cr) intracanal posts, and teeth with mesio-occluso-distal (MOD) amalgam
restorations were placed in an empty socket of the extracted third molar of a human mandible. ese metallic materials were
di�erently arranged in the exomass (zone outside of the FOV). A polypropylene tube containing dipotassium phosphate was
placed in the empty socket of the right canine tooth in a dry human mandible. CBCT scans were taken with a NewTom VGI
(Verona, Italy) scanner using a 6× 6 cm and an 8× 8 cm FOV. e histogram tool of OnDemand software (Cybermed, Seoul,
Korea) was used to select circles with a 1.5mm diameter as the (ROI) at the center of the homogenous solution of dipotassium
phosphate tube on the axial plane. e mean gray value (GV) and its standard deviation (SD) in the region of interest (ROI) were
calculated (P> 0.05). e data were analyzed by SPSS 26. Results. e reduction in the size of the FOV signi cantly decreased the
mean GV (P< 0.001). Metal objects in the exomass signi cantly decreased the mean GV (P< 0.001), and minimummean GV and
maximum SDwere recorded for amalgam, followed by Co-Cr intracanal posts, and titanium implants.e unilateral presence of a
metal object was associated with a higher mean GV and lower SD (P< 0.001). Conclusion. Using a smaller FOV increases the size
of the exomass, which may negatively a�ect the image quality. Metal objects in the exomass decrease the GV of CBCT scans and
adversely a�ect the image quality.

1. Introduction

Dental radiography is a fundamental tool in clinical diag-
nosis and treatment planning and is commonly requested by
dental clinicians. At present, dental implants are increasingly
used for the replacement of lost teeth. However, dental
implant treatment requires highly accurate imaging mo-
dalities for preoperative assessment of intraoral conditions
and bone quality [1].

Cone-beam computed tomography (CBCT) is a valuable
imaging modality that provides three-dimensional images of
the maxillofacial structures [2]. CBCT has optimal (<1mm)
resolution and isotropic voxels. It also has a smaller size,
lower cost, higher scanning speed, lower patient radiation
dose, and stronger reconstruction software compared with

computed tomography, and is, therefore, more practical for
dental applications. CBCTcan greatly enhance the diagnosis,
treatment planning, and follow-up of patients in di�erent
dental  elds such as implantology, oral and maxillofacial
surgery, endodontics, and orthodontics [3, 4]. However,
despite all the advantages and popularity of CBCT and its
extensive applications in dentistry, artifacts decrease the
quality of CBCT images and complicate their interpretation.
Artifacts cause a di�erence between the reconstructed image
and the actual image content [5]. Beam hardening artifacts,
motion artifacts, streak artifacts, circular artifacts, and
exomass-related artifacts [6] are among the di�erent types of
artifacts that compromise image quality. CBCT artifacts
decrease the contrast, mask the structures, compromise
image quality, and subsequently complicate correct
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diagnosis [2]. Beam hardening artifacts are among the most
important artifacts generated in the presence of high-density
structures with high atomic numbers such as titanium
implants, amalgam restorations, and metal prostheses, and
significantly decrease the image quality [7]. It has been well
accepted that metal restorations and dental implants are the
main causes of CBCT artifacts [8, 9]. +e composition,
number, and location of metal objects can variably affect the
quality of CBCT images [10–13].

Recently, the use of a small field of view (FOV), referred
to as the local tomography technique [14], has increased due
to lower patient radiation dose and higher image quality
[11]. In the use of small FOV, only a small part of an object is
scanned, and the data obtained from the exomass, i.e.,
structures located out of the FOV and between the focal spot
and image receptor, are eliminated to prevent negative in-
terferences. However, it has been confirmed that the pres-
ence of metal objects in the exomass decreases the gray value
(GV) and causes artifacts on reconstructed images [15, 16].
Even the metal artifact reduction (MAR) algorithms cannot
decrease such artifacts [17].

Considering the extensive use of metals in dental
treatments and the increasing application of small FOVs,
this study aimed to assess the effect of the size of FOV on
artifacts caused by metal objects in the exomass.

2. Materials and Methods

+e study protocol was approved by the ethics committee of
Shahid Beheshti University of Medical Sciences
(IR.SBMU.DRC.REC.1399.132).

2.1. Sample Preparation. In this in vitro experimental study,
CBCT scans were taken from a dry human mandible with
partial edentulism.

