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We consider properties and center conditions for plane polynomial systems of the forms 𝑥̇ = −𝑦 − 𝑝

1
(𝑥, 𝑦) − 𝑝

2
(𝑥, 𝑦), 𝑦̇ = 𝑥 +

𝑞

1
(𝑥, 𝑦) + 𝑞

2
(𝑥, 𝑦) where 𝑝

1
, 𝑞
1
and 𝑝

2
, 𝑞
2
are polynomials of degrees 𝑛 and 2𝑛 − 1, respectively, for integers 𝑛 ≥ 2. We restrict our

attention to those systems for which 𝑦𝑝

2
(𝑥, 𝑦) + 𝑥𝑞

2
(𝑥, 𝑦) = 0. In this case the system can be transformed to a trigonometric Abel

equation which is similar in form to the one obtained for homogeneous systems (𝑝
2
= 𝑞

2
= 0). From this we show that any center

condition of a homogeneous system for a given 𝑛 can be transformed to a center condition of the corresponding generalized cubic
system and we use a similar idea to obtain center conditions for several other related systems. As in the case of the homogeneous
system, these systems can also be transformed to Abel equations having rational coefficients and we briefly discuss an application
of this to a particular Abel equation.

1. Introduction

In this work we consider differential polynomial systems in
the plane having the form of a linear center perturbed by
homogeneous polynomials of degrees 𝑛 and 2𝑛 − 1 where
𝑛 ≥ 2 is an integer. We refer to these as generalized cubic
systems since they contain the cubic system (𝑛 = 2) as a
particular case. Specifically, we assume

𝑑𝑥

𝑑𝑡

= −𝑦 − 𝑝

1
(𝑥, 𝑦) − 𝑝

2
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= 𝑥 + 𝑞

1
(𝑥, 𝑦) + 𝑞

2
(𝑥, 𝑦) ,

(1)

where 𝑝

1
, 𝑞
1
and 𝑝

2
, 𝑞
2
are homogeneous polynomials of

degrees 𝑛 and 2𝑛 − 1, respectively. We will also have occasion
to consider the reduced (homogeneous) problem

𝑑𝑥

𝑑𝑡

= −𝑦 − 𝑝

1
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= 𝑥 + 𝑞

1
(𝑥, 𝑦) ,

(2)

in which the perturbation consists of a single polynomial.
Corresponding to (1), (2) are the first-order differential
equations:

𝑑𝑦

𝑑𝑥

= −

𝑥 + 𝑞

1
(𝑥, 𝑦) + 𝑞

2
(𝑥, 𝑦)

𝑦 + 𝑝

1
(𝑥, 𝑦) + 𝑝

2
(𝑥, 𝑦)

, (3)

𝑑𝑦

𝑑𝑥

= −

𝑥 + 𝑞

1
(𝑥, 𝑦)

𝑦 + 𝑝

1
(𝑥, 𝑦)

. (4)

In his original work [1] Poincaré developed a method for
determining if the origin is a center by seeking an analytic
solution to the equation 𝑦

󸀠
= 𝑄/𝑃 where 𝑃, 𝑄 are polynomi-

als satisfying 𝑃(0, 0), 𝑄(0, 0) = 0. For (4) it takes the form

𝑈 (𝑥, 𝑦) =

1

2

(𝑥

2
+ 𝑦

2
) +

∞

∑

𝑘=2

𝑈

𝛼𝑘
(𝑥, 𝑦) , (5)

where𝑈
𝛼𝑘
(𝑥, 𝑦) is a homogeneous polynomial of degree 𝛼

𝑘
=

𝑘(𝑛 − 1) + 2. This solution is required to satisfy the condition

𝑑𝑈

𝑑𝑡

=

𝜕𝑈

𝜕𝑥

𝑑𝑥

𝑑𝑡

+

𝜕𝑈

𝜕𝑦

𝑑𝑦

𝑑𝑡

=

∞

∑

𝑘=1

𝑉

𝛼𝑘
(𝑥

2
+ 𝑦

2
)

𝛼𝑘

≡

∞

∑

ℓ=2

̃

𝑉

2ℓ
(𝑥

2
+ 𝑦

2
)

ℓ

.

