
Research Article
Asymptotic Behavior of the Bifurcation Diagrams for Semilinear
Problems with Application to Inverse Bifurcation Problems

Tetsutaro Shibata

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan

Correspondence should be addressed to Tetsutaro Shibata; shibata@amath.hiroshima-u.ac.jp

Received 22 October 2014; Accepted 15 December 2014

Academic Editor: Nasser-Eddine Tatar

Copyright © 2015 Tetsutaro Shibata. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the nonlinear eigenvalue problem 𝑢

(𝑡) + 𝜆𝑓(𝑢(𝑡)) = 0, 𝑢(𝑡) > 0, 𝑡 ∈ 𝐼 =: (−1, 1), 𝑢(1) = 𝑢(−1) = 0, where 𝑓(𝑢) is a

cubic-like nonlinear term and 𝜆 > 0 is a parameter. It is known by Korman et al. (2005) that, under the suitable conditions on 𝑓(𝑢),
there exist exactly three bifurcation branches 𝜆 = 𝜆

𝑗
(𝜉) (𝑗 = 1, 2, 3), and these curves are parameterized by the maximum norm 𝜉

of the solution 𝑢
𝜆
corresponding to 𝜆. In this paper, we establish the precise global structures for 𝜆

𝑗
(𝜉) (𝑗 = 1, 2, 3), which can be

applied to the inverse bifurcation problems. The precise local structures for 𝜆
𝑗
(𝜉) (𝑗 = 1, 2, 3) are also discussed. Furthermore, we

establish the asymptotic shape of the spike layer solution 𝑢
2
(𝜆, 𝑡), which corresponds to 𝜆 = 𝜆

2
(𝜉), as 𝜆 → ∞.

1. Introduction

We consider the following nonlinear eigenvalue problem:

𝑢


(𝑡) + 𝜆𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐼 =: (−1, 1) , (1)

𝑢 (𝑡) > 0, 𝑡 ∈ 𝐼, (2)

𝑢 (1) = 𝑢 (−1) = 0, (3)

where 𝑓(𝑢) is a cubic-like nonlinear term and 𝜆 > 0 is a
parameter. We assume the following conditions (A.1)–(A.3),
which have been introduced in [1].
(A.1) 𝑓(𝑢) is a𝐶2-function on [0,∞) and has three positive

roots at 0 < 𝑎 < 𝑏 < 𝑐, and
𝑓 (𝑢) > 0 on [0, 𝑎) ∪ (𝑏, 𝑐) ,

𝑓 (𝑢) < 0 on (𝑎, 𝑏) ∪ (𝑐,∞) ,

(4)

∫

𝑐

𝑎

𝑓 (𝑠) 𝑑𝑠 > 0. (5)

(A.2) There exists a constant 𝑎 < 𝛽 < 𝑐 such that

𝑓


(𝑢) > 0 for 0 ≤ 𝑢 < 𝛽,

𝑓


(𝑢) < 0 for 𝑢 > 𝛽.

(6)

(A.3) Let 𝜏 ∈ (𝑏, 𝑐) satisfy 𝑓

(𝜏) = 0. Then

∫

𝜏

𝑎

𝑓 (𝑠) 𝑑𝑠 ≤ 0. (7)

The typical example of 𝑓(𝑢) which satisfies (A.1)–(A.3) is
𝑓(𝑢) = (𝑢−𝑎)(𝑢−𝑏)(𝑐−𝑢)with 𝑐 > 2𝑏−𝑎 and the area of the
negative hump of 𝑓(𝑢) is nearly equal to that of the positive
hump. For example, if we choose 𝑏 < (𝑎 + 𝑐)/2 appropriately,
then 𝑓(𝑢) = (𝑢 − 𝑎)(𝑢 − 𝑏)(𝑐 − 𝑢) satisfies (A.1)–(A.3).

Nonlinear elliptic eigenvalue problems have been studied
bymany authors.We refer to [2–8] and the references therein.
Among other things, (1)–(3) have been investigated by many
authors. We refer to [1, 9–12] and the references therein.
In particular, the following basic properties of the structure
of bifurcation diagram for (1)–(3) have been proved in [1,
Theorem 3.1].

Theorem 1 (see [1, Theorem 3.1]). Assume (A.1)–(A.3). Then
there exists a critical 𝜆

0
such that (1)–(3) have exactly one

positive solution for 0 < 𝜆 < 𝜆
0
, exactly two positive solutions

for 𝜆 = 𝜆
0
, and exactly three positive solutions for 𝜆 > 𝜆

0
.

Furthermore, all solutions lie on two smooth solution curves,
and 𝜆 is parameterized by 𝜉 :=‖ 𝑢

𝜆
‖
∞

as 𝜆 = 𝜆(𝜉). One of the
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Figure 1

curves, referred to as the lower curve 𝜆
1
(𝜉), satisfies 𝜆

1
(0) = 0

and increases in 0 ≤ 𝜉 < 𝑎, and

𝜆
1
(𝜉) → ∞ 𝑎𝑠 𝜉 → 𝑎, (8)

𝑢
1
(𝜆, 𝑡) → 𝑎 𝑓𝑜𝑟 𝑡 ∈ 𝐼 𝑎𝑠 𝜆 → ∞, (9)

where 𝑢
1
(𝜆, 𝑡) is a solution of (1)–(3) corresponding to 𝜆 =

𝜆
1
(𝜉). (Note that 𝜆 → ∞ is equivalent to 𝜉 → 𝑎.) The

upper curve, which consists of two branches 𝜆
𝑗
(𝜉) (𝑗 = 2, 3),

is a parabola-like curve with exactly one turn to the right at
𝜉 = 𝜉
0
∈ (𝑏, 𝑐). Furthermore,

𝜆
2
(𝜉) → ∞ 𝑎𝑠 𝜉 → 𝜃

0
, (10)

𝑢
2
(𝜆, 0) → 𝜃

0
, 𝑢
2
(𝜆, 𝑡) → 𝑎

(𝑡 ∈ 𝐼 \ {0}) 𝑎𝑠 𝜆 → ∞,

(11)

𝜆
3
(𝜉) → ∞ 𝑎𝑠 𝜉 → 𝑐, (12)

𝑢
3
(𝜆, 𝑡) → 𝑐 (𝑡 ∈ 𝐼) 𝑎𝑠 𝜆 → ∞, (13)

where 𝑢
𝑗
(𝜆, 𝑡) is a solution of (1)–(3) corresponding to 𝜆 =

𝜆
𝑗
(𝜉) (𝑗 = 2, 3) and 𝜃

0
∈ (𝑏, 𝑐) is a constant which satisfies

∫

𝜃0

𝑎

𝑓 (𝑠) 𝑑𝑠 = 0. (14)

(See Figure 1 for the bifurcation diagram.)
As we see from (9), (11), and (13), one of the most

interesting facts in Theorem 1 is the difference between the
asymptotic shapes of 𝑢

𝑗
(𝜆, 𝑡) (𝑗 = 1, 3) and 𝑢

2
(𝜆, 𝑡) for 𝜆

sufficiently large (see Figures 2 and 3). This difference comes
from the fact that 𝑢

𝑗
(𝜆, 𝑡) (𝑗 = 1, 3) is stable and 𝑢

2
(𝜆, 𝑡)

is unstable. This drives us to the question whether these
facts give effect on the asymptotic behavior of the bifurcation
branches or not.