2.1.1. Exomass Preparation. To induce exomass-related
metal artifacts, three types of metal objects were used:

(1) Titanium dental implants with 4.5mm width and
10mm height (Snucone, Korea)

(2) Teeth with Co-Cr intracanal posts
(Neodontics,Inc.USA)

(3) Teeth with mesio-occluso-distal (MOD) amalgam
restorations (SDI, Victoria, Australia)

Metal objects were further placed in the dry human
mandible in the following two states:

(i) A metal object in the empty socket of a right third
molar tooth

(ii) Two metal objects in the empty sockets of right and
left third molar teeth

Titanium dental implants were fixed in the empty tooth
sockets with dental max. Co-Cr intracanal posts were placed
in the root canals of extracted premolars, and the teeth were
fixed in the empty sockets of third molars in the dry human
mandible with dental wax. MOD amalgam restorations were
performed for extracted premolar teeth, and they were
placed in the empty sockets of third molars in the mandible
(Figure 1). +e bodies of the phantoms were made of thin
plastic.

(a) (b)

(c)

Figure 1: Placement of the titanium implant (a) cobalt-chromium intracanal post (b) amalgam restoration (c) and in a dry human
mandible. +e bodies of the phantoms were made of thin plastic and filled with ballistic gelatin.
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2.1.2. Sample Preparation for Quantitative GV Assessment.
A dipotassium phosphate homogenous solution (K2HPO4)
was prepared at a 1000mg/mL concentration and trans-
ferred into a polypropylene tube with a 0.2mL volume,
15mm height, and 5mm diameter. +is concentration was
selected to simulate alveolar bone density [18]. +e poly-
propylene tube containing dipotassium phosphate was
placed in the empty socket of the right canine tooth in a dry
human mandible and served as the site of ROI evaluation.

After mounting metal objects in the dry human man-
dible, the sample was placed in a plastic container with a 15-
cm diameter, and the container was completely filled with
ballistic gelatin to simulate the soft tissue. Ballistic gelatin
was prepared as follows according to a previous study [19]:
48 g of colorless gelatin (Sigma–Aldrich, Germany), 200mL
of glycerine (Sigma–Aldrich, Germany), and 500mL of
water were mixed and heated for 25 minutes to boil. After 20
minutes of cooling at room temperature, ballistic gelatin was
poured into the container containing dry human mandibles
and metal objects, and the plastic container was refrigerated
for 8 hours. After each scanning, the scanned metal object
was removed from the socket, and replaced with another
metal object, followed by subsequent scanning. Figure 2
shows the schematic view of the mandible and the position
of metal objects relative to the polypropylene tube.

2.2. CBCT Examination Setup. +e scans were obtained
using a NewTom VGI CBCT scanner (Quantitative Radi-
ology, Verona, Italy) with 110 kVp, 0.15mm voxel size, and
10.73mA for 6× 6 cm FOV and 3.00mA for 8× 8 cm FOV.
Prior to scanning, the scanner was warmed up by conducting
two preview scans. Also, to minimize the effect of warming
up of the scanner on the GV, 10-minute intervals were
considered between the scans [20].+e dry humanmandible
was then placed in the FOV. Finally, 14 scans were obtained
as follows:

(1) Scanning the dry human mandible containing one
titanium dental implant in the empty socket of the
right third molar using 6× 6 cm FOV

(2) Scanning the dry human mandible containing two
titanium dental implants placed in empty sockets of
the right and left third molars using 6× 6 cm FOV

(3) Scanning the dry human mandible containing one
titanium dental implant in the empty socket of the
right third molar using 8× 8 cm FOV

(4) Scanning the dry human mandible containing two
titanium dental implants placed in empty sockets of
the right and left third molars using an 8× 8 cm
FOV

(5) Scanning the dry human mandible containing one
tooth with Co-Cr intracanal post in the empty
socket of the right third molar using 6× 6 cm FOV

(6) Scanning the dry human mandible containing two
teeth with Co-Cr intracanal posts in the empty
sockets of right and left third molars using 6× 6 cm
FOV

(7) Scanning the dry human mandible containing one
tooth with Co-Cr intracanal post in the empty
socket of the right third molar using 8× 8 cm FOV

(8) Scanning the dry human mandible containing two
teeth with Co-Cr intracanal posts in the empty
sockets of the right and left third molars using
8× 8 cm FOV

(9) Scanning the dry human mandible containing one
tooth with a MOD amalgam restoration in the
empty socket of the right third molar using 6× 6 cm
FOV