(6)
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Here, 𝑉
𝛼𝑘
, ̃𝑉
2ℓ

are called Lyapunov coefficients and they are
homogeneous polynomials in the coefficients of the system.

Most of the known center conditions for systems of type
(1) are for cubic systems and for these there is an extensive
literature.We note particularly the works of Lloyd et al. [2–9],
Żołądek [10], Alwash [11], Cherkas and Romanovski [12], and
the many references therein. A great number of these results
were obtained by an exhaustive analysis of the Lyapunov
coefficients. In contrast the main results in this work were
found by studying the differential equations for these systems
anddeterminingwhatwe can learn from them.Our studywill
consider systems which satisfy the condition

𝑦𝑝

2
(𝑥, 𝑦) + 𝑥𝑞

2
(𝑥, 𝑦) = 0. (7)

The only complete set of center conditions [3] known for
systems of this type is for the cubic system. We will show
that all generalized cubic systems which satisfy (7) can be
transformed to Abel differential equations of various types
and from these we will deduce a probable set (at this
time we do not consider the completeness of the center
conditions because it would involve an extensive analysis of
the Lyapunov coefficients) of complete center conditions for
the quintic system and rederive those for the cubic system.
Complete sets of center conditions are known for these two
cases for systems which also satisfy 𝑦𝑝

1
(𝑥, 𝑦)+𝑥𝑞

1
(𝑥, 𝑦) = 0.

These are discussed in [11, 13] where it is shown that the only
center conditions possible for these systems are symmetric
centers. In Section 3 we use trigonometric forms for the
Lyapunov coefficients to obtain a simple rederivation of these
conditions.

For the purposes of this work an integrating factor 𝜇 of
(3) is a function such that

𝜕

𝜕𝑦

(𝜇 (𝑥, 𝑦) (𝑥 + 𝑞

1
(𝑥, 𝑦) + 𝑞

2
(𝑥, 𝑦)))

−

𝜕

𝜕𝑥

(𝜇 (𝑥, 𝑦) (𝑦 + 𝑝

1
(𝑥, 𝑦) + 𝑝

2
(𝑥, 𝑦))) = 0.

(8)

We make use of the fact by Reeb [14] that if 𝜇 is analytic and
nonzero on aneighborhoodof the critical point (0, 0) then the
corresponding system is a center of (1) and (2).The only inte-
grating factors that we mention in this paper are of this type.

The Cartesian forms provided by (3) and (4) are difficult
to work with so we consider various transformations of these
equations. In particular it is well known that (4) can be
transformed to an Abel equation of the first kind in which the
coefficients are trigonometric polynomials in cos 𝜃, sin 𝜃. We
show that the particular subcase (7) of (3) that we consider is
also transformable to an Abel equation having similar form.
By this equation we can easily relate the homogeneous form
with its corresponding generalized cubic form and this leads
directly to many of the general results that we will establish
for these systems. We use it to show that any center condition
for a homogeneous system can be transformed to a center
condition of the corresponding generalized cubic system.

In Section 3 we present most of the main results and
in Section 4 we apply these to various forms of generalized
cubic systems to obtain several new center conditions for

these systems. Sections 5 and 6 are devoted primarily to
a brief discussion of simple closed invariant curves which
can occur in these systems and by considering particular
examples determine whether or not they are limit cycles. In
the final section we present an example of a solvable Abel
differential equation which cannot currently be solved by the
Computer Algebra System Maple.

2. Derivation of Related Equations and
Aspects of the Abel Differential Equation

Here we obtain the equations related to (3) and (4) which we
will use in this work. Since this development is intended for
both odd and even values of 𝑛, we need to pay close attention
to the forms of the trigonometric polynomials which arise
and to forms which various substitutions can take.