The purpose of this paper is to establish the precise
asymptotic formulas for 𝜆

𝑗
(𝜉) (𝑗 = 1, 2, 3) as 𝜉 → 𝑎, 𝜃

0
, 𝑐,

respectively, to clarify how the difference of the asymptotic
shapes of solutions corresponding to these three curves gives
effect to the asymptotic formulas for 𝜆

𝑗
(𝜉) (𝑗 = 1, 3) and

𝜆
2
(𝜉). Furthermore, we establish the asymptotic widths 𝑡

𝑎,𝜆

and 𝑡
𝑑,𝜆

of the spike layer of solution 𝑢
2
(𝜆, 𝑡) as 𝜉 → 𝜃

0
.
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Finally, we establish the precise asymptotic formulas for
𝜆
1
(𝜉) as 𝜉 → 0 and 𝜆

𝑗
(𝜉) as 𝜉 → 𝜉

0
(𝑗 = 2, 3). By

using the asymptotic formulas above, we propose new inverse
bifurcation problems.

Now we state our main result. Let 𝐹(𝑢) := ∫

𝑢

0
𝑓(𝑠)𝑑𝑠.

Theorem 2. Assume that 0 < 𝜉 < 𝑎. Let 𝛿
𝜉
> 0 satisfy log 𝛿

𝜉
=

𝛿
𝜉
log(𝑎 − 𝜉). Then as 𝜉 → 𝑎,

𝜆
1
(𝜉) =

1





𝑓

(𝑎)






(− log (𝑎 − 𝜉) + 𝑂 (log 𝛿
𝜉
))

2

. (15)

Theorem 3. Assume that 𝜉 > 𝜃
0
. Let 𝛿

𝜉
> 0 satisfy log 𝛿

𝜉
=

𝛿
𝜉
log(𝜉 − 𝜃

0
).

(i) As 𝜉 → 𝜃
0
,

𝜆
2
(𝜉) =

1





𝑓

(𝑎)






(− log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿

𝜉
))

2

. (16)

(ii) Let 𝑡
𝑎,𝜆

∈ (0, 1) satisfy 𝑢
2
(𝜆, 𝑡
𝑎,𝜆

) = 𝑎.Then as 𝜆 → ∞

(namely, 𝜉 → 𝜃
0
),

𝑡
𝑎,𝜆

=

1

2

+ 𝑂(

(𝜉 − 𝜃
0
)
1/2

log (𝜉 − 𝜃
0
)

) . (17)

(iii) Let 𝑑 ∈ (𝑎, 𝜃
0
) be an arbitrary fixed constant.

Furthermore, let 𝑡
𝑑,𝜆

∈ (0, 1) satisfy 𝑢
2
(𝜆, 𝑡
𝑑,𝜆

) = 𝑑. Then as
𝜆 → ∞ (namely, 𝜉 → 𝜃

0
),

𝑡
𝑑,𝜆

=

1

√2𝜆

(𝐶
𝑑
+ 𝑂((𝜉 − 𝜃

0
)
1/2

)) , (18)
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where

𝐶
𝑑
:= ∫

𝜃0

𝑑

1

√𝐹 (𝜃
0
) − 𝐹 (𝜃)

𝑑𝜃. (19)

Theorem 4. Assume that 𝜉 < 𝑐. Let 𝛿
𝜉
> 0 satisfy log 𝛿

𝜉
=

𝛿
𝜉
log(𝑐 − 𝜉). Then as 𝜉 → 𝑐,

𝜆
3
(𝜉) =

1





𝑓

(𝑐)






(− log (𝑐 − 𝜉) + 𝑂 (log 𝛿
𝜉
))

2

. (20)

Now, we establish the local asymptotic behavior of 𝜆
1
(𝜉)

and 𝜆
𝑗
(𝜉) (𝑗 = 2, 3) near 𝜉 = 0 and 𝜉 = 𝜉

0
, respectively, where

𝜉
0
∈ (𝜃
0
, 1) satisfy

2∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

𝑑𝑠

= 𝜉
0
∫

1

0

(𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠))
−3/2

(𝑓 (𝜉
0
) − 𝑠𝑓 (𝜉

0
𝑠)) 𝑑𝑠.

(21)

Theorem 5. (i) As 𝜉 → 0,

𝜆
1
(𝜉) =

𝜉

2𝑓 (𝜉)

(2 +

∞

∑

𝑘=1

𝐿
𝑘
(𝜉) 𝜉
𝑘
)

2

, (22)

where {𝐿
𝑘
(𝜉)} (𝑘 = 1, 2, . . .) are bounded functions of 𝜉

determined explicitly.
(ii) Assume that 𝑓(𝑢) is analytic near 𝑢 = 0. Then as 𝜉 →

0,

𝜆
1
(𝜉) =

2

𝑓 (0)

𝜉 +

∞

∑

𝑘=1

𝑀
𝑘
(𝜉) 𝜉
𝑘
, (23)

where {𝑀
𝑘
(𝜉)} (𝑘 = 1, 2, . . .) are bounded functions of 𝜉

determined explicitly.

Theorem 6. Let 𝑗 = 2, 3. Then as 𝜉 → 𝜉
0
,

𝜆
𝑗
(𝜉) = 𝜆

0
+

∞

∑

𝑘=1

𝐽
𝑘
(𝜉) (𝜉 − 𝜉

0
)
𝑘

, (24)

where {𝐽
𝑘
(𝜉)} (𝑘 = 1, 2, . . .) are bounded functions determined

explicitly.

Finally, we apply our results above to the inverse bifurca-
tion problems.

Theorem 7. Let 𝑘 = 1, 2. Assume that 𝑓
𝑘
(𝑢) = (𝑢 − 𝑎

𝑘
)(𝑢 −

𝑏
𝑘
)(𝑐
𝑘
− 𝑢) satisfy (A.1)–(A.3), where 0 < 𝑎

𝑘
< 𝑏
𝑘

< 𝑐
𝑘
are

unknown constants. Let 𝜆
𝑗
(𝑘, 𝜉) (𝑗 = 1, 3) be the bifurcation

branches corresponding to𝑓
𝑘
(𝑢). Further, let 𝜃

𝑘,0
be the number

defined in (14) for 𝑓
𝑘
(𝑢). Finally, for 𝜂 := 𝑎

1
− 𝜉
1
= 𝑎
2
− 𝜉
2
> 0

and 𝜁 := 𝑐
1
− 𝜉
1
= 𝑐
2
− 𝜉
2
> 0, let

𝜇
1
(𝑘, 𝜂) := 𝜆

1
(𝑘, 𝜉
𝑘
) , 𝜇

3
(𝑘, 𝜁) := 𝜆

3
(𝑘, 𝜉
𝑘
) . (25)

(i) Suppose that

lim
𝜂→0

𝜇
1
(1, 𝜂)

𝜇
1
(2, 𝜂)

= 1, (26)

𝜆
1
(1, 𝜉) − 𝜆

1
(2, 𝜉) = 𝑜 (𝜉

2
) 𝑎𝑠 𝜉 → 0. (27)

Then, 𝑎
1
= 𝑎
2
, 𝑏
1
= 𝑏
2
, and 𝑐

1
= 𝑐
2
.