(10) Scanning the dry human mandible containing two
teeth with MOD amalgam restorations in the empty
sockets of the right and left third molars using
6× 6 cm FOV

(11) Scanning the dry human mandible containing one
tooth with a MOD amalgam restoration in the
empty socket of the right third molar using 8× 8 cm
FOV

(12) Scanning the dry human mandible containing two
teeth with MOD amalgam restorations in the empty
sockets of the right and left third molars using
8× 8 cm FOV

(13) Scanning the dry human mandible with no metal
object using 6× 6 cm FOV (control)

(14) Scanning the dry human mandible with no metal
object using 8× 8 cm FOV (control)

Figure 2: Schematic view of the mandible and position of metal objects relative to the polypropylene tube. Exo: exomass, FOV, the field of
view.
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Each control scan was taken twice and a total of 16 scans
were made, and 10 regions of interest (ROIs) in each
specimen were evaluated.

2.3. CBCT Volume Assessment. +e on demand 3D appli-
cation version 1.0.10 (Cybermed Inc., Seoul, Cybermed Inc.,
Seoul, Korea) was used to reconstruct each scan with a
0.1mm isotropic voxel size, and the images were saved in
DICOM format.+e artifacts were quantified by OnDemand
software. All assessments were made on 16-bit images on a
Barco MDMC-12133 monitor (Kortrijk, Belgium) by a
postgraduate student of oral andmaxillofacial radiology.+e
coronal and sagittal planes were adjusted, and the mea-
surements were made such that the vertical axis of the
polypropylene tube containing dipotassium phosphate so-
lution was perpendicular to the axial plane. +e histogram
tool of OnDemand software was used to select circles with a
1.5mm diameter as the ROI in the axial plane. Measure-
ments were started from part of the polypropylene tube that
was completely embedded in the alveolar bone. Next, by the
selection of a 1mm slice thickness, measurements of each
ROI were continued at 1mm intervals from the coronal
towards the apical region on 10 axial sections.

For the GV of each ROI, the related mean and standard
deviation (SD) values were recorded. +e mean GV was
reported to assess the overall lightness/darkness of an image,
and the SD value was reported to assess the variability of
GVs or nonhomogeneity of the image [21].

To assess the intraexaminer reliability, 10 measurements
were repeated after a 2-week interval. +e intraclass cor-
relation coefficient was calculated. +e mean difference was
also calculated. +e limits of agreement and error range of
GVs were also calculated using the following formula:

Limits of agreement: (mean difference± 1.96)× SD of
difference.
Error range: measurement error× critical value.
Measurement error: (SD of differences)/critical value:
1.96.

Since, metal artifacts cause both light and a dark line,
averaging the points does not provide accurate information
regarding the mean GV. +us, to report the mean GV for
each of the 160 points, Adobe Photoshop software version
23.1.0.143 and Adobe Illustrator version 26.0.2.754 were
used to provide an accurate estimate of GV. To define a color
for each value, the black color was allocated to the smallest
recorded value while the white color was allocated to the
largest recorded value. Accordingly, different shades of gray
were allocated to other values.

+e data were analyzed using SPSS version 26. +e
normal distribution of data was evaluated by the Shapir-
o–Wilk test, which showed a normal distribution of data
(P> 0.05). +e groups were compared by three-way
ANOVA (considering the presence of three independent
variables of the size: FOV, type of metal object, and the
number of metal objects), followed by multiple comparisons
with Bonferroni correction at a 0.05 level of significance.

3. Results

+e intraclass correlation coefficient was found to be
0.73–0.99, which indicated excellent intraexaminer
reliability.

A total of 16 groups were compared (n� 10 in each
group) considering the two sizes of FOV, four groups with
respect to metal objects (three different metal objects and
one control group with no metal object), and the number of
metal objects (1 or 2, or unilateral and bilateral).

3.1. Mean GV. In Table 1 presents the descriptive findings
regarding the mean GV based on the size of FOV and the
type and number of metal objects. +e Photoshop findings
indicated that the gray shadows in scans of bilateral metal
objects with a 6× 6 cm FOV were darker than the scans of
unilateral objects with an 8× 8 cm FOV. +e darkest gray
shadows belonged to amalgam restorations, followed by Co-
Cr intracanal posts and titanium implants.

