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This paper is concerned with the oscillatory behavior of the second-order half-linear advanced
dynamic equation (r(t)(xA(t))Y)A +p(t)x?(g(t)) = 0 on an arbitrary time scale T with sup T = oo,
where g(t) > t and J‘Zo (As/(;1/ys))) < oo. Some sufficient conditions for oscillation of the
studied equation are established. Our results not only improve and complement those results in
the literature but also unify the oscillation of the second-order half-linear advanced differential
equation and the second-order half-linear advanced difference equation. Three examples are
included to illustrate the main results.

1. Introduction

The study of dynamic equations on time scales, which has recently received a lot of attention,
was introduced by Hilger [1] in order to unify continuous and discrete analysis. Several
authors have expounded on various aspects of this new theory; see the survey paper by
Agarwal et al. [2] and the references cited therein. For an excellent introduction to the calculus
on time scales; see Bohner and Peterson [3]. Further information on working with dynamic
equations on time scales can be found in [4].

The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus, that is, when T = R; T = Nand T = qNU = {q":
t € Ny}, where g > 1. Many other interesting time scales exist, and they give rise to many
applications; see [3]. Dynamic equations on a time scale have an enormous potential for
applications such as in population dynamics. For example, it can model insect populations
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that are continuous while in season, die out in, say, winter, while their eggs are incubating
or dormant, and then hatch in a new season, giving rise to a nonoverlapping population; see
[3].

The theory of oscillations is an important branch of the applied theory of dynamic
equations related to the study of oscillatory phenomena in technology and natural and social
sciences. In recent years, there has been much research activity concerning the oscillation
of solutions of various dynamic equations on time scales, we refer the reader to the papers
[5-18] and the references therein.

We are concerned with the oscillation of the second-order half-linear advanced dy-
namic equation

(r <xA(t)>Y>A +p(HxT(g(8) =0, (1.1)

on a time scale T unbounded above, where y > 0 is the quotient of odd positive integers, r
and p are real-valued rd-continuous positive functions defined on T, g € C;4(T, T), g(t) > t.

Since we are interested in oscillatory behavior, we assume throughout this paper that
the given time scale T is unbounded above. We define the time scale interval of the form
[to, o0) by [to, o0) 1 := [to,00) N T.

By a solution of (1.1), we mean a nontrivial real-valued function x which has the
properties x(t) € CL,([to, 00)1, R), r(t) (x* ()" € C},([to, ), R) and satisfying (1.1) forall t €
[to, o0). We consider only those solutions x of (1.1) which satisfy sup{|x(t)| : t € [T, o0)1} >0
for all T € [ty, o0)p. We assume that (1.1) possesses such a solution. As usual, a solution of
(1.1) is called oscillatory if it has arbitrarily large zeros on [y, o0)g; otherwise, it is called
nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

We note that if T = R, (1.1) becomes the second-order advanced differential equation

(r(t) (X' ))") +pt)x' (g(£)) = 0. (1.2)
A special case of (1.2) is
(r(x' (1)) +p(t)x(t) = 0. (1.3)

For the oscillation of (1.3); see [19-21]. Willett [19] gave a new version of Leighton’s criterion
and obtained the following oscillation criteria: if

f:o %dt < oo, f:p(t) <f° %>2dt = oo, (1.4)

then every solution of (1.3) is oscillatory. Later, Li [20] obtained that
(Px'(t)) +dx(t) = 0 (1.5)

is oscillatory when A > 1/4.
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The discrete analog of (1.3) is the second-order advanced difference equation

A(r(n)Ax(n)) + q(n)x(n) = 0. (1.6)
Budincevi¢ [22] proved that if
iL iLi (k) = o (1.7)
=) Grmg ™ |

then every solution x of (1.6) is either oscillatory or else x(n) — Oasn — oo.
Regarding the oscillation of (1.1), Agarwal et al. [5], Grace et al. [7], Saker [8], and
Hassan [9] studied (1.1) when 7(t) = ¢, that is,