(ii) Suppose that

lim
𝜂→0

𝜇
1
(1, 𝜂)

𝜇
1
(2, 𝜂)

= lim
𝜁→0

𝜇
3
(1, 𝜁)

𝜇
3
(2, 𝜁)

= 1, (28)

𝜆
1
(1, 𝜉) − 𝜆

1
(2, 𝜉) = 𝑜 (𝜉) 𝑎𝑠 𝜉 → 0. (29)

Then, 𝑎
1
= 𝑎
2
, 𝑏
1
= 𝑏
2
, and 𝑐

1
= 𝑐
2
.

(iii) Suppose that (28) and 𝜃
1,0

= 𝜃
2,0

hold. Then, 𝑎
1
= 𝑎
2
,

𝑏
1
= 𝑏
2
, and 𝑐

1
= 𝑐
2
.

Theorem 7(i) implies that if we assume that the unknown
nonlinear term 𝑓(𝑢) is a cubic, then the precise information
about the local asymptotic behavior along with the rough
global asymptotics of one branch determines the unknown
𝑓(𝑢). Theorem 7(ii) implies that the unknown 𝑓(𝑢) is deter-
mined by only the asymptotic behavior of two branches.

Our methods to prove Theorems 2–4 are based on the
precise calculation of the timemap.We proveTheorems 5 and
6 by the method developed in [13]. By using Theorems 2, 4,
and 5, we proveTheorem 7.

2. Proof of Theorem 2

In this section, let 𝜉 < 𝑎 and let 𝜉 → 𝑎. In what follows, 𝐶
denotes various positive constants independent of 𝜆 ≫ 1. We
know that if (𝜆, 𝑢) ∈ R

+
× 𝐶
2
(𝐼) satisfies (1)–(3), then

𝑢 (𝑡) = 𝑢 (−𝑡) , 0 ≤ 𝑡 ≤ 1, (30)

𝑢 (0) = max
−1≤𝑡≤1

𝑢 (𝑡) , (31)

𝑢


(𝑡) < 0, 0 < 𝑡 ≤ 1. (32)

We parameterize the solution pair by using the 𝐿
∞ norm of

the solution 𝜉 = ‖𝑢
𝜆
‖
∞

such as (𝜆, 𝑢) = (𝜆
1
(𝜉), 𝑢
𝜉
) (0 ≤ 𝜉 <

𝑎). By (1), for 𝑡 ∈ 𝐼,

[𝑢


𝜉
(𝑡) + 𝜆𝑓 (𝑢

𝜉
(𝑡))] 𝑢



𝜉
(𝑡) = 0. (33)

This implies that, for 𝑡 ∈ 𝐼,

𝑑

𝑑𝑡

[

1

2

𝑢


𝜉
(𝑡)
2
+ 𝜆𝐹 (𝑢

𝜉
(𝑡))] = 0. (34)

By this, (31), and putting 𝑡 = 0, for −1 ≤ 𝑡 ≤ 1, we obtain

𝑢


𝜉
(𝑡)
2
+ 2𝜆𝐹 (𝑢

𝜉
(𝑡)) = constant = 2𝜆𝐹 (𝜉) . (35)

This implies that

𝑢


𝜉
(𝑡)
2
= 2𝜆 (𝐹 (𝜉) − 𝐹 (𝑢

𝜉
(𝑡))) . (36)
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By this and (32), for 0 ≤ 𝑡 ≤ 1, we obtain

−𝑢


𝜉
(𝑡) = √2𝜆 (𝐹 (𝜉) − 𝐹 (𝑢

𝜉
(𝑡))). (37)

By this, for 0 ≤ 𝑡 ≤ 1,

√𝜆 =

1

√2

∫

1

0

−𝑢


𝜉
(𝑡)

√𝐹 (𝜉) − 𝐹 (𝑢
𝜉
(𝑡))

𝑑𝑡

=

1

√2

∫

𝜉

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃.

(38)

By mean value theorem, for 0 < 𝜃 < 𝜉, we have

𝐹 (𝜉) − 𝐹 (𝜃) = 𝑓 (𝜉) (𝜉 − 𝜃) −

1

2

𝑓

(𝜉
𝜃
) (𝜉 − 𝜃)

2

, (39)

where 𝜃 < 𝜉
𝜃
< 𝜉. We know that 𝑓(𝜉

𝜃
) < 0, since, by (A.2),

𝑓

(0) < 𝑓


(𝑦) < 𝑓


(𝑎) < 0 for 0 < 𝑦 < 𝑎. Let 𝛿 := 𝛿

𝜉
> 0

defined in Theorem 2. We easily see that 𝛿
𝜉
→ 0 as 𝜉 → 𝑎.

Furthermore, by Taylor expansion, as 𝜉 → 𝑎,

𝑓 (𝜉) = 𝑓


(𝑎) (𝜉 − 𝑎) + 𝑂 ((𝜉 − 𝑎)
2

) ,

𝑎 − 𝜉 = 𝛿

1/𝛿𝜉

𝜉
≪ 𝛿
𝜉
.

(40)

By (38) and (39), we obtain

√𝜆 =

1

√2

∫

𝜉

0

1

√𝑓 (𝜉) (𝜉 − 𝜃) − 𝑓

(𝜉
𝜃
) (𝜉 − 𝜃)

2

/2

𝑑𝜃

=

1

√2

{
{

{
{

{

∫

𝜉

𝜉−𝛿

1

√𝑓 (𝜉) (𝜉 − 𝜃) − 𝑓

(𝜉
𝜃
) (𝜉 − 𝜃)

2

/2

𝑑𝜃

+ ∫

𝜉−𝛿

0

1

√𝑓 (𝜉) (𝜉 − 𝜃) − 𝑓

(𝜉
𝜃
) (𝜉 − 𝜃)

2

/2

𝑑𝜃

}
}

}
}

}

:=

1

√2

(𝑍
1
+ 𝑍
2
) .

(41)

We write 𝜉(𝑡) := 𝜉
𝜉−𝑡

(0 < 𝑡 < 𝛿). Then,

𝑍
1
= ∫

𝛿

0

1

√𝑓 (𝜉) 𝑡 +




𝑓

(𝜉)





𝑡
2
/2

𝑑𝑡

+ (∫

𝛿

0

1

√𝑓 (𝜉) 𝑡 +




𝑓

(𝜉 (𝑡))





𝑡
2
/2

𝑑𝑡

− ∫

𝛿

0

1

√𝑓 (𝜉) 𝑡 +




𝑓

(𝜉)





𝑡
2
/2

𝑑𝑡)

:= 𝑍
11

+ 𝑍
12
.

(42)

Then,

𝑍
11

= [√

2





𝑓

(𝜉)






log
















𝑓


(𝜉)






𝑡 + 𝑓 (𝜉)

+ √




𝑓

(𝜉)






2

𝑡
2
+ 2





𝑓

(𝜉)





𝑓 (𝜉) 𝑡












]

𝑡=𝛿

𝑡=0

= √

2





𝑓

(𝜉)






(− log𝑓 (𝜉) + 𝐷) ,

(43)

where

𝐷 := log














𝑓


(𝜉)






𝛿 + 𝑓 (𝜉) + √





𝑓

(𝜉)






2

𝛿
2
+ 2





𝑓

(𝜉)





𝑓 (𝜉) 𝛿










= 𝑂 (log 𝛿)
(44)

by (40). We put

𝑋 := √𝑓 (𝜉) 𝑡 +

1

2





𝑓

(𝜉)





𝑡
2
,

𝑌 := √𝑓 (𝜉) 𝑡 +

1

2





𝑓

(𝜉 (𝑡))





𝑡
2
.