Using a polar coordinate transformation 𝑥 = 𝑟 cos 𝜃, 𝑦 =

𝑟 sin 𝜃 in (3) and (4), respectively, we obtain

𝑑𝑟

𝑑𝜃

=

𝜉

1
(𝜃) 𝑟

𝑛
+ 𝜉

2
(𝜃) 𝑟

2𝑛−1

1 + 𝜂

1
(𝜃) 𝑟

𝑛−1
+ 𝜂

2
(𝜃) 𝑟

2𝑛−2
, (9)

𝑑𝑟

𝑑𝜃

=

𝜉

1
(𝜃) 𝑟

𝑛

1 + 𝜂

1
(𝜃) 𝑟

𝑛−1
, (10)

where

𝜉

𝑖
(𝜃) = sin 𝜃 𝑞

𝑖
(cos 𝜃, sin 𝜃) − cos 𝜃 𝑝

𝑖
(cos 𝜃, sin 𝜃) ,

𝜂

𝑖
(𝜃) = sin 𝜃 𝑝

𝑖
(cos 𝜃, sin 𝜃) + cos 𝜃 𝑞

𝑖
(cos 𝜃, sin 𝜃)

(11)

for 𝑖 = 1, 2. Here 𝜉
1
, 𝜂
1
and 𝜉

2
, 𝜂
2
are homogeneous trigono-

metric polynomials of degrees 𝑛 + 1 and 2𝑛, respectively, in
cos 𝜃, sin 𝜃. If center conditions are defined in terms of these
trigonometric polynomials, as is frequently the case, these
equations can be used to define the corresponding coefficient
functions 𝑝

1
, . . . , 𝑞

2
. Inverting expressions (11) for the case

𝑖 = 1 we obtain

𝑝

1
(𝑥, 𝑦) = −𝑟

𝑛 cos 𝜃 𝜉
1
(𝜃) + 𝑟

𝑛 sin 𝜃 𝜂
1
(𝜃)

= 𝑟

𝑛−1
(−𝑥𝜉

1
(𝜃) + 𝑦𝜂

1
(𝜃)) .

(12)

The degrees of 𝜉
1
, 𝜂
1
are such that this expression might not

be a polynomial, although only the highest degree terms 𝑛+1
will contribute to this possibility. Writing 𝜉

1
= 𝜉

1𝐻
+

̃

𝜉

1
, 𝜂
1
=

𝜂

1𝐻
+ 𝜂

1
where 𝜉

1𝐻
, 𝜂
1𝐻

are the degree 𝑛 + 1 terms and ̃

𝜉

1
, 𝜂
1

contain all other terms, we see that this highest degree term
can be written as

𝑝

1𝐻
(𝑥, 𝑦) = 𝑟

𝑛−1
(−𝑥𝜉

1𝐻
(𝜃) + 𝑦𝜂

1𝐻
(𝜃))

= 𝑟

𝑛−1
(−𝑥 (𝑎 cos ((𝑛 + 1) 𝜃) + 𝑏 sin ((𝑛 + 1) 𝜃)))

+ 𝑟

𝑛−1
(𝑦 (𝑐 cos ((𝑛 + 1) 𝜃) + 𝑑 sin ((𝑛 + 1) 𝜃))) ,

(13)

where 𝑎, 𝑏, 𝑐, 𝑑 are constants. For 𝑛 = 2 this is

𝑝

1𝐻
(𝑥, 𝑦)

= −

𝑎𝑥

4
+ (3𝑏 − 𝑐) 𝑥

3
𝑦 − 3 (𝑎 + 𝑑) 𝑥

2
𝑦

2
− (𝑏 − 3𝑐) 𝑥𝑦

3
+ 𝑑𝑦

4

𝑥

2
+ 𝑦

2
.