(o (x0)") +por o =0, (8)

and established some oscillation criteria for the case when

* At
fto rl/—Y(t) = Q0. (19)

Furthermore, the authors obtained some sufficient conditions which guarantee that every
solution x of (1.8) oscillates or lim;_, ,,x(f) = 0 under the case when

Jm A (1.10)

to iy ()
Saker [14] studied the oscillation of the dynamic equation
A
<r(t)xA(t)> +p(B)x(o(t) =0 (1.11)

for the cases when (1.9) and (1.10) hold with y = 1. Very recently, Hassan [15] has investigated
the oscillation of (1.1) under the conditions

<At @ 1 © Au Y 1y
J‘fo Tl/y(t) e fto [ (t) It[]p( )<J‘g(s) rlT(u)> AS:I At = oo. (112)

Now a problem is how to determine the oscillatory behavior of (1.1) when

“l 2 = au \ 1
L, [r(t)f ()Ug(s) rl/Y(u_)> AS] At < oo, (1.13)
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In this paper, we will establish some new oscillation criteria for (1.1) under the case
when (1.10) holds. Our results can be applied when (1.13) holds. The paper is organized as
follows. In Section 2, we present some basic definitions and useful results from the theory
of calculus on time scales. In Section 3, we shall establish several new oscillation criteria for
(1.1).

Remark 1.1. All functional inequalities considered in this note are assumed to hold eventually,
that is, they are satisfied for all t large enough.

2. Preliminary Results

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since we are
interested in oscillatory behavior, we suppose that the time scale under consideration is not
bounded above, that is, it is a time scale interval of the form [ty, o0);. On any time scale, we
define the forward and backward jump operators by

o(t) =inf{s €T |s>t}, p(t) =sup{seT|s <t} (2.1)

A point t € T is said to be left dense if p(t) = t, right dense if o(t) = t, left scattered
if p(t) < t, and right scattered if o(t) > t. The graininess y of the time scale is defined by
u(t) =o(t) -t

For a function f : T — R (the range R of f may actually be replaced with any Banach
space), the (delta) derivative is defined by

fla(®) - f(®)

=5 (22)

if f is continuous at t and t is right scattered. If t is not right scattered, then the derivative is
defined by

A =1

s—t* t

— 2.
S lim ———, (2.3)

W) =f() _ . fBO-F(6)
provided that this limit exists.

A function f : T — Ris said to be rd continuous if it is continuous at each right-dense
point and if there exists a finite left limit in all left-dense points. The set of rd-continuous
functions f : T — R is denoted by Cq(T,R). f is said to be differentiable if its derivative
exists. The set of functions f : T — R that are differentiable and whose derivative is rd-
continuous function is denoted by C3 4(T,R).

The derivative and the shift operator o are related by the formula

fo®) = flo(h) = f(t) +u f2 ). (2.4)

Let f be areal-valued function defined on an interval [a, b]. We say that f is increasing,
decreasing, nondecreasing, and nonincreasing on [a,b] if t;, t, € [a,b] and ¢, > #; imply
f(t2)>f(t1), f(t)<f(t1), f(t2)>f(t1),and f(t2) < f(t1), respectively. Let f be a differentiable
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function on [a,b]. Then f is increasing, decreasing, nondecreasing, and nonincreasing on
[a,b]if fA(t) >0, fA(t) <0, f2(t) >0,and f2(t) <0 forall t € [a,b), respectively.