+ree-way ANOVA showed that the type of metal object
(P � 0.001), size of FOV (P � 0.001), and the number of
metal objects (P � 0.044) had significant effects on the mean
GV (indicating the amount of artifacts). Also, the interaction
effects of the size of FOV and type of metal object
(P � 0.001), type of metal object and number of metal
objects (P � 0.001), and size of FOV, type of metal object,
and number of metal objects (P � 0.001) were significant on
the mean GV. Regarding the magnitude of effect, the type of
metal object had the maximum effect on the mean GV,
followed by the size of FOV,and then, the number of metal
objects. Of the different interaction effects, the interaction
effect of type of metal object and number of metal objects
was the greatest, followed by the interaction effect of size of
FOV and type of metal object.

3.2. Type of Metal Object. Pairwise comparisons of different
types of metal objects regarding their effect on the mean GV
by the Bonferroni correction revealed significant differences
between all metal objects (Figure 3). +e maximum mean
GV was recorded in the control group while the minimum
value belonged to amalgam restoration (P< 0.05).

3.3. Size of FOV. As mentioned earlier, a significant dif-
ference existed in the mean GV regarding the size of the
FOV, and the mean GV was significantly higher in the use of
an 8× 8 cm FOV (P< 0.001).

3.4. Number of Metal Objects. As mentioned earlier, a sig-
nificant difference existed in the mean GV regarding the
number of metal objects, and the mean GV was significantly
higher in the presence of one metal object (P< 0.05).

3.5. SD of GV. In Table 2 presents the descriptive findings
regarding the SD of GV based on the size of FOV and the
type and number of metal objects. +ree-way ANOVA
showed significant effects of type of metal object (P � 0.001),

4 International Journal of Dentistry



a number of metal objects (P � 0.001), and size of FOV
(P � 0.001) on SD of GV. All interaction effects were sig-
nificant as well (P � 0.001 for all). Regarding the magnitude
of effect, the type of metal object, followed by the number of
metal objects, had the greatest effect on the SD of GV.
Regarding the interaction effects, the interaction effect of
type and number of metal objects had the greatest effect,
followed by the interaction effect of all three variables.

3.6. Type of Metal Object. Multiple comparisons by the
Bonferroni correction (Figure 4) revealed significant dif-
ferences between all three metal objects regarding their effect
on SD of GV (P � 0.001 for all) except for the comparison of
control and titanium dental implant groups (P � 1.00). As
shown, amalgam restorations yielded a maximum SD of GV

from significant differences with all other groups, while the
minimum SD of GV belonged to both titanium implants and
the control group (with no significant difference between
them).

3.7. Size of FOV. As mentioned earlier, a significant dif-
ference existed in the SD of GV regarding the size of FOV,
and the SD of GV was significantly higher in the use of an
8× 8 cm FOV (P< 0.001).

3.8. Number of Metal Objects. As mentioned earlier, a sig-
nificant difference existed in the SD of GV regarding the
number of metal objects, and the SD of GV was significantly
higher in the presence of two metal objects (P< 0.001).

Table 1: Descriptive findings regarding the mean GV based on the size of FOV and the type and number of metal objects (n� 10).

Group Number Minimum Maximum Mean Std. error Std. deviation Variance
6 ∗ 6-Co-Cr-2 10.00 748.87 775.59 767.96 2.83 8.95 80.10
8 ∗ 8-Co-Cr-2 10.00 610.40 828.70 716.14 22.48 71.10 5055.31
6 ∗ 6-amalgam-2 10.00 451.50 609.20 545.50 17.88 56.53 3195.64
8 ∗ 8-amalgam-2 10.00 589.40 657.50 629.40 7.40 23.40 547.54
6 ∗ 6-amalgam-1 10.00 470.60 653.80 569.82 21.11 66.75 4455.92
8 ∗ 8-amalgam-1 10.00 358.30 689.20 502.04 31.63 100.02 10004.02
6 ∗ 6-titanium-2 10.00 841.70 848.27 845.65 0.59 1.87 3.50
8 ∗ 8-titanium-2 10.00 954.90 971.60 962.78 1.80 5.68 32.31
6 ∗ 6-titanium-1 10.00 705.80 790.50 763.38 9.10 28.78 828.35
8 ∗ 8-titanium-1 10.00 933.50 940.30 937.42 0.70 2.21 4.88
6 ∗ 6-control-1 10.00 884.80 892.30 889.20 0.82 2.60 6.75
6 ∗ 6-control-2 10.00 888.70 892.10 890.76 0.35 1.11 1.23
8 ∗ 8-control-2 10.00 951.80 960.90 955.38 0.77 2.44 5.94
8 ∗ 8-control-1 10.00 968.30 974.00 971.99 0.57 1.80 3.24
6 ∗ 6-Co-Cr-1 10.00 860.10 864.30 862.10 0.41 1.31 1.71
8 ∗ 8-Co-Cr-1 10.00 915.50 919.00 917.52 0.30 0.95 0.91
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Figure 3: Pairwise comparisons of different metal objects regarding their effect on the mean GV.
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4. Discussion