(14)
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The remainder of this with respect to 𝑥 is 4(𝑏 − 𝑐)𝑥𝑦

3
− 4(𝑎 +

𝑑)𝑦

4 which will be 0 if 𝑑 = −𝑎, 𝑏 = 𝑐. The same conditions
ensure that 𝑞

1𝐻
is a polynomial and also holds for the case

𝑛 = 3. We can now show in an inductive fashion that these
conditions are sufficient for all 𝑛 ≥ 2. Suppose it is true for all
𝑛 ≤ 𝑁 where𝑁 ≥ 3 is an integer. Then for 𝑛 = 𝑁+ 1 we have

𝑝

1𝐻
(𝑥, 𝑦)

= 𝑟

𝑁
(−𝑥 (𝑎 cos ((𝑁 + 2) 𝜃) + 𝑏 sin ((𝑁 + 2) 𝜃)))

+ 𝑟

𝑁
(𝑦 (𝑐 cos ((𝑁 + 2) 𝜃) + 𝑑 sin ((𝑁 + 2) 𝜃))) .

(15)

Since the trigonometric polynomials are degree 𝑁 + 2, the
denominator is of order 𝑟𝑁+2 when expressed in Cartesian
form. We can express this in terms of 𝜉

1𝐻
for 𝑛 = 𝑁 by

expanding the trigonometric functions and setting 𝑐 = 𝑏,
𝑑 = −𝑎. We obtain

𝑝

1𝐻
(𝑥, 𝑦) = −𝑟

𝑁
(𝑥 cos 𝜃 + 𝑦 sin 𝜃)

⋅ (𝑎 cos ((𝑛 + 1) 𝜃) + 𝑏 sin ((𝑛 + 1) 𝜃)) ,

(16)

which is a homogeneous polynomial of degree 𝑁 + 1

when evaluated at cos 𝜃 = 𝑥/𝑟, sin 𝜃 = 𝑦/𝑟. The same
consideration also hold for 𝑞

1𝐻
and by obvious extension

to the nonlinearities of degree 2𝑛 − 1. Since (𝑛 + 1)𝜉

1𝐻
+

𝜂

󸀠

1𝐻
= (𝑛 + 1)((𝑎 + 𝑑) cos((𝑛 + 1)𝜃) + (𝑏 − 𝑐) sin((𝑛 + 1)𝜃))

these conditions can be obtained by the vanishing of this
expression. In general, the highest order terms must satisfy
((𝑛−1)𝑖+2)𝜉

𝑖𝐻
+𝜂

󸀠

𝑖𝐻
= 0 for 𝑖 = 1, 2This basic restriction will

apply to several of our results and it is sometimes satisfied by
requiring that the highest order terms vanish. In the following
we will simply indicate the highest allowable degrees of the
trigonometric polynomials based on this condition. We will
also drop the subscript 1 for the homogeneous system and
simply refer to 𝑝, 𝑞, 𝜉, 𝜂.

Equations (9) and (10) (with 𝜂

1
= 𝜂) can be further

transformed in a number of ways. We continue by using the
transformation given in [15]

𝜌 (𝜃) =

𝑟 (𝜃)

𝑛−1

1 + 𝜂 (𝜃) 𝑟 (𝜃)

𝑛−1
. (17)

With this (9) and (10), respectively, become

𝑑𝜌

𝑑𝜃

=

𝜓

4
(𝜃) 𝜌

4
+ 𝜓

3
(𝜃) 𝜌

3
+ 𝜓

2
(𝜃) 𝜌

2

1 − 𝜂

1
(𝜃) 𝜌 + 𝜂

2
(𝜃) 𝜌

2
, (18)

𝑑𝜌

𝑑𝜃

= − (𝑛 − 1) 𝜉 (𝜃) 𝜂 (𝜃) 𝜌

3

+ ((𝑛 − 1) 𝜉 (𝜃) − 𝜂

󸀠
(𝜃)) 𝜌

2
,

(19)

where in (18)