We will make use of the following product and quotient rules for the derivative of the
product fg and the quotient f/g (where g(t)g(o(t)) #0) of two differentiable functions f
and g

(f9)°(1) = fA (gt + FoB)g (1) = F(BA (D) + fA (g (o)),

(i)A(t) _ A0 - FHgt®)
g ghglo®)

(2.5)

For a, b € T, and a differentiable function f, the Cauchy integral of f2 is defined by
b
[ rwae=se) - sa 6)
The integration by parts formula reads
b b
[ rrtrgwai=ros0)- f@ga - | Fwsoa, 27)
and infinite integrals are defined as

Jmf(s)As = tlim ft f(s)As. (2.8)

3. Main Results

In this section, by employing the Riccati transformation technique, we establish several
oscillation criteria for (1.1). To prove the main theorems, we will use the following formula:

1
(x" ()2 = yj [hx®(t) + (1 - h)x ()] " dhx® (1), (3.1)
0
which is a simple consequence of Keller’s chain rule [3, Theorem 1.90].
Set
d. (1) = max{0,d(5)},  R(t):= Jm _As (3.2)
+ s 7 7 s ; rl/Y(S) 7 .

and we assume that there exists a positive real-valued A-differentiable function m such that

m(t)

A
AORE +m?(t) <0. (3.3)

In order to prove the main results conveniently, we give the following known result.
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Theorem A (see [12, Theorem 2.1]). Assume that (1.9) holds. Further, assume that there exists a
positive real-valued A-differentiable function 6 such that

rE(E )]
S =00
(y+1)™"67(s)

(3.4)

t— o0

lim sup ; [6(5);9(5) -

holds for all sufficiently large T. Then every solution of (1.1) is oscillatory.

Remark 3.1. From the proof of [12, Theorem 2.1], if we let x be an eventually positive solution
of (1.1), then x2 (t) > 0 due to condition (1.9). Hence, we can get a contradiction to (3.4) when
x2(t) > 0 occurs.

Theorem 3.2. Assume that (1.10) holds, g(t) > o(t) and y < 1. Furthermore, assume that there
exists a positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large
T.If

. t m(g)\" o y V1 _
hrtxls;lp T[p(s)<m> R(s) - <Y+1> RU(s)rl/Y(s):IAs_oo' (3.5)

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
x(t) > 0and x(g(t)) > 0 for t € [ty, o). In view of (1.1), we obtain

¥\ A
(r(t)(xA(t)> ) = —p(H)xT(g(t)) <0, tE€ [ty, ) (3.6)
Hence, r(t)(x*())" is an eventually strictly decreasing function, and there exists a t; €

[to, o)1 such that x2(t) > 0, t € [t;, 00)p or x2(t) <0, t € [t, ).

Case 1. Assume that x*(t) > 0, t € [t;, ). From Theorem A, we can obtain a contradiction
to (3.4).

Case 2. Assume that x2(t) <0, t € [t;,00)¢. Define the function w by

B (x2 ()"
w(t) = % (3.7)
Then, w(t) < 0 for t € [t1, o0)r. By (3.6), we get
xB(s) < wa(t), s € [t,00)g. (3.8)

rl/v(s)



International Journal of Differential Equations

Integrating it from t to [, we have

x(1)<x(t)+r1/v(t)xA()f w() I € [t,00)r.

Taking I — co in the last inequality, we get
x(t) +r /T (XA ()R(E) >0, te [t,0)p.

Thus, we obtain

x2(t)

TR — 0

> 1.

By (3.7) and (3.11), we have
-1 < R'(Hw(t) <0.
On the other hand, it follows from (3.11) that

xA() 1
x(t) T rUr(R()

Then, we have

x(t) >A _xttm(t) —x(tymi(t)  x(t) m(t)
<m(t) - m(t)yme (t) ~ m(tymo(t) [r1/7(HR(t)

Thus, x(t) /m(t) is nondecreasing. Hence we obtain

x(g®) | m(g(®)
x(o(h) = m(o ()’

since g(t) > o(t).

A-differentiating (3.7) and using (3.6), we obtain

m(g®)\" ) (x*(®) (1 (1)*
“’A(”S"’(”<m<a(t)>> T R One®)

In view of Keller’s chain rule [3, Theorem 1.90], we see that

(x" ()" < yx'H(t)xA(t), since y<1.