(45)

We note that 𝜉 − 𝛿 < 𝜉(𝑡) < 𝜉. Then by (41) and (43),





𝑍
12





=













1

2

∫

𝛿

0

(𝑓

(𝜉) − 𝑓


(𝜉 (𝑡))) 𝑡

2

𝑋𝑌 (𝑋 + 𝑌)

𝑑𝑡













≤ 𝐶∫

𝛿

0






𝑓

(𝜉)






(𝜉 − 𝜉 (𝑡))

𝑋

𝑑𝑡

≤ 𝐶𝛿∫

𝛿

0

1

√𝑓 (𝜉) 𝑡 +




𝑓

(𝜉)





𝑡
2
/2

𝑑𝑡

≤ 𝐶𝛿 (− log𝑓 (𝜉) + 𝐷) .

(46)

We next calculate 𝑍
2
. We have

𝑍
2
= ∫

𝜉

𝛿

1

√𝑓 (𝜉) 𝑡 +




𝑓

(𝜉)





𝑡
2
/2

𝑑𝑡 ≤ 𝐶∫

𝜉

𝛿

1

𝑡

𝑑𝑡 ≤ −𝐶 log 𝛿.

(47)
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By (40)–(44), (46), (47), and Taylor expansion, we obtain

√𝜆 =

1

√




𝑓

(𝜉)






(− log𝑓 (𝜉) + 𝐷) (1 + 𝑂 (𝛿)) + 𝑂 (− log 𝛿)

=

1

√




𝑓

(𝑎)






(1 + 𝑂 (𝑎 − 𝜉)) (1 + 𝑂 (𝛿))

× (− log (𝑎 − 𝜉) + 𝑂 (log 𝛿)) + 𝑂 (log 𝛿)

=

1

√




𝑓

(𝑎)






(− log (𝑎 − 𝜉) + 𝑂 (𝛿 log (𝑎 − 𝜉)) + 𝑂 (log 𝛿))

=

1

√




𝑓

(𝑎)






(− log (𝑎 − 𝜉) + 𝑂 (log 𝛿)) .

(48)

This implies (15). Thus, the proof is complete.

3. Proof of Theorem 3

In this section, let 𝜉 → 𝜃
0
with 𝜃

0
< 𝜉. We write 𝛿 := 𝛿

𝜉

defined in the statement in Theorem 3. By (38), we have

√𝜆 =

1

√2

∫

𝜉

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

=

1

√2

(∫

𝑎

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 + ∫

𝜃0

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝜉

𝜃0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃)

:=

1

√2

(𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼) .

(49)

Lemma 8. As 𝜉 → 𝜃
0
,

𝐼 =

√2

√




𝑓

(𝑎)






(−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿)) . (50)

Proof. We have

𝐼 = ∫

𝑎

𝑎−𝛿

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝑎−𝛿

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 := 𝑊
1
+ 𝑊
2
.

(51)

We first calculate 𝑊
1
. For 𝑎 − 𝛿 < 𝜃 < 𝑎, by (14) and Taylor

expansion, we have

𝐹 (𝜉) − 𝐹 (𝜃)

= ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠 = ∫

𝜃0

𝑎

𝑓 (𝑠) 𝑑𝑠

+ ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠 + ∫

𝑎

𝜃

𝑓 (𝑠) 𝑑𝑠 = ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑎

𝜃

𝑓 (𝑠) 𝑑𝑠 = 𝑓 (𝜃
0
) (𝜉 − 𝜃

0
) (1 + 𝑂 (𝜉 − 𝜃

0
))

+

1

2






𝑓


(𝑎)






(1 + 𝑂 (𝛿)) (𝑎 − 𝜃)

2
.

(52)

By (51) and (52), we obtain

𝑊
1
= ∫

𝑎

𝑎−𝛿

(𝑓 (𝜃
0
) (𝜉 − 𝜃

0
) (1 + 𝑂 (𝜉 − 𝜃

0
))

+






𝑓

(𝑎)






(1 + 𝑂 (𝛿)) (𝑎 − 𝜃)

2

2

)

−1/2

𝑑𝜃

= ∫

𝛿

0

(𝑓 (𝜃
0
) (𝜉 − 𝜃

0
) (1 + 𝑂 (𝜉 − 𝜃

0
))

+






𝑓

(𝑎)






(1 + 𝑂 (𝛿)) 𝑦

2

2

)

−1/2

𝑑𝑦

:= ∫

𝛿

0

1

√𝐷
1
+ 𝐷
2
𝑦
2

𝑑𝑦,

(53)

where

𝐷
1
:= 𝑓 (𝜃

0
) (𝜉 − 𝜃

0
) (1 + 𝑂 (𝜉 − 𝜃

0
)) ,

𝐷
2
:=

1

2






𝑓


(𝑎)






(1 + 𝑂 (𝛿)) .

(54)

Then we obtain

𝑊
1

= [

1

√𝐷
2

log








2𝐷
2
𝑦 + 2√𝐷

2
(𝐷
2
𝑦
2
+ 𝐷
1
)









]

𝛿

0

=

1

√𝐷
2

(log








2𝐷
2
𝛿 + 2√𝐷

2
(𝐷
2
𝛿
2
+ 𝐷
1
)









− log 2√𝐷
1
𝐷
2
)

=

1

√𝐷
2

(−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿))
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=

√2

√




𝑓

(𝑎)






(1 + 𝑂 (𝛿)) (−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿))

=

√2

√




𝑓

(𝑎)






(−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿)) .

(55)

We next calculate𝑊
2
. For 0 < 𝜃 < 𝑎−𝛿, by (A.2) and (14), we

have

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠

= ∫

𝑎

𝜃

𝑓 (𝑠) 𝑑𝑠 + ∫

𝜉

𝑎

𝑓 (𝑠) 𝑑𝑠

≥ ∫

𝑎

𝜃

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶






𝑓


(𝑎)






(𝑎 − 𝜃) .

(56)

By this, we obtain





𝑊
2





≤ ∫

𝑎−𝛿

0

1

√




𝑓

(𝑎)





(𝑎 − 𝜃)

𝑑𝑠 ≤ 𝐶. (57)

This along with (55) implies (50). Thus the proof is complete.

Lemma 9. As 𝜉 → 𝜃
0
,

𝐼𝐼 =

√2

√




𝑓

(𝑎)






(−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿)) . (58)

Proof. We have

𝐼𝐼 = ∫

𝜃0

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

= ∫

𝑎+𝛿

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝜃0

𝑎+𝛿

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 := 𝑉
1
+ 𝑉
2
.