Several strategies with variable levels of success have been
proposed to decrease CBCT artifacts such as using a small
FOV, using antiscatter grids, and adjustment of voltage
(kVp) and amperage (mA) [22, 23]. +e use of the MAR
algorithm is another suggested strategy for this purpose [23].
However, none of the abovementioned strategies has been
successful in the complete elimination of metal artifacts. +e
effects of the type and location of artifact-generating objects
in the FOV and the CBCT exposure parameters on artifact
generation have been previously investigated [24, 25].
However, less attention has been paid to exomass-related
artifacts. +is study was among the first to assess the effect of
the size of FOV on CBCTartifacts caused by metal objects in

the exomass. A dry human mandible was used in this study
to better simulate the clinical setting.

Despite the available literature on CBCTmetal artifacts,
no consensus has been reached regarding an accurate
method to quantify the effect of artifacts on image quality
[26]. Qualitative assessments by the observers can be ef-
fective for the evaluation of artifact reduction and for di-
agnostic purposes. However, such subjective assessments
cannot be reliably used for comparison of different protocols
or for quality control purposes. +ere is no standard pa-
rameter to quantify the effects of metal objects on voxel
values [27]. +e available literature mainly measured the
metal artifacts by using different parameters, such as the
mean and SD of GV [6]. In areas with low GV due to beam
hardening artifacts, increased mean GV along with

Table 2: Descriptive findings regarding the SD of GV based on the size of FOV and the type and number of metal objects.

Group Number Minimum Maximum Mean Std. error Std. deviation Variance
6 ∗ 6-Co-Cr-2 10.00 50.60 60.90 54.84 1.07 3.38 11.41
8 ∗ 8-Co-Cr-2 10.00 69.90 98.70 82.15 2.82 8.91 79.39
6 ∗ 6-amalgam-2 10.00 61.80 76.70 68.62 1.76 5.57 31.00
8 ∗ 8-amalgam-2 10.00 60.50 70.30 63.43 0.98 3.09 9.52
6 ∗ 6-amalgam-1 10.00 69.70 88.10 77.27 1.79 5.65 31.97
8 ∗ 8-amalgam-1 10.00 76.00 99.10 84.04 2.14 6.77 45.77
6 ∗ 6-titanium-2 10.00 51.90 63.60 58.57 1.25 3.94 15.50
8 ∗ 8-titanium-2 10.00 46.40 59.60 51.78 1.51 4.78 22.86
6 ∗ 6-titanium-1 10.00 44.60 52.90 47.72 0.96 3.05 9.29
8 ∗ 8-titanium-1 10.00 39.80 53.80 44.18 1.42 4.49 20.17
6 ∗ 6-control-1 10.00 38.70 51.50 45.11 1.47 4.66 21.74
6 ∗ 6-control-2 10.00 42.70 55.30 47.32 1.25 3.96 15.67
8 ∗ 8-control-2 10.00 44.80 70.40 62.06 2.60 8.21 67.40
8 ∗ 8-control-1 10.00 42.80 55.50 48.69 1.34 4.22 17.85
6 ∗ 6-Co-Cr-1 10.00 56.00 61.80 59.75 0.58 1.84 3.39
8 ∗ 8-Co-Cr-1 10.00 44.50 53.70 48.40 0.93 2.93 8.59
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Figure 4: Pairwise comparisons of different metal objects regarding their effect on the SD of GV.
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decreased SD can indicate a reduction in metal artifacts. +e
mean gray shadows can provide an overall estimate re-
garding the level of darkness/lightness due to metal artifacts.
Higher SD values can indicate higher noise and lower image
quality [22]. +us, this study assessed the mean and SD of
GV.+e present results showed significant effects of all three
variables, namely, the size of FOV, type of metal object, and
the number of metal objects, on the GV (amount of
artifacts).