𝜓

2
(𝜃) = (𝑛 − 1) 𝜉

1
(𝜃) − 𝜂

󸀠

1
(𝜃) ,

𝜓

3
(𝜃) = (𝑛 − 1) (𝜉

2
(𝜃) − 2𝜉

1
(𝜃) 𝜂

1
(𝜃))

+ 𝜂

1
(𝜃) 𝜂

󸀠

1
(𝜃) ,

𝜓

4
(𝜃) = (𝑛 − 1) (𝜉

1
(𝜃) 𝜂

2

1
(𝜃) − 𝜉

2
(𝜃) 𝜂

1
(𝜃))

− 𝜂

2
(𝜃) 𝜂

󸀠

1
(𝜃) .

(20)

Condition (7) we are considering is equivalent to 𝜂

2
= 0. In

this case we can show that 𝜓
4
𝜌

2
+ 𝜓

3
𝜌 + 𝜓

2
= (1 − 𝜂

1
𝜌)((𝑛 −

1)(𝜉

2
− 𝜉

1
𝜂

1
)𝜌 +𝜓

2
) so (18) reduces to the trigonometric Abel

equation

𝑑𝜌

𝑑𝜃

= (𝑛 − 1) (𝜉

2
(𝜃) − 𝜉

1
(𝜃) 𝜂

1
(𝜃)) 𝜌

3

+ ((𝑛 − 1) 𝜉

1
(𝜃) − 𝜂

󸀠

1
(𝜃)) 𝜌

2
.

(21)

This equation is very interesting in the fact that it sharesmany
of the same analytical properties as (19) but describes a much
larger class of systems (1). It is the equation upon which most
of the results obtained in this paper are based. Since 𝜂

2
= 0,

the maximum degree of 𝜉
2
in (21) is 2𝑛−2whereas both 𝜉

1
, 𝜂
1

can have maximal degree 𝑛+1. If we further set 𝜂
1
= 0which

is the case discussed in [11, 13] for 𝑛 = 2, 3 we obtain

𝑑𝜌

𝑑𝜃

= (𝑛 − 1) 𝜉

2
(𝜃) 𝜌

3
+ (𝑛 − 1) 𝜉

1
(𝜃) 𝜌

2 (22)

which is essentially the same equation as the corresponding
form of (9).

Since several of the classes of solutions which we obtain
are based on (21), we briefly review certain properties of Abel
equations. In this work we will consider both types of Abel
equations. An Abel equation of the first kind has the form

𝑑𝑦

𝑑𝑥

= 𝑓

3
(𝑥) 𝑦

3
+ 𝑓

2
(𝑥) 𝑦

2
+ 𝑓

1
(𝑥) 𝑦 + 𝑓

0
(𝑥)

(23)

and an Abel equation of the second kind has the form

𝑑𝑦

𝑑𝑥

=

𝑓

3
(𝑥) 𝑦

3
+ 𝑓

2
(𝑥) 𝑦

2
+ 𝑓

1
(𝑥) 𝑦 + 𝑓

0
(𝑥)

𝑔

1
(𝑥) 𝑦 + 𝑔

0
(𝑥)

, (24)

where the coefficient functions are assumed to be suitably
differentiable functions of 𝑥. Form (24) can always be trans-
formed to an Abel equation of the first kind by the variable
change

𝑦 (𝑥) =

1

𝑔

1
(𝑥) 𝑢 (𝑥)

−

𝑔

0
(𝑥)

𝑔

1
(𝑥)

. (25)
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For a general Abel equation of the first kind it is possible to
define recursively an infinite sequence of relative invariants
by [16]

𝑠

3
(𝑥) = 𝑓

0
(𝑥) 𝑓

2

3
(𝑥) +

2

27

𝑓

3

2
(𝑥) +

1

3

(𝑓

3
(𝑥) 𝑓

󸀠

2
(𝑥)

