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Purpose. This study assessed the impact of intraoral scanner type, operator, and data augmentation on the dimensional accuracy of
in vitro dental cast digital scans. It also evaluated the validation accuracy of an unsupervised machine-learning model trained with
these scans. Methods. Twenty-two dental casts were scanned using two handheld intraoral scanners and one laboratory scanner,
resulting in 110 3D cast scans across five independent groups. The scans underwent uniform augmentation and were validated
using Hausdorff ’s distance (HD) and root mean squared error (RMSE), with the laboratory scanner as reference. A 3-factor
analysis of variance examined interactions between scanners, operators, and augmentation methods. Scans were divided into
training and validation sets and processed through a pretrained 3D visual transformer, and validation accuracy was assessed for
each of the five groups. Results. No significant differences in HD and RMSE were found across handheld scanners and operators.
However, significant changes in RMSE were observed between native and augmented scans with no specific interaction between
scanner or operator. The 3D visual transformer achieved 96.2% validation accuracy for differentiating upper and lower scans in the
augmented dataset. Native scans lacked volumetric depth, preventing their use for deep learning. Conclusion. Scanner, operator,
and processing method did not significantly affect the dimensional accuracy of 3D scans for unsupervised deep learning. However,
data augmentation was crucial for processing intraoral scans in deep learning algorithms, introducing structural differences in the
3D scans. Clinical Significance. The specific type of intraoral scanner or the operator has no substantial influence on the quality of
the generated 3D scans, but controlled data augmentation of the native scans is necessary to obtain reliable results with unsuper-
vised deep learning.

1. Introduction

The reliable use of artificial intelligence (AI) in dental research
in making accurate diagnostic predictions has been hindered
by its inability to perform well on datasets created by different
imaging modalities, such as computed tomography, magnetic
resonance imaging, and clinical photography across different
dental research centers [1–3]. Even with the most reliable
operator-driven imaging modalities and 3D scanning tools,
inter-rater reliability and agreements are adversely affected by

operator-dependent biases [3–5]. As dental research attempts
to integrate various forms of 2D datasets, including caries
diagnoses from oral photographs and microscopy [6] and
endodontic treatment status monitoring from radiographs
[7], for AI implementation, it is imperative to determine
whether 3D data derived from different clinics and disparate
intraoral scanners would impact the dimensional accuracy of
the datasets intended to develop AI models.

The types of AI currently applied in medical sciences can
be broadly classified into supervised and semisupervised
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learning [8]. To summarize the fundamental concept of
supervised AI in healthcare [9], AI models require clinicians
and operators to classify regions of interest in the training
dataset of an AI model, which is then applied to test a dataset
that the AI model has not seen before [10, 11]. Recent
advances in medical AI have introduced the possibility of
unsupervised or self-supervised deep learning, which can
learn from 3D scans without relying on human-labeled data-
sets [12]. Historically, human-labeled datasets in dentistry
were a source of low reliability and high biases [2]. One
such architecture that makes this approach possible is called
3D vision transformer (3DViT), which is a novel deep learn-
ing network for processing 3D data. It comprises large trans-
former layers that perform tasks such as image classification
and smaller subunits called attention heads that focus on
different parts of the 3D model, providing a 3D reference
for image classification [13]. The fundamentals of vision
transformer computing have been described in the supple-
mentary materials.

To better understand research data and discover pat-
terns, relationships, and anomalies, exploratory data analysis
(EDA) is conducted in data sciences [14]. In this context, the
preferred metrics for analysis include validation accuracy,
which is determined by the algorithm’s correct classification
of images from a test dataset labeled by humans, and cross-
entropy loss, which quantifies the disparity between pre-
dicted class probabilities and true class probabilities. These
measurements provide valuable insights into the model’s
performance and the alignment between predicted and
actual outcomes [15]. Yet, to the authors’ knowledge, such
an approach to quantify scanning performance has not pre-
viously been validated on 3D intraoral scans.