(59)

We first calculate 𝑉
1
. By (14) and Taylor expansion, for 𝑎 <

𝜃 < 𝑎 + 𝛿, we obtain

𝐹 (𝜉) − 𝐹 (𝜃)

= ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠 = ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠 + ∫

𝜃0

𝑎

𝑓 (𝑠) 𝑑𝑠

− ∫

𝜃

𝑎

𝑓 (𝑠) 𝑑𝑠 = 𝑓 (𝜃
0
) (𝜉 − 𝜃

0
) (1 + 𝑂 (𝜉 − 𝜃

0
))

+

1

2






𝑓


(𝑎)






(1 + 𝑂 (𝛿)) (𝑎 − 𝜃)

2
.

(60)

By this and (55), we obtain

𝑉
1
= ∫

𝑎+𝛿

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

= 𝑊
1
=

1

√




𝑓

(𝑎)






(−

1

2

log (𝜉 − 𝜃
0
) + 𝑂 (log 𝛿)) .

(61)

We next calculate 𝑉
2
. Let an arbitrary 0 < 𝜖 ≪ 1 be fixed.

Then,

𝑉
2
= ∫

𝜃0

𝑎+𝛿

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

= ∫

𝜃0

𝜃0−𝜖

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝑎+𝜖

𝑎+𝛿

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝜃0−𝜖

𝑎+𝜖

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 := 𝑉
21

+ 𝑉
22

+ 𝑉
23
.

(62)

We calculate 𝑉
21
. For 𝜃

0
− 𝜖 < 𝜃 < 𝜃

0
, we obtain

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠

= ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠 + ∫

𝜃0

𝜃

𝑓 (𝑠) 𝑑𝑠

≥ ∫

𝜃0

𝜃

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶𝑓 (𝜃
0
) (𝜃
0
− 𝜃) .

(63)

By this,

𝑉
21

≤ ∫

𝜃0

𝜃0−𝜖

1

√𝐶𝑓 (𝜃
0
) (𝜃
0
− 𝜃)

𝑑𝜃 ≤ 𝐶√𝜖. (64)

We next calculate 𝑉
22
. For 𝑎 + 𝛿 < 𝜃 < 𝑎 + 𝜖,

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝑎

𝑓 (𝑠) 𝑑𝑠 − ∫

𝜃

𝑎

𝑓 (𝑠) 𝑑𝑠

≥ −∫

𝜃

𝑎

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶






𝑓


(𝑎)






(𝜃 − 𝑎) .

(65)

By this, we obtain

𝑉
22

≤ 𝐶∫

𝑎+𝜖

𝑎+𝛿

1

√𝜃 − 𝑎

𝑑𝜃 ≤ 𝐶√𝜖. (66)

Finally, we calculate 𝑉
23
. For 𝑎 + 𝜖 < 𝜃 < 𝜃

0
− 𝜖, by (14), we

obtain

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠

+ ∫

𝜃0

𝜃

𝑓 (𝑠) 𝑑𝑠 ≥ ∫

𝜃0

𝜃

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶.

(67)
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By this, we obtain

𝑉
23

≤ ∫

𝜃0−𝜖

𝑎+𝜖

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 ≤ 𝐶. (68)

By (62), (64), (66), and (68), we obtain

𝑉
2
≤ 𝐶. (69)

By this, (59), and (61), we obtain (58). Thus, the proof is
complete.

Lemma 10. As 𝜉 → 𝜃
0
,

𝐼𝐼𝐼 = 𝑂((𝜉 − 𝜃
0
)
1/2

) . (70)

Proof. By (A.3) and (14), we know that 𝜏 < 𝜃
0
< 𝜉. Then for

𝜃
0
< 𝜃 < 𝜉, we have

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶𝑓 (𝜃
0
) (𝜉 − 𝜃) . (71)

By this, for 𝜆 ≫ 1, we obtain

𝐼𝐼𝐼 ≤ 𝐶∫

𝜉

𝜃0

1

√𝑓 (𝜃
0
) (𝜉 − 𝜃)

𝑑𝜃 =

2

√𝑓 (𝜃
0
)

√𝜉 − 𝜃
0
. (72)

Thus, the proof is complete.

Proof of Theorem 3(i). Theorem 3(i) follows directly from
Lemmas 8–10. Thus, the proof is complete.

Proof of Theorem 3(ii). By (37) and (49), we have

𝑡
𝑎,𝜆

= ∫

𝑡𝑎,𝜆

0

−𝑢


2
(𝜆, 𝑡)

√2𝜆 (𝐹 (𝜉) − 𝐹 (𝑢
2
(𝜆, 𝑡)))

𝑑𝑡

=

1

√2𝜆

∫

𝜉

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

=

1

√2𝜆

(∫

𝜃0

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 + ∫

𝜉

𝜃0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃)

:=

1

√2𝜆

(𝐼𝐼 + 𝐼𝐼𝐼) .

(73)

By this, Lemmas 8–10, and direct calculation, we obtain
Theorem 3(ii). Thus, the proof is complete.

Proof of Theorem 3(iii). By (37) and (49), we have

𝑡
𝑑,𝜆

=

1

√2𝜆

∫

𝜉

𝑑

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

=

1

√2𝜆

{∫

𝜃0

𝑑

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 + ∫

𝜉

𝜃0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃}

=

1

√2𝜆

{
{

{
{

{

∫

𝜃0

𝑑

1

√𝐹 (𝜃
0
) − 𝐹 (𝜃)

𝑑𝜃 + ∫

𝜉

𝜃0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝜃0

𝑑

(

1

√𝐹 (𝜉) − 𝐹 (𝜃)

−

1

√𝐹 (𝜃
0
) − 𝐹 (𝜃)

)𝑑𝜃

}
}

}
}

}

:=

1

√2𝜆

(𝐶
𝑑
+ 𝐼𝐼𝐼 + 𝐽) .

(74)

Wehave only to calculate 𝐽.Wefix a constant 𝜖 > 0 sufficiently
small. Then we have

𝐽 := 𝐽
1
+ 𝐽
2

= ∫

𝜃0

𝜃0−𝜖

(𝐹 (𝜃
0
) − 𝐹 (𝜉))

× (√𝐹 (𝜉) − 𝐹 (𝜃)√𝐹 (𝜃
0
) − 𝐹 (𝜃)

× (√𝐹 (𝜉) − 𝐹 (𝜃) + √𝐹 (𝜃
0
) − 𝐹 (𝜃)))

−1

𝑑𝜃

+ ∫

𝜃0−𝜖

𝑑

(𝐹 (𝜃
0
) − 𝐹 (𝜉))

× (√𝐹 (𝜉) − 𝐹 (𝜃)√𝐹 (𝜃
0
) − 𝐹 (𝜃)

× (√𝐹 (𝜉) − 𝐹 (𝜃) + √𝐹 (𝜃
0
) − 𝐹 (𝜃)))

−1

𝑑𝜃.

(75)

By (A.2), for 𝜃
0
< 𝜉, we have

0 < 𝐹 (𝜉) − 𝐹 (𝜃
0
) ≤ 𝑓 (𝜃

0
) (𝜉 − 𝜃

0
) . (76)

Further, since 𝑑 < 𝜃 < 𝜃
0
− 𝜖 < 𝜃

0
< 𝜉, we have

𝐹 (𝜉) − 𝐹 (𝜃) ≥ 𝐶, 𝐹 (𝜃
0
) − 𝐹 (𝜃) ≥ 𝐶. (77)

By this and (76), we obtain




𝐽
2





≤ 𝐶 (𝜉 − 𝜃

0
) . (78)

We next calculate 𝐽
1
. For 𝜃

0
− 𝜖 < 𝜃 < 𝜃

0
, we obtain

𝐹 (𝜉) − 𝐹 (𝜃) ≥ 𝑓 (𝜃
0
) (𝜉 − 𝜃) ,

𝐹 (𝜃
0
) − 𝐹 (𝜃) ≥ 𝑓 (𝜃

0
) (𝜃
0
− 𝜃) .