− 𝑓

2
(𝑥) 𝑓

󸀠

3
(𝑥) − 𝑓

1
(𝑥) 𝑓

2
(𝑥) 𝑓

3
(𝑥)) ,

(26)

𝑠

2𝑘+1
(𝑥) = 𝑓

3
(𝑥) 𝑠

󸀠

2𝑘−1
(𝑥) + (2𝑘 − 1) (

1

3

𝑓

2

2
(𝑥)

− 𝑓

󸀠

3
(𝑥) − 𝑓

1
(𝑥) 𝑓

3
(𝑥)) 𝑠

2𝑘−1
(𝑥)

(27)

for 𝑘 ≥ 2. From these, a sequence of absolute invariants can
be formed. If the first invariant 𝐼

1
= 𝑠

3

5
/𝑠

5

3
is constant, the Abel

equation can be transformed to a separable equation. This is
the only general class of Abel equations which is integrable by
quadrature. We note that if 𝑓

0
= 𝑓

2
= 0 then 𝑠

3
= 0 and the

Abel equation is a Bernoulli equation. In cases more general
than that just indicated, the vanishing of 𝑠

3
means the Abel

equation is transformable to a Bernoulli equation.
A sufficient condition that an Abel equation of form (23)

with 𝑓

0
= 0 has a constant first invariant 𝐼

1
is that the

coefficient functions satisfy a relation of the form

𝑓

2
(𝑥) (

𝑓

3
(𝑥)

𝑓

2
(𝑥)

)

󸀠

+ 𝑓

1
(𝑥) 𝑓

3
(𝑥) = 𝐶𝑓

2

2
(𝑥) ,

(28)

where 𝐶 is a constant. This gives

𝐼

1
=

729 (1 − 3𝐶)

3

(9𝐶 − 2)

2
. (29)

In [17] we showed that a homogeneous system could be
transformed to an Abel equation of the first kind having
rational coefficients. This is also true for systems (4) which
satisfy (7). Setting 𝑦 = V𝑥, interchanging the roles of 𝑥 and
V, and letting 𝑢 = 𝑥

𝑛−1, we obtain an Abel equation of the
second kind

𝑑𝑢

𝑑V
= − (𝑛 − 1)

𝑝

2
(1, V) 𝑢3 + 𝑝

1
(1, V) 𝑢2 + V𝑢

𝑅 (V) 𝑢 + V2 + 1

,
(30)

where 𝑅(V) = 𝑞

1
(1, V) + V𝑝

1
(1, V). An Abel equation of the

first kind is obtained by using (25). Renaming the variables
this gives form (23) where

𝑓

3
(𝑥) = − (𝑛 − 1) (𝑥

2
+ 1)

3 𝑝
2
(1, 𝑥)

𝑅

2
(𝑥)

+ (𝑛 − 1) (𝑥

2
+ 1)

2 𝑝
1
(1, 𝑥)

𝑅 (𝑥)

− (𝑛 − 1) 𝑥 (𝑥

2
+ 1) ,

𝑓

2
(𝑥) = 3 (𝑛 − 1) (𝑥

2
+ 1)

2 𝑝
2
(1, 𝑥)

𝑅

2
(𝑥)

− 2 (𝑛 − 1) (𝑥

2
+ 1)

𝑝

1
(1, 𝑥)

𝑅 (𝑥)

+ (𝑥

2
+ 1)

𝑅

󸀠
(𝑥)

𝑅 (𝑥)

+ (𝑛 − 3) 𝑥,

𝑓

1
(𝑥) = −3 (𝑛 − 1) (𝑥

2
+ 1)

𝑝

2
(1, 𝑥)

𝑅

2
(𝑥)

+ (𝑛 − 1)

𝑝

1
(1, 𝑥)

𝑅 (𝑥)

−

𝑅