The practice of data augmentation is commonplace in
medical deep learning as it enriches and diversifies datasets
by introducing slight variations [16]. Data augmentation
helps in deep learning by artificially expanding the training
dataset through various transformations and modifications,
which improves model generalization and robustness and
reduces overfitting without introducing nonbiological varia-
tion that might bias subsequent analysis [17]. Overfitting
refers to a scenario in machine learning where a model
becomes excessively specialized in training data, performing
well on it but failing to generalize to new, unseen data due to
learning noise or irrelevant patterns specific to the training
set [18]. However, extensive transformation to 3D intraoral
scans is discouraged as they can compromise dimensional
accuracy, which is essential for prosthetic rehabilitation.
Consequently, such modifications have not been previously
applied to 3D intraoral scans, as clinical research often relies
on the native software provided with the scanners for model
processing [19]. Proprietary scanner software themselves
have a wide range of preadjusted and locked variables that
substantially impact fine-scale 3D vertex details and align-
ment processes within postprocessing [20]. This limitation
hinders further controlled augmentation, which is crucial for
achieving predictable machine-learning outcomes that oth-
erwise may not be achievable through native scans alone. In
addition, the proprietary nature of most scanning software,

often requiring subscription fees, can further prevent con-
trolled augmentation [21]. In order to overcome these lim-
itations, a novel augmentation method was employed in the
current study to preprocess completed 3D scan data prior to
utilizing AI. This method involved adding layers to the inter-
nal surfaces of the natively exported scans, ensuring uniform
volumetric depth without modifying the external surface
details or texture. One documented approach in the field
of medicine to achieve this outcome is through the utilization
of an open-source workflow known as “extrusion,” which
extends specific regions of the 3D scan along a designated
dimension, creating new geometry that is visible to AI mod-
els like 3DViT but remains imperceptible to human opera-
tors [22]. Notably, this approach has not been previously
reported or validated for intraoral scans, making it an inno-
vative contribution to the field of digital dentistry.

The present study aimed to address the lack of published
studies exploring biases in the rapidly growing field of dental
AI caused by using different intraoral scanning (IOS) to
generate scans for data augmentation and deep learning.
To achieve this, an unsupervised 3DViT model was imple-
mented where EDA was repurposed to quantify the perfor-
mance of 3D intraoral scans. The datasets were also subjected
to controlled augmentation to explore the effectiveness of the
proposed technique.

The objective of this study was to evaluate the dimen-
sional accuracy of in vitro cast model scans acquired by
various operators using two distinct handheld intraoral scan-
ners, with a benchtop laboratory scanner being treated as the
criterion standard. Additionally, the study aimed to assess
the suitability of the data for unsupervised machine learning
after employing a customized augmentation procedure. It
was hypothesized that there would be no significant differ-
ences or interactions among different operators, scanners,
and augmentation methods as independent variables impact-
ing the dataset created for deep learning purposes.

2. Materials and Methods

The present study utilized a diverse dataset comprising one
set of 3D-printed casts and 10 sets of deidentified gypsum
casts obtained from the University of Adelaide’s repository.
The gypsum casts introduced conventional variations in arch
morphology, while the 3D-printed casts introduced modern
variations to materials for cast manufacturing [23]. In order
to minimize variations caused by salivary reflections and
manual dexterity during cheek retraction techniques, in
vivo tests of intraoral scans were replaced with the use of
multicolored casts in vitro [24, 25]. The study was deemed
exempt from ethical review as no identifiable data were used,
and no human participants were recruited for the task. Each
set of casts included upper and lower arches, resulting in 22
distinct cast models. The casts belonged to individuals aged
between 6 and 33 years, encompassing primary, mixed, and
permanent dentitions. The randomly assigned dataset exhib-
ited variations in tooth alignment, ethnicity (as determined
from the repository), abnormalities in tooth and palatal
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development, and dental trauma and were constructed using
gypsum material of varying colors (Figure 1).