+m? ()| >0.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Thus, (3.16) yields

mg®)\ _ rem)"

wh (1) < _p(t)<m(o(t))> -y NOCICOR (3.18)

On the other hand, from x*(t) < 0, we have x(t) > x°(t) and

() (x2 ()™ LAYy
—YW < —Y<m> w+! Y(t). (3.19)
Hence by (3.18), we have
¥

W+ p) <ZE§8§> Sy MO <0, telt o)y (320)

Multiplying (3.20) by R (t), we obtain

m(g(t))

R (5w () *P(”<m(o(t»

Y
> R (t) + YR ()r Y ()Y (1) <0, t e [t,00).

(3.21)

Integrating it from t; to t, we get

Y
ft R (s)w™ (s)As + jt p(s) <m(g(s)) > R (s)As + th R (s)r 7 (s)w* V7 (s)As < 0.
H t t

m(o(s))
(3.22)
Integrating by parts, we have
f R ()0 (5) As = R (Beo(t) = RY ()ao(t) - j R(s) wi)bs.  (323)
From Keller’s chain rule [3, Theorem 1.90], we obtain
(R ()% =y f: [hR°(t) + (1 - B)R(t)]""dhRA (¢). (3.24)

Note that R2(t) = —(1/7(t))"/" < 0, we get

t A t 1 1/y " i
—L (RV(s)) w(s)As > YJ; <@> (R%(s)) "w(s)As (3.25)
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due to (3.24) and y < 1. By (3.22), (3.23), and (3.25), we see that

m(g(s))
m(o(s))

; Y ¢ 1/
R'(H)w(t) - R (t))w(t) + L p(s)( > R (s)As + yL <%> Y(R”(s))rflw(s)As

t
+y RYU(s)r’l/y(s)w(“l)/y(S)AS <0.
ty

(3.26)
Setp:=(y+1)/y,g=y+1,
Jiye1) ( RO(1) \7/ 0D
A=-(y+1)"7 <r1/Y(t) w(t),
3.27
y V) 1 1/(y+1) 1 (3.27)
b= Lo reno( ) S —
y+1 ri/r(t) (Ro(t))l/(}“fl)
Then, using the inequality
P q
%+%2AB, %+%=1, (3.28)

we have

1
ROrnm >

y+1
yRY"(t)r‘l/Y(t)w(“l)/V(t)+( ! >

1/y
v () ®Oren. 629)

Thus, by (3.26) and (3.29), we get

t Y y+1
R'(H)w(t) — RY (t))w(ty) + L [p(s) <%> R(s) - (Y I 1) RU(S):J/Y(S):IAS <0.
(3.30)

which contradicts (3.5) due to (3.12). The proof is complete. 0

If g(t) = t, similar as in the proof of Theorem 3.2, we obtain the following result.

Theorem 3.3. Assume that (1.10) holds, g(t) = t and y < 1. Furthermore, assume that there exists a
positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large T. If

] t " Y y+1 1 ~
lutllsoljp T[p(s)RY (s) - <Y n 1) R () As = oo, (3.31)

then (1.1) is oscillatory.
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Theorem 3.4. Assume that (1.10) holds, g(t) > o(t) and y > 1. Suppose further that there exists a
positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large T. If

| f m(s)\ 1o r \"__RTs) _
1111)s:;p T[p(s)<m> RY (S)—<Y+1> (RU(S))erl/Y(S) As = oo, (3.32)

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume
that x(t) > 0 and x(g(t)) > 0 for t € [ty,o0)¢. In view of (1.1), we obtain (3.6). Therefore,
r(t)(x2(t))" is an eventually strictly decreasing function, and so there exists a t; € [ty, o0)
such that x2(t) > 0, t € [t;, 00) or x2(t) <0, t € [t;, ).

Case 1. Assume that x(t) > 0, t € [t;, o). From Theorem A, we can obtain a contradiction
to (3.4).