+e size of the CBCT FOV is an important parameter in
calculating patient radiation dose [16, 28]. +us, using the
smallest FOV in CBCT has been extensively recommended
to minimize the patient’s radiation dose [29, 30]. Under
similar exposure conditions, a small FOV collimates the
X-ray beams and decreases the scattered radiation, which
subsequently results in a lower patient radiation dose and
improved image quality [11, 31]. However, the local to-
mography technique indirectly increases the effect of
exomass and the occurrence of the truncation effects by
decreasing the size of FOV in the axial plane [14, 15, 31],
and causes inconsistencies in the reconstructed volume
[32]. Objects present in the exomass are radiographed but
not reconstructed and change the GV as such [14]. +e
beam hardening artifacts caused by metal objects located
outside of the FOV affect the voxel values [33]. +e present
results showed that decreasing the size of the FOV from
8× t 8 cm to 6× 6 cm decreased the mean GV, increased the
artifacts, and decreased the image quality. In other words,
structures in the exomass significantly affected the image
quality.

Candemil et al. [16] showed that smaller FOV increased
the effect of exomass-related artifacts, which was in line with
the present findings and can be explained by the truncation
effect. A previous study showed that small FOV, depending
on the presence/absence, location, and the number of metal
objects in the exomass, can negatively affect image quality
[10], which is in agreement with the present findings.
Kocasarac et al. [34] indicated that dental implants present
in the exomass created images with higher SD and higher
artifacts compared with implants within the FOV, which was
in agreement with the present findings. Katsumata et al. [28]
evaluated the correlation of GV and CBCT volumes using
CBCT Alphard, which can provide different imaging vol-
umes. +ey demonstrated that larger imaging volume due to
larger voxel size was associated with lower image quality and
loss of details.

+us, according to the results of the present study, the
size of FOV can significantly affect image quality, especially
in presence of high-density objects. Previous studies also
showed that increasing the size of the FOV decreased the
variability in GV [11, 28, 35]. Under similar exposure
conditions, the use of a larger FOV only to improve image
quality is not justified because it increases the patient ra-
diation dose. +us, priority should be given to minimizing
exomass-related artifacts [16]. Oliveira et al. [36] indicated
that exomass-related artifacts decreased the variability of
GV, which was different from the present findings. In their
in vitro experimental study, exomass was simulated by using
a homogenous thin layer of water, which may serve as an

X-ray filter and increase the mean energy of the X-ray beam
and may also be less susceptible to changes in the size of
FOV.

In the present study, metal objects in the exomass
created hypodense and hyperdense streaks, which are in fact
due to beam hardening and scattering artifacts [22, 27]. In
this study, the presence of metal objects in the exomass,
irrespective of their type, decreased the mean GV of images
taken by the NewTom VGi CBCT scanner. +is finding
indicates the dominance of hypodense artifacts on the
images, which can probably have a negative effect on the
detection of hypodense conditions such as fracture lines in
the clinical setting. However, a previous study showed that
although the presence of high-density materials in the
exomass negatively affected the CBCT image quality, they
had no adverse effect on the diagnostic accuracy of CBCTfor
detection of vertical root fractures [37]. +is difference is
probably due to the use of different types of scanners and
optimized exposure settings applied in their study. Candemil
et al. [16] demonstrated that the mean voxel value decreased
in the presence of any metal object in the exomass in the use
of CS9300 and Picasso Trio CBCTscanners, and the presence
of two Co-Cr or amalgam cylinders in the use of the
NewTom Giano scanner, which was in agreement with the
present findings. However, unlike the present study, they
showed that the presence of one to three Co-Cr cylinders or
amalgam restorations resulted in the generation of greater
amounts of hyperdense artifacts on images taken by the
NewTom Giano scanner. Such a controversy in the results of
different CBCT scanners is probably due to some small
variations in exposure parameters such as amperage (mAs).
Also, it may indicate that the artifacts generated by objects
with different linear attenuation coefficients are not
expressed similarly by different CBCT scanners [21].

+e physical properties of objects directly affect the
CBCT artifacts [16]. In the present study, the lowest mean
GV and maximum SD of GV belonged to amalgam resto-
rations, Co-Cr intracanal posts, and titanium implants. +is
finding may be due to differences in the atomic numbers of
these metal objects.+e atomic number of titanium implants
is 22, while that of chromium and cobalt is 24 and 27, re-
spectively. +e atomic numbers of mercury, silver, tin, and
copper in the amalgam alloy are 80, 47, 50, and 29, re-
spectively [16, 17]. +us, high atomic number and high
physical density increase artifact generation when exposed
to X-ray radiation [6, 29], and this increase is directly
proportionate to the change in GV. Increased variability in
GV indicates greater effects of artifacts on CBCTimages, and
subsequent reduction of image quality [27, 37].