Data collection involved the use of two handheld scan-
ners, IOS1 (TRIOS 3; 3Shape) and IOS2 (AoralScan 3; Shi-
ning3D), operated by two specified dental operators (OP1
and OP2). To account for operator-dependent biases, a lab-
oratory desktop 3D scanner (E4; 3Shape) was also incorpo-
rated into the workflow alongside the handheld scanners to
facilitate a control standard. This was rationalized by the
laboratory scanner not requiring constant manual inputs to
generate data and, therefore, was likely free from potential
operator biases. The current study conducted a power anal-
ysis based on an effect size (F= 0.40) [26, 27] with α= 0.05
and 1 – β= 0.80, recommending a sample size of 80 cast mod-
els distributed among five groups (n= 16) with each operator
scanned the 22 models with both scanners. The scanning
groups were classified as Lab scanner, IOS1+OP1, IOS1
+OP2, IOS2+OP1, and IOS2+OP2, and yielded a total
sample size of 110 virtual models that were classified as
“native scans” as they were not augmented in any capacity.

The scanning methods were adapted from previously
published reports to ensure some degree of homogeneity
across operators [28]. The IOS method involved scanning
the occlusal surfaces first, followed by facio-buccal and
then the lingual. Secondary scans were obtained by angulat-
ing the scanning lens mesially to account for tooth surface
metamerism and capture reflective surfaces that might create
voids during perpendicular scanning techniques [28, 29]. It is
worth noting that all scanners were calibrated according to
the manufacturers’ recommendations prior to the com-
mencement of data collection. All scanned models were
exported as standard tessellation language (.stl) files. Com-
parisons were made for Hausdorff ’s distance (HD) [30] and
root mean squared error (RMSE) [31] by considering the
dataset derived from the benchtop scanner as standard.
HD is employed to assess the maximum deviation between
two surfaces, such as dental models, encompassing both
overestimation and underestimation. In contrast, RMSE cal-
culates the average disparity between corresponding points
of the two surfaces, highlighting the overall accuracy of the

scan without distinguishing between overestimation and
underestimation [30, 31].

To test the method of data augmentation, a new dataset
was generated by segmenting the dental arch from the base
and extruding the native scan files to a 0.5mm inner thick-
ness against the “normal” axis in CAD (Meshmixer; Auto-
desk Inc.). (Figure 2) The new 3D models formed the
“augmented dataset,” whose resultant shape and form were
overlapped and compared once against their native scan
counterparts and once against the augmented dataset of
the laboratory scanner using HD and RMSE. (Figure 3) A
Kruskal–Wallis 1-way nonparametric test was performed to
compare HD differences between the native scans and their
corresponding augmented scans.

In the current study, it is important to note that the use of
HD and RMSE was intended to offer a relative context
regarding the influence of the factors examined. They were
employed in processing the outcomes through a 3-factor
analysis of variance, serving as a means of comparison rather

FIGURE 1: Physical cast model dataset. FIGURE 2: Heatmaps generated following Hausdorff ’s distance and
RMSE evaluations (individual heatmaps and histograms presented
within the supplementary file).

FIGURE 3: The augmentation process and the list of commands that
provided uniform extrusion in Meshmixer: “select” all> “extrude
−0.5mm”> “extrude along normal axis.”.
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than an absolute measure of dimensional accuracy. The dis-
tribution of the residuals was evaluated and deemed to be
normally distributed with a z-score= 2.131 within the cur-
rent sample size of 110.

The scanned models were introduced to the 3DViT that
trained itself to differentiate features between upper and
lower jaws. As the native scans could not be used for training
the 3DViT model, 68 additional synthetic jaw models were
randomly scanned using the intraoral scanners and aug-
mented to assist in the training process. All cast scans were
randomly allocated into train and test sets, where the test sets
were completely unseen to the AI model during the initial
training. As shown in Figure 4, the neural network model
comprised a feature selection block with four layers of 3D
convolution, a rectified linear unit (ReLU), and Maxpool3D
filters, which were responsible for converting 3D data into
2D tensors. These 2D tensors were then fed into a ViT block
pretrained on the ImageNet dataset, which includes 1,000
object classes and a total of 1,281,167 training images,
50,000 validation images, and 100,000 test images. The latent

vectors produced by this block were subsequently directed to a
classification block, which involved flattening the output vec-
tors, transferring them to a dense layer, followed by a ReLU
activation, connected to a dropout layer, and finally passed
through a SoftMax layer for the final binary classification.