Case 2. Assume that x2(t) < 0, t € [t;, ). Define w as in (3.7). We have (3.12). A-
differentiating (3.7) and using (3.6), we obtain (3.16). In view of Keller’s chain rule [3,
Theorem 1.90], we see that

(" (1))* <y(x°() %A (t), since y >1. (3.33)

Thus, we get

m(g®) ' rem)"
W™ (t) < —p(t) ( (o) > -y O] (3.34)
On the other hand, from x2(t) < 0, we have x(t) > x°(t) and
r ()" LAY oy
ey <) @O (339

Hence by (3.34), we get (3.20). Then we obtain that (3.22) and (3.23) hold. By Keller’s chain
rule [3, Theorem 1.90], we have (3.24). From (3.24), y > 1 and R2(t) = —(1/r(t))"/" < 0, we
see that

t A t 1 1/y ~
—J.t1 (R"(s)) w(s)As > YJ‘h <@> R (s)w(s)As. (3.36)
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It follows from (3.22), (3.23), and (3.36) that

m(g(s))
m(o(s))

t Y t 1 1/y
R'(H)w(t) = R (1) w(ty) + f p(s)( > R (s)As +y <—) R"(s)w(s)As
51

t r(s)

t
+y | RO (s)w D/ (s)As < 0.
3]

(3.37)
Setp=(y+1)/y,qg:=y+1,

ey (R N0
A=—(y+1)"7 <r1/Y(t) w(t),

(3.38)

:L( +1)1/(Y+1)<L>1/(H1)L1(t)
: y+1 Y rl/y(t) (Ra(t))Yz/(YH)'

By the inequality (3.28), we have

y+1 Ryz—l 1 1y
YRyo'(t)r—l/)’(t)w(]f+1)/]f(t) + <Y Z 1) (Ra(t))yzr(.tl)/y(t) > _Y<@> RY’l (i’)LU(t) (339)

Thus, (3.37) and (3.39) implies

f m(3(5)\ 1y A A )
RY(t)w(t)—RY(tl)w(t1)+L p(s) m(0() R (s)- <Y " 1> PRy As <0.
! (R7(s)) (s) (5.40)

which contradicts (3.32) when using (3.12). This completes the proof. ]

If g(t) = t, similar as in the proof of Theorem 3.4, we establish the following result.

Theorem 3.5. Assume that (1.10) holds, g(t) = t and y > 1. Moreover, assume that there exists a
positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large T If

) t . B % y+1 Ryz—l(s) ~
hrtrls;lp . [p(s)RY (s) <Y " 1> (RG(S))yzrl/Y(S)]AS = oo, (3.41)

then (1.1) is oscillatory.
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Theorem 3.6. Assume that (1.10) holds, g(t) > o(t) and y > 0. Assume further that there exists a
positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large T If

t Y
Lp(s) <%> R (0(s)) As = oo, (3.42)

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
x(t) >0and x(g(t)) > O fort € [ty, oo)p. Similar as in the proof of Theorem 3.2 or Theorem 3.4,
we consider two cases.

Case 1. Assume x2(t) > 0, t € [t1,0)¢. By (3.4), this case is not true.

Case 2. Suppose x2(t) < 0, t € [t,00)7. If y < 1, proceeding as in the proof of Case 2 of
Theorem 3.2, we obtain (3.12) and (3.20). Multiplying (3.20) by R"*!(c(t)), and integrating it
from t; to t, we get

b m(o(s))

.
It R (o(s))w™ (s)As + ft p(s) (M> R"*(o(s))As
3]

(3.43)

t
+y | R*(o(s)r 7 (s)w V7 (s)As < 0.
h

Integrating by parts, we see that

f R (0(s))w? (s)As = R (Bw(t) — R (t)w(t) - ft <RY+1(S)>Aw(s)As. (3.44)
31

1]
By Keller’s chain rule [3, Theorem 1.90], we obtain
A 1
(RY+1 (t)) = (y+1) f [hR°(t) + (1 — h)R(t)]"dhRA (t). (3.45)
0
Note that R2(t) = —(1/7(£))"" < 0, we have