(79)
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By (76) and (79), we obtain





𝐽
1





≤ ∫

𝜃0

𝜃0−𝜖

𝐹 (𝜉) − 𝐹 (𝜃
0
)

(𝐹 (𝜉) − 𝐹 (𝜃))√𝐹 (𝜃
0
) − 𝐹 (𝜃)

𝑑𝜃

≤ 𝐶 (𝜉 − 𝜃
0
) ∫

𝜃0

𝜃0−𝜖

1

(𝜉 − 𝜃)√𝜃
0
− 𝜃

𝑑𝜃

= 𝐶 (𝜉 − 𝜃
0
) ∫

𝜖

0

1

(𝜉 − 𝜃
0
+ 𝑡)√𝑡

𝑑𝑡

≤ 𝐶 (𝜉 − 𝜃
0
) ∫

√𝜖

0

1

𝑥
2
+ (𝜉 − 𝜃

0
)

𝑑𝑥

= 𝐶√𝜉 − 𝜃
0
tan−1√

𝜖

𝜉 − 𝜃
0

≤ 𝐶√𝜉 − 𝜃
0
.

(80)

By Lemma 10, (74), (75), (78), and (80), we obtain
Theorem 3(iii). Thus, the proof is complete.

4. Proof of Theorem 4

Let 𝜉 < 𝑐 and let 𝜉 → 𝑐 in this section. The proof of
Theorem 4 is similar to that ofTheorem 2. Let 𝛿 := 𝛿

𝜉
defined

in the statement of Theorem 4. By (38), we have

√𝜆 =

1

√2

∫

𝜉

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

=

1

√2

{∫

𝜉

𝜉−𝛿

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃+∫

𝜉−𝛿

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃}

:=

1

√2

(𝐾
1
+ 𝐾
2
) .

(81)

By the same argument as that to obtain𝑍
1
in (41), if 𝜉 is close

to 𝑐, we obtain

𝐾
1
= √

2





𝑓

(𝜉)






(− log𝑓 (𝜉) + 𝑂 (log 𝛿)) (1 + 𝑂 (𝛿)) . (82)

Now, we calculate𝐾
2
. We have

𝐾
2
=

1

√2

(∫

𝑎

0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃 + ∫

𝜃0

𝑎

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃

+ ∫

𝜉−𝛿

𝜃0

1

√𝐹 (𝜉) − 𝐹 (𝜃)

𝑑𝜃)

:=

1

√2

(𝐾
21

+ 𝐾
22

+ 𝐾
23
) .

(83)

We calculate 𝐾
21
. Since 𝜉 → 𝑐, by (4) and (5), for 0 < 𝜃 < 𝑎,

we have 𝐹(𝜉) − 𝐹(𝜃) ≥ 𝐶. By this, we obtain

𝐾
21

≤ ∫

𝑎

0

1

√𝐶

𝑑𝑠 ≤ 𝐶. (84)

We calculate 𝐾
22
. Since 𝜉 → 𝑐, by (4), for 𝑎 < 𝜃 < 𝜃

0
, we

have

𝐹 (𝜉) − 𝐹 (𝜃) = ∫

𝜉

𝜃

𝑓 (𝑠) 𝑑𝑠

= ∫

𝜃0

𝜃

𝑓 (𝑠) 𝑑𝑠 + ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠

≥ ∫

𝜉

𝜃0

𝑓 (𝑠) 𝑑𝑠 ≥ 𝐶.

(85)

This implies that 𝐾
22

≤ 𝐶. Finally, we calculate 𝐾
23
. Let 𝜃

0
<

𝜃 < 𝜉 − 𝛿. By (6), we have |𝑓

(𝜃)| < |𝑓


(𝑦)| < |𝑓


(𝑐)| for

𝜃 < 𝑦 < 𝑐. By this and Taylor expansion, we obtain

𝐹 (𝜉) − 𝐹 (𝜃)

= 𝑓 (𝜉) (𝜉 − 𝜃) +

1

2






𝑓

(𝜉
𝜃
)






(𝜉 − 𝜃)

2

≥ 𝐶 (𝜉 − 𝜃)
2

,

(86)

where 𝜃 < 𝜉
𝜃
< 𝜉. By this, we obtain

𝐾
23

≤ ∫

𝜉−𝛿

𝜃0

1

√𝐶 (𝜉 − 𝜃)
2

𝑑𝜃

≤ ∫

𝜉−𝛿

𝜃0

1

𝜉 − 𝜃

𝑑𝜃 ≤ 𝐶 (− log 𝛿) .

(87)

By (81), (82), (83), (87), and the same calculation as that in
(48), we obtainTheorem 4. Thus, the proof is complete.

5. Proofs of Theorems 5 and 6

Wefirst characterize 𝜉 = 𝜉
0
. Let𝜆(𝜉)be the curve consisting of

𝜆
2
(𝜉) and 𝜆

3
(𝜉).We know that 𝜉

0
is determined by 𝜆(𝜉

0
) = 0.

By this and (38), we obtain

(√𝜆 (𝜉))

𝜉

=

1

√2

∫

1

0

1

√𝐹 (𝜉) − 𝐹 (𝜉𝑠)

𝑑𝑠

−

𝜉

2√2

∫

1

0

𝑓 (𝜉) − 𝑠𝑓 (𝜉𝑠)

(𝐹 (𝜉) − 𝐹 (𝜉𝑠))
3/2

𝑑𝑠.

(88)

By this, we see that 0 < 𝜉
0
< 1 satisfies the following equation:

2∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

𝑑𝑠 = 𝜉
0
∫

1

0

𝑓 (𝜉) − 𝑠𝑓 (𝜉𝑠)

(𝐹 (𝜉) − 𝐹 (𝜉𝑠))
3/2

𝑑𝑠.

(89)

Proof of Theorem 6. We study the asymptotic behavior of
𝜆
𝑗
(𝜉) (𝑗 = 2, 3) as 𝜉 → 𝜉

0
. We put 𝜂 = 𝜉 − 𝜉

0
and consider

the case where |𝜂| ≪ 1. For 0 < 𝑠 < 1, we put

𝐺 (𝜉, 𝑠) := 𝐹 (𝜉) − 𝐹 (𝜉𝑠) − (𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)) . (90)
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Then,

𝐹 (𝜉) − 𝐹 (𝜉𝑠)

= 𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠) + 𝐺 (𝜉, 𝑠)

= (𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)) (1 +

𝐺 (𝜉, 𝑠)

𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

)

:= (𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)) (1 + 𝐻 (𝜉, 𝑠) 𝜂) .