The model’s training process was guided by accuracy and
binary cross-entropy loss since the dataset consisted of only
two classes. While the parameters of the feature selector and
the classification block were trained during the process, the
ViT block was left frozen. A validation accuracy test was
performed on 50 unseen scanned models (10 from each
group: LAS, IOS1+OP1, IOS1+OP2, IOS2+OP1, and
IOS2+OP2).

The overall process followed a single-blinded approach
where the data sources were anonymized prior to machine-
learning modeling to mitigate any cognitive or prejudicial
biases [32]. Errors in scanning technology were concurrently
estimated while undertaking RMSE and HD evaluations. The
training parameters were as follows: epochs= 50, batch size= 2,
learning rate= 0.00001, a weight decay of 0.0000000001, and

Training data

54 Lab models 48 Models from various
5 scanner setups

Validation data

Validation

Upper jawLower jaw

Softmax

Dropout = 0.5

Relu

Dense 512

Flatten

Classification block

70 × 70 × 70
NumPy array

Conv3D

Relu

Maxpool3d

Conv3D

Relu

Maxpool3d

Conv3D

Relu

Maxpool3d

Conv3D

Relu

Maxpool3d

Feature extraction block

Frozen pretrained ViT block
(B_16_imagenet1k)

3D to 2D transformation
of tensors

14 Lab models 12 Models from various
5 scanner setups

Data

68 Lab models 60 Models from various
5 scanner setups

FIGURE 4: Architecture of the neural network classifier, its components, and class prediction process.
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momentum of 0.999. The test accuracy of the model obtained
after two epochs was 96.2%, and the loss was 0.0806, which
caused the training procedure to have an early stopping.

3. Results

Table 1 shows that there were no significant differences or
interactions observed in the evaluation of HD across all three
variables. The dimensional differences between the two scan-
ners ranged from 0.16Æ 0.22 to 0.21Æ 0.48mm when com-
pared to the lab scanner. Similarly, the differences between
the two clinical operators were small, ranging from 0.17Æ 0.34
to 0.19Æ 0.41mm. Data for each individual cast have been
provided within supplementary materials (Tables S1 and S2).
Across the four groups of handheld scanners, there were no
significant differences (H= 4.243, p¼ :236) observed when
comparing the outcomes of augmentation for cast models to
their corresponding scan models (Table S3). There were, how-
ever, significant differences in RMSE between native and aug-
mented model datasets across both operators and scanners.
Regardless, there were no significant interactions between the
type of scanner used, operator-dependent variables, or the
application of data augmentation. (Table 2) The lack of a
significant interaction effect across the varying combinations
of variables suggests that the current dataset remained unaf-
fected by the variations produced by the difference in scanner
technology and operators’ capabilities. Metadata contributing
to the outcomes described have been documented within sup-
plementary materials (Table S4 and S5).

The deep-learning network was unable to train or predict
outcomes with the native scans owing to a lack of volumetric
depth when processed through the numerical Python

programing (NumPy) array. Native images captured by
intraoral scanners, although appear 3D, were seen to lack
depth along the z-axis that was obtained in the current study
following extrusion. As was observed with the native scans,
the lack of volume resulted in only surface geometry being
registered and, therefore, were not treated as 3D models by
the NumPy array during 3DViT implementation. The pro-
cess flowchart has been described in Figure 4. The 3DViT
model achieved a validation accuracy of 96.2% across indi-
vidual group (LAS, IOS1+OP1, IOS1+OP2, IOS2+OP1,
and IOS2+OP2) performances when tested the augmented
dataset. A detailed breakdown of the validation outputs for
cast models has been mentioned below and detailed in the
supplementary materials (Table S6).

(i) Lab scanner (standard): All 10 models were accu-
rately classified by the model.