In the present study, the mean GV in unilaterally placed
titanium implants scanned with a 6× 6 cm FOV was slightly
lower than that of Co-Cr intracanal post. Although the Co-
Cr intracanal post has a higher atomic number and physical
density, the titanium implant had a larger diameter than the
intracanal post. +us, irrespective of the lower physical
density of the titanium implant, its larger diameter probably
increased the artifacts [38]. Similarly, a previous study
showed that irrespective of the application of the MAR
algorithm in Picasso Trio and ProMax scanners, the Co-Cr
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alloy in the exomass resulted in a lower mean GV and higher
SD than a titanium cylinder [17], which was in line with the
present findings. Another study showed that the presence of
three titanium dental implants in the exomass in the use of
Cranex 3D, Orthophos SL-3D, and Z1 caused a significant
reduction in the mean GV compared with the control status
[36].

Aside from the type of metal object, the effect of the
number of metal objects present in the exomass was also
evaluated in this study. +e results showed that the bilateral
presence of metal objects in the exomass decreased the mean
GV and increased the SD of GV compared with their
unilateral placement. +is finding indicates that higher-
quality images can be expected in patients with fewer metal
objects in the exomass. In other words, the number of metal
objects in the exomass had an inverse correlation with the
mean GV. +us, the presence of a higher number of metal
objects in the exomass results in overall image darkening,
probably because of the dominance of hypodense over
hyperdense artifacts, which are distributed non-
homogenously. Previous studies also demonstrated that a
higher number of metal objects out of the FOV decreased the
mean GV and increased noise [11, 28, 33].

+e present results indicated that the SD of GV was
minimum in the unilateral placement of titanium implants
andmaximum in the bilateral placement of Co-Cr intracanal
posts and amalgam restorations, which was in line with a
previous study [16]. +us, based on the present results and
the available literature, a higher number of metal objects
with a high atomic number have a higher potential for image
distortion [10]. Also, it has been demonstrated that the MAR
algorithm is not successful in minimizing the effect of
exomass-related artifacts on the GV [17]. Moreover, the
MAR algorithm can have different effects on the mean GV
depending on the source of artifact and the type of CBCT
scanner [39]. Also, it increases the time required for image
reconstruction and occupies a larger space for saving data
[40]. +us, its application is not recommended, and it was
not used in the present study either.

In general, the present results indicate that in the case of
using a small FOV for patients with metal objects of high
density and atomic number in their oral cavity, the obtained
CBCT images may have lower than expected quality. CBCT
scans with a larger FOV probably have less noise due to the
decreased exomass effect [11, 27, 28, 35]. However, they
increase the patient’s radiation dose, which should be taken
into account.

When requesting CBCT, the clinician should ideally
detect the possible sources of artifacts and their location
relative to the ROI. Accordingly, the radiation dose can be
adjusted to select a proper-size FOV and acquire an image
with optimal quality.

+is study had several strengths. Most previous studies
on artifacts of metal objects located in the exomass were
conducted on a polypropylene cylindrical phantom
[5, 10, 17]. However, in the present study, metal objects were
placed in a dry human mandible to better simulate in vivo
conditions [38]. Also, ballistic gelatin was used to simulate
the soft tissue. A recent study measured the mean and SD of

GV and reported that ballistic gelatin was the best material to
simulate soft tissue [19]. Nonetheless, generalization of re-
sults to the clinical setting should be done with caution
because X-ray interferences are different in each patient [41].
Also, motion artifacts, which can be problematic in the
clinical setting, were not present in this study. However, the
current results can pave the way for further studies on other
CBCTscanners and different dental materials in vitro with a
better simulation of the clinical setting. Also, different voxel
sizes and exposure parameters can be evaluated in future
studies.

5. Conclusion

+e use of small FOV increases the effect of exomass, which
may negatively affect the image quality. Artifacts generated
bymetal objects in the exomass significantly decrease the GV
of CBCT scans and adversely affect the image quality. +us,
the possible sources of artifacts and their location should be
identified, and the radiation dose should be adjusted in order
to use the proper-size FOV and preserve the image quality.
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