(91)

We show that, for 0 < 𝑠 < 1 and 𝜂 sufficiently small,





𝐻 (𝜉, 𝑠)





≤ 𝐶. (92)

Let an arbitrary 0 < 𝜖 ≪ 1 be fixed. First, we consider the
case 1 − 𝜖 < 𝑠 < 1. By (A.2), we have





𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)




=











∫

𝜉0

𝜉0𝑠

𝑓 (𝑠) 𝑑𝑠











≥ 𝑓 (𝜉
0
) 𝜉
0
(1 − 𝑠) . (93)

We put 𝐾(𝜉, 𝑠) = 𝐹(𝜉) − 𝐹(𝜉𝑠). By mean value theorem,





𝐺 (𝜉, 𝑠)





=




𝐾 (𝜉, 𝑠) − 𝐾 (𝜉

0
, 𝑠)






≤






(𝑓 (

̃
𝜉
1
) − 𝑠𝑓 (

̃
𝜉
1
𝑠)) 𝜂







≤






(𝑓 (

̃
𝜉
1
) − 𝑓 (

̃
𝜉
1
𝑠)) 𝜂






+






𝑓 (

̃
𝜉
1
𝑠) 𝜂 (1 − 𝑠)







≤







̃
𝜉
1
𝑓

(
̃
𝜉
2
) 𝜂 (1 − 𝑠)






+






𝑓 (

̃
𝜉
1
𝑠) 𝜂 (1 − 𝑠)






,

(94)

where 𝜉
0
∼

̃
𝜉
1
∼

̃
𝜉
2
∼ 𝜉. By this and (93), we obtain (92). Next,

let 0 < 𝑠 ≤ 1 − 𝜖. Since 𝜉
0
> 𝜃
0
(cf. Figure 1), we have





𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)




≥ 𝐶
𝜖
> 0. (95)

Furthermore,





𝐺 (𝜉, 𝑠)





≤




𝐹 (𝜉) − 𝐹 (𝜉

0
)




+




𝐹 (𝜉𝑠) − 𝐹 (𝜉

0
𝑠)




≤ 𝐶





𝜂




. (96)

By this and (95), we obtain (92). For |𝑥| ≪ 1, we know that

(1 + 𝑥)
−1/2

= 1 +

∞

∑

𝑘=1

(2𝑘 − 1)!!

𝑘!2
𝑘

(−1)
𝑘
𝑥
𝑘
, (97)

where (2𝑘 − 1)!! = (2𝑘 − 1)(2𝑘 − 3) ⋅ ⋅ ⋅ 3 ⋅ 1 for 𝑘 ≥ 1. By this,
(38), and (91), for 𝑗 = 2, 3, we obtain

√𝜆
𝑗
(𝜉)

=

𝜉

√2

∫

1

0

1

√𝐹 (𝜉) − 𝐹 (𝜉𝑠)

𝑑𝑠

=

𝜉

√2

∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

(1 + 𝐻 (𝜉, 𝑠) 𝜂)
−1/2

𝑑𝑠

=

𝜉

√2

∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

× (1 +

∞

∑

𝑘=1

(2𝑘 − 1)!!

𝑘!2
𝑘

(−1)
𝑘
𝐻(𝜉, 𝑠)

𝑘

𝜂
𝑘
)𝑑𝑠

=

𝜉
0

√2

∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

+

𝜂

√2

∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

+

𝜉
0
+ 𝜂

√2

∞

∑

𝑘=1

∫

1

0

1

√𝐹 (𝜉
0
) − 𝐹 (𝜉

0
𝑠)

(2𝑘 − 1)!!

𝑘!2
𝑘

× (−1)
𝑘
𝐻(𝜉, 𝑠)

𝑘

𝜂
𝑘
𝑑𝑠

= √𝜆
𝑗
(𝜉
0
) +

∞

∑

𝑘=1

𝐻
𝑘
(𝜉) 𝜂
𝑘
.

(98)

By this, we obtain Theorem 6. Thus, the proof is complete.

Proof of Theorem 5. We write 𝜆 = 𝜆
1
(𝜉). For 0 < 𝑠 < 1 and

0 < 𝜉 ≪ 1, we put

𝐷(𝜉, 𝑠) :=

𝐹 (𝜉) − 𝐹 (𝜉𝑠) − 𝜉𝑓 (𝜉) (1 − 𝑠)

𝜉
2
𝑓 (𝜉) (1 − 𝑠)

2
. (99)

By Taylor expansion,

𝐹 (𝜉) − 𝐹 (𝜉𝑠) − 𝜉𝑓 (𝜉) (1 − 𝑠) ∼ −

𝜉
2
𝑓

(0)

2

(1 − 𝑠)
2
. (100)

By (99) and (100), for 0 < 𝑠 < 1 and 0 < 𝜉 ≪ 1, we obtain

√𝐹 (𝜉) − 𝐹 (𝜉𝑠) = √𝜉𝑓 (𝜉)√1 − 𝑠√1 + 𝐷 (𝜉, 𝑠) 𝜉 (1 − 𝑠),





𝐷 (𝜉, 𝑠)





≤ 𝐶.

(101)
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By this, (97), and (98), we obtain

√𝜆
1
(𝜉)

=

𝜉

√2

∫

1

0

1

√𝐹 (𝜉) − 𝐹 (𝜉𝑠)

𝑑𝑠

=

√𝜉

√2𝑓 (𝜉)

∫

1

0

1

√1 − 𝑠

(1 + 𝐷 (𝜉, 𝑠) 𝜉 (1 − 𝑠))
−1/2

𝑑𝑠

=

√𝜉

√2𝑓 (𝜉)

× ∫

1

0

1

√1 − 𝑠

× (1 +

∞

∑

𝑘=1

(2𝑘 − 1)!!

𝑘!2
𝑘

(−1)
𝑘
𝐷 (𝜉, 𝑠)

𝑘

(1 − 𝑠)
𝑘
𝜉
𝑘
)𝑑𝑠

=

√𝜉

√2𝑓 (𝜉)

(2 +

∞

∑

𝑘=1

𝐿
𝑘
(𝜉) 𝜉
𝑘
) ,

(102)

where

𝐿
𝑘
(𝜉) = ∫

1

0

(2𝑘 − 1)!!

𝑘!2
𝑘

(−1)
𝑘
𝐷 (𝜉, 𝑠)

𝑘

(1 − 𝑠)
𝑘−1/2

𝑑𝑠. (103)

Thus, we obtain Theorem 5(i). Theorem 5(ii) is obtained by
Theorem 5(i) and Taylor expansion of 𝑓(𝑢) near 𝑢 = 0. Thus,
the proof is complete.

6. Proof of Theorem 7

Proof of Theorem 7(i). Let 𝑓(𝑢) = (𝑢 − 𝑎)(𝑢 − 𝑏)(𝑐 − 𝑢) with
𝑎 = 𝑎

𝑗
, 𝑏 = 𝑏

𝑗
, 𝑐 = 𝑐

𝑗
(𝑗 = 1, 2). By (26) and Theorem 2, we

obtain 𝑓

(𝑎
1
) = 𝑓

(𝑎
2
). This implies that

(𝑐
1
− 𝑎
1
) (𝑏
1
− 𝑎
1
) = (𝑐
2
− 𝑎
2
) (𝑏
2
− 𝑎
2
) . (104)

By direct calculation,

𝐹 (𝜉) − 𝐹 (𝜉𝑠)

= −

1

4

𝜉
4

(1 − 𝑠) (1 + 𝑠 + 𝑠
2
+ 𝑠
3
)

+

1

3

(𝑎 + 𝑏 + 𝑐) 𝜉
3

(1 − 𝑠) (1 + 𝑠 + 𝑠
2
)

−

1

2

(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) 𝜉
2

(1 − 𝑠) (1 + 𝑠) + 𝑎𝑏𝑐𝜉 (1 − 𝑠) .