(ii) IOS1+OP1: All 10 models were accurately classified
by the model.

(iii) IOS1+OP2: 9 out of the 10 models were accurately
classified by the model.

(iv) IOS2+OP1: 8 out of the 10 models were accurately
classified by the model.

(v) IOS2+OP2: 9 out of the 10 models tested were
accurately classified by the model.

4. Discussion

This study assessed the impact of variables, including scan-
ners, operators, and data augmentation, on the dimensional
accuracy of in vitro cast model scans. Additionally, it

TABLE 1: 3-Factor ANOVA to evaluate the relationship between scanners, operators, and processing workflow and subsequent Hausdorff ’s
distance (mm).

List of independent factors

3D scanner F= 0.94, p¼ :33
IOS1=meanÆ SD= 0.16Æ 0.22
IOS2=meanÆ SD= 0.21Æ 0.48

Augmentation F= 0.61, p¼ :44
Native dataset=meanÆ SD= 0.21Æ 0.47

Augmented dataset=meanÆ SD= 0.16Æ 0.25

Clinical operator F= 0.14, p¼ :71
Operator 1=meanÆ SD= 0.19Æ 0.41
Operator 2=meanÆ SD= 0.17Æ 0.34

Native dataset

Operator 1 (meanÆ SD) Operator 2 (meanÆ SD)
IOS1 0.14Æ 0.21 0.18Æ 0.24
IOS2 0.28Æ 0.71 0.22Æ 0.52

Augmented dataset

Operator 1 (meanÆ SD) Operator 2 (meanÆ SD)
IOS1 0.17Æ 0.22 0.14Æ 0.23
IOS2 0.19Æ 0.28 0.15Æ 0.28

Interaction effect

(1) 1. 3D scanner vs. augmentation: F= 0.45, p¼ :50
(2) 2. 3D scanner vs. clinical operator: F= 0.21, p¼ :65
(3) 3. Augmentation vs. clinical operator: F= 0.03, p¼ :86
(4) 4. 3D scanner vs. augmentation vs. clinical operator: F= 0.18, p¼ :67
∗Significant p< :05.
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evaluated the performance of an unsupervised machine-
learning model trained with these scans. The results demon-
strated significant differences in RMSE between the native
and augmented datasets, rejecting the initial hypothesis.
However, no significant differences or interactions were
found in the HD evaluations across the three independent
variables. These findings indicate that scanner and operator
choices had no significant influence on dimensional accuracy,
while the augmentation procedure significantly altered the
internal structure of the 3D scans (Figure 5), enabling their
use in unsupervised deep learning with visual transformers.

The scanners were in separate facilities with distinct envi-
ronmental and temperature controls and were operated by
two individuals, thereby simulating a multicentre approach
[1, 33]. Test validations were conducted in groups represent-
ing different scanners and operators that may be encountered
in various clinics. Validation accuracy is an important metric
to assess how well the model is performing and to make
decisions about model architecture, hyperparameter tuning,
and potential overfitting. In the context of prosthetic den-
tistry, overfitting would result in poor performance when
making predictions on different dental casts, as the model
has become too specialized and memorized the training
data, leading to higher error rates on newly introduced 3D
intraoral scans [34]. A high validation accuracy in the current
model, however, suggests that the model is learning the pat-
terns and features in the data effectively and is likely to per-
form well on unseen patient data.

The study encompassed a wide range of scenarios encoun-
tered in a clinical research facility by incorporating variations
in the environment and the cast models, including differences

in age, ethnicity, and dentition status. It is important to note
that in real-world scenarios affected by ambient light, the
resolution of full arch oral scans is typically lower compared
to single tooth or single quadrant scans, leading to potential
deviations from the advertised accuracy observed in con-
trolled laboratory environments as was seen in the current
experiment [35, 36]. The primary discrepancies were
observed in the buccal, labial, and lingual sulci, with addi-
tional variations noticed on the palatal aspect of a cast from
a patient with a deep palate, particularly in the palatal rugae.
The heatmaps and histograms provided in the supplementary
materials illustrate these discrepancies. Considering that HD
and RMSE measurements were not significant, it is likely that
these discrepancies were caused by the scanning technique
and limitations set by the operators, rather than the scanners
themselves, implying cognitive biases at play. However, it is
important to note that these discrepancies did not have a
significant impact on the dimensional accuracy of the scans
or the subsequent development of deep learning models.