- Jt <RY+1(S)>AW(S)AS >(y+1) Jt <£T)>1/YRY(s)w(s)As. (3.46)

t
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Thus, from (3.44), we get

+1 +1 ! m<g(5)) ! +1
R (Hw(t) - R (h)w(t) + L p(s) o) R™ (o(s))As
(3.47)
1 1/y t
+(y+1) ( > RV (s)w(s)As + yf R (o (s))r V7 (s)w V7 (s)As < 0.
( ) 2]
It follows from (3.12) that
R (BHw(t) <R(t) <o, t— oo,
w© 1 1/y © 1 1/y (348)
-], () Rewosss| (55) as<eo
Noting that R7(t)/R(t) < 1, we obtain
* y+1 -1/y (+1)/y _ * “1/y Ro(s)\"™! Y +1)/y
J;l R™ (o(s))r /" (s)w (s)As L r (S)<—R(s) ) (RY(s)w(s)) As
(3.49)
B v (s)A o0.
< L r/Y(s)As <
Thus, from (3.47), we get
f p(s )<m§§ 82) R™*(0(s))As < oo, (3.50)

which contradicts (3.42).
When y > 1, the proof is similar to that of the case where y < 1, so we omit the details.
The proof is complete. O

If g(t) = t, similar as in the proof of Theorem 3.6, we have the following result.

Theorem 3.7. Assume that (1.10) holds, g(t) = t and y > 0. Furthermore, assume that there exists a
positive real-valued A-differentiable function 6 such that (3.4) holds for all sufficiently large T If

[“pereE)as o, (351)
T
then (1.1) is oscillatory.

4. Examples

For some applications, we give the following examples.
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Example 4.1. Consider the second-order linear dynamic equation

(to(t)xA(t)>A + A@x(o(t)) =0, tell o), (4.1)
where A > 0 is a constant.
Let
rm=to,  p=222, g0 =00. @2)

Then R(t) = 1/t. Set m(t) = R(t) = 1/t and 6(t) = 1. Using Theorem 3.2, it is easy to see that
every solution of (4.1) is oscillatory if A > 1/4. This result extends that of [20]. But recent
results on the oscillation of second-order dynamic equations on time scales cannot be applied
in (4.1).

Example 4.2. Consider the second-order advanced differential equation
(tzx'(t))' Fpox(2t) =0, t>1, (4.3)
where py > 0 is a constant.

Let m(t) = t"!. Applying Theorem 3.2, we see that (4.3) is oscillatory if py > 1/2.
However, results of [15] cannot be applied to (4.3), since

o'} 1 t [e's) du Y 1/Y
L I:m fl p(s) <L(s) —rl/Y(u)> ds] dt < oo. (4.4)

Example 4.3. Consider the second-order superlinear advanced dynamic equation

(o (x*®)")" + 15201 (g0) =0, te 1,00y, @)

where y > 1 is the ratio of odd positive integers, A > 0 is a constant, kit < o(t) < kyt, and
g(t) > o(t).

Let

r=Gowy, po=1E2 “6)
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Then R(t) = 1/t. Set 6(t) = 1. Clearly, (3.4) holds. Put m(t) = R(t) = 1/t. Then
. f m(86)\ oo (Y VT Rs)
hrflso?p T [p(s) < m(o(s)) > R G) (Y + 1) (R(s))""r1/7(s) Ae

i '1.8"()07(s) 1 y V" o\ 1
= fmeup T[)‘ Croem ) (5F) %]A

4.7)
Y+l y? t
2<)L—< ! > k2—>limsup 1As
Y+1 k] t—o0 TS
=
if
L ()R 438
() e

Therefore, by Theorem 3.4, every solution of (4.5) is oscillatory when the above
inequality holds.

5. Summary

This paper is concerned with the oscillatory behavior of advanced equation (1.1). By using
the generalized Riccati substitution, we establish some new oscillation criteria for (1.1). On
one hand, these criteria can be extended to the equation of the form

(r (x*®)") "+ pox () = 0. 5.1)

On the other hand, the main results supplement and improve those results of [9] and extend
those results of [20]. The established results are easily applicable and are illustrated on three
suitable examples.
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