(105)

Let 𝐴 := (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)/(2𝑎𝑏𝑐). By using (38), (105), and the
calculation in Section 5, we obtain

√𝜆
1
(𝜉) =

√𝜉

√2𝑎𝑏𝑐

∫

1

0

1

√1 − 𝑠

(1 − 𝐴 (1 + 𝑠) 𝜉 + 𝑂 (𝜉
2
))

−1/2

𝑑𝑠

=

√𝜉

√2𝑎𝑏𝑐

∫

1

0

1

√1 − 𝑠

(1 +

1

2

𝐴𝜉 (1 + 𝑠) + 𝑂 (𝜉
2
)) 𝑑𝑠

=

√𝜉

√2𝑎𝑏𝑐

(2 +

5

3

𝐴𝜉 + 𝑂 (𝜉
2
)) .

(106)

This implies that

𝜆
1
(𝜉) =

2

𝑎𝑏𝑐

𝜉 (1 +

5

3

𝐴𝜉 + 𝑂 (𝜉
2
)) . (107)

By this, (27), (28), andTheorem 2, we obtain

𝑎
1
𝑏
1
𝑐
1
= 𝑎
2
𝑏
2
𝑐
2
, (108)

𝑎
1
𝑏
1
+ 𝑏
1
𝑐
1
+ 𝑐
1
𝑎
1
= 𝑎
2
𝑏
2
+ 𝑏
2
𝑐
2
+ 𝑐
2
𝑎
2
. (109)

By (104), (108), (109), and direct calculation, we easily obtain
𝑎
1
= 𝑎
2
, 𝑏
1
= 𝑏
2
, and 𝑐

1
= 𝑐
2
. Thus, the proof is complete.

Proof of Theorem 7(ii). By Theorem 2 and (28), we obtain
𝑓

(𝑎
1
) = 𝑓


(𝑎
2
) and 𝑓


(𝑐
1
) = 𝑓


(𝑐
2
). By this, we obtain (104)

and

(𝑐
1
− 𝑎
1
) (𝑐
1
− 𝑏
1
) = (𝑐
2
− 𝑎
2
) (𝑐
2
− 𝑏
2
) > 0. (110)

By this and (104), we obtain (𝑐
1
−𝑎
1
)
2
= (𝑐
2
−𝑎
2
)
2. By this and

(104), we have

𝑝 := 𝑏
1
− 𝑎
1
= 𝑏
2
− 𝑎
2
, 𝑞 := 𝑐

1
− 𝑎
1
= 𝑐
2
− 𝑎
2
. (111)

By (29) and (107), we obtain (108). By (108) and (111), we
obtain

𝑎
1
(𝑎
1
+ 𝑝) (𝑎

1
+ 𝑞) = 𝑎

2
(𝑎
2
+ 𝑝) (𝑎

2
+ 𝑞) . (112)

By this, we obtain 𝑎
1
= 𝑎
2
. By this and (111), we obtain 𝑏

1
= 𝑏
2

and 𝑐
1
= 𝑐
2
. Thus, the proof is complete.

Proof of Theorem 7(iii). Let 𝜃
0
:= 𝜃
1,0

= 𝜃
2,0
. We put

𝐺 (𝑡) := ∫

𝑡

0

𝑦 (𝑦 − 𝑝) (𝑞 − 𝑦) 𝑑𝑦. (113)

For 𝑗 = 1, 2, by (14) and (111), we obtain

0 = ∫

𝜃0

𝑎𝑗

(𝑥 − 𝑎
𝑗
) (𝑥 − 𝑏

𝑗
) (𝑐
𝑗
− 𝑥) 𝑑𝑥

= ∫

𝜃0

𝑎𝑗

(𝑥 − 𝑎
𝑗
) (𝑥 − (𝑎

𝑗
+ 𝑝)) ((𝑎

𝑗
+ 𝑞) − 𝑥) 𝑑𝑥

= ∫

𝜃0−𝑎𝑗

0

𝑦 (𝑦 − 𝑝) (𝑞 − 𝑦) 𝑑𝑦.

(114)
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We study the shape of 𝐺(𝑡) for 𝑡 ≥ 0. Since 𝑐 + 𝑎 > 2𝑏 by
(5), we have 2𝑝 < 𝑞. By this and direct calculation, we see
that 𝐺(0) = 0 and it decreases for 0 < 𝑡 < 𝑝 and attains
its minimum at 𝑡 = 𝑝, and 𝐺(𝑝) < 0. Then 𝐺(𝑡) increases for
𝑝 < 𝑡 < 𝑞 and attains itsmaximum at 𝑡 = 𝑞, and𝐺(𝑞) = 𝑞

3
(𝑞−

2𝑝)/12 > 0. Then, 𝐺(𝑡) decreases for 𝑡 > 𝑞 and 𝐺(𝑡) → −∞

as 𝑡 → ∞. Therefore, there exists 𝑝 < 𝑡
1
< 𝑞 < 𝑡

2
such that

𝐺(𝑡
1
) = 𝐺(𝑡

2
) = 0. We assume that 𝑎

1
< 𝑎
2
and we derive a

contradiction. In this case, by (114), we obtain 𝜃
0
−𝑎
2
= 𝑡
1
and

𝜃
0
−𝑎
1
= 𝑡
2
.This implies that 𝜃

0
= 𝑎
1
+𝑡
2
> 𝑎
1
+𝑞 = 𝑐

1
.This is

a contradiction, since 𝑏
1
< 𝜃
0
< 𝑐
1
. If we assume that 𝑎

2
< 𝑎
1
,

we obtain the same contradiction as above. Consequently, we
obtain 𝑎

1
= 𝑎
2
. By this and (111), we obtain 𝑏

1
= 𝑏
2
and 𝑐
1
= 𝑐
2
.

Thus, the proof is complete.
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radially symmetric large solutions,” Journal of Mathematical
Analysis and Applications, vol. 352, no. 1, pp. 166–174, 2009.

[4] R. Chiappinelli, “A-priori bounds and asymptotics on the
eigenvalues in bifurcation problems for perturbed self-adjoint
operators,” Journal of Mathematical Analysis and Applications,
vol. 354, no. 1, pp. 263–272, 2009.

[5] R. Chiappinelli, “Upper and lower bounds for higher order
eigenvalues of some semilinear elliptic equations,” Applied
Mathematics and Computation, vol. 216, no. 12, pp. 3772–3777,
2010.

[6] R. Chiappinelli, M. Furi, and M. P. Pera, “A new theme in
nonlinear analysis: continuation and bifurcation of the unit
eigenvectors of a perturbed linear operator,” Communications
in Applied Analysis, vol. 15, no. 2, pp. 299–312, 2011.

[7] R. Chiappinelli, “Variational methods for NLEV approximation
near a bifurcation point,” International Journal of Mathematics
and Mathematical Sciences, vol. 2012, Article ID 102489, 32
pages, 2012.
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