The 3D scanning industry has been dominated by a small
number of industry leaders who have imposed premium
yearly subscriptions for their postprocessing tools. However,
the current market is witnessing the emergence of affordable
intraoral scanners without subscription requirements, offer-
ing native software suites [19]. While minimal differences
were observed among the scanners used in the study, it is
essential to note that both scanners adequately performed
the basic scanning operation in their designated facilities.
To ensure controlled augmentation, third-party modification
tools must be utilized. This raises the question of whether it is
necessary to continue investing in maintaining industry

TABLE 2: 3-Factor ANOVA to evaluate the relationship between scanners, operators, and processing workflow and subsequent RMSE
outcomes.

List of independent factors

3D scanner F= 2.23, p¼ :14
IOS1=meanÆ SD= 34.25Æ 5.89
IOS2=meanÆ SD= 33.02Æ 4.93

Augmentation F= 4.90, p¼ :028∗
Native dataset=meanÆ SD= 34.54Æ 5.80

Augmented dataset=meanÆ SD= 32.73Æ 4.94

Clinical operator F= 0.24, p¼ :62
Operator 1=meanÆ SD= 33.43Æ 5.63
Operator 2=meanÆ SD= 33.83Æ 5.30

Native dataset

Operator 1 (meanÆ SD) Operator 2 (meanÆ SD)
IOS1 35.01Æ 7.21 35.18Æ 5.66
IOS2 33.63Æ 5.21 34.35Æ 5.17

Augmented dataset

Operator 1 (meanÆ SD) Operator 2 (meanÆ SD)
IOS1 33.10Æ 5.66 33.70Æ 4.95
IOS2 31.99Æ 3.89 32.12Æ 5.25

Interaction effect

(1) 1. 3D scanner vs. augmentation: F= .021, p¼ :88
(2) 2. 3D scanner vs. clinical operator: F <.001, p¼ :98
(3) 3. Augmentation vs. clinical operator: F= .003, p¼ :96
(4) 4. 3D scanner vs. augmentation vs. clinical operator: F= .097, p¼ :76
∗Significant p< :05.
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standards or instead focus on integrating and fine-tuning
newer, more cost-effective scanning methods into research-
academia protocols.

The scans underwent a uniform normalization technique
without any postprocessing features, utilizing a 0.5mm
inner-thickness extrusion. This approach aimed to replicate
the appropriate layer thickness observed in medical bioprint-
ing of knee models [37]. Nevertheless, the ideal thickness for
3D-printed cast models remains unexplored and warrants
future investigation as a potential recommendation.

The native model-building function provided by the
scanner’s software suite was not utilized to ensure that equal
volume was added across all scan media. Interestingly, prior
to this augmentation, the 3DViT model was unable to render
the 3D models in their original format due to the scan’s lack
of depth and solid dimension. It is also important to note,
however, that prior to the study, the 3DViT model had been
developed and trained on 60 synthetic dental arches, ensur-
ing its suitability for handling full oral arches. This highlights
the essential role of software-based postprocessing and con-
sistent scanning outcomes in clinical deep learning. However,
the subscription model imposed by manufacturers, coupled
with researchers’ limited funds, may hinder the progress of
such advancements. Additionally, obtaining timely support
for proprietary software and devices can be time-consuming

and costly [38]. The inability of the 3DViT model to render
directly exported 3Dmodels in their native formats underscores
the necessity of the augmentation method, particularly for
researchers who lack subscriptions to the scanner manufac-
turers’ software add-ons. Consequently, the current study faced
limitations in validating outcomes using the native dataset as the
numerical processes involved with the 3DViT model were
unable to compute the third dimension of the native scans
directly exported without any native postprocessing.

Lower accuracies were observed in the IOS1+OP2 and
IOS2+OP1 groups. Further analysis revealed that the mis-
classified casts exhibited no discernible pattern across the
different age groups and dentition status, except that three
out of the four misclassifications were associated with lower
arches. This suggests that displacement of tongue position
during impression-taking, which then manifests in the
poured gypsum casts, could introduce minute discrepancies
not typically encountered when directly scanning the
patient’s jaw [25, 39]. It can, however, be argued that place-
ment of impression trays, disparate to IOS, is technique sen-
sitive, and uniform application of pressure could possibly
yield even displacement of the buccal mucosa and result in
similarly effective outcomes [40]. The lack of a significant
interaction among the three variables implies the absence
of a multifactorial explanation for the misclassifications,
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FIGURE 5: A qualitative visualization to demonstrate the volumetric characteristics of the augmented scans. The blue regions were produced
from the augmentation process, providing a 0.5mm inner thickness to the 3D casts without influencing any of the clinical features (green
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indicating that distinct anatomical variations or a relatively
small dataset could be contributing factors [25]. While the
current EDA sheds light on the impact of the responsible
variables, it fails to elucidate the underlying cause of the
seemingly randomized misclassifications. It is entirely possi-
ble that variations between operator and scanner combina-
tions in terms of physical access to anatomical landmarks of
the lower jaw and the capture of relevant data points could
potentially affect differentiation. Future studies could employ
an explainable AI model that is capable of providing trans-
parent and interpretable explanations for its predictions or
decision-making process [41] to gain deeper insights into the
degree of impact specific 3D jaw landmarks contribute to
misclassifications in the AI model [42].

Scanner calibration can be challenging due to the gener-
ation of heat during real-time scanning, making it suscepti-
ble to temperature fluctuations and could have contributed
to some of the variations experienced in the current study
[33]. In regions with diverse weather conditions, recalibra-
tion may be required more frequently unless located in a
controlled laboratory environment, which would increase
the overhead cost. IOS1 demonstrated validation accuracies
comparable to laboratory scanners, while IOS2 exhibited
significantly faster scanning speed compared to IOS1.
Although this did not impact on the current study’s cast
model dataset, it could introduce operator biases in an in
vivo setting due to subjective factors such as scanner weight
and speed. The overall scanning accuracy often remained
mostly unaffected by scanner versions or generations, with
additional features mainly contributing to user convenience
[19, 43]. Moreover, since each scanning system uses different
tools for processing models, attempts to unify the augmen-
tation process using a single set of tools resulted in varying
changes in RMSE when compared to the native scan files.
This is because the algorithm that converts the .stl files into
layers of images and concatenates them to form 3D arrays
that interpret the data from each scanner differently, as the
scanners have different algorithms of mesh generation [44].

The current research design has certain limitations, as it
did not account for variables such as temperature, ambient
light control, or cast material characteristics. Additionally,
the impact of relocating the scanners to a new facility on
dimensional accuracy was not explored, which could be con-
sidered as a limitation and a recommendation for future
investigation. To address these limitations, it is recom-
mended that future studies incorporate in vivo scans from
diverse geographic locations and consider factors like medi-
cal and dental history, as well as supplementary radiographic
data, during the training of 3DViTs. This approach would
leverage unsupervised learning to gather valuable informa-
tion and facilitate informed diagnoses of patient-specific
occlusal features.

5. Conclusion

The choice of scanner, operator, and processing method did
not have a significant impact on the dimensional accuracy

of 3D dental cast scans for unsupervised deep learning. How-
ever, data augmentation played a crucial role in processing
intraoral scans, introducing structural differences in the 3D
scans.

Data Availability

The link to access the codes and scripts utilized for running
the model can be found at https://github.com/aguynamedSa
if/EDA_various_jaw_scanner_and_jaw_type_classifier
(accessed on October 31, 2023). Additionally, all the data
utilized in reaching the conclusions have been provided as
a unified supplementary file.
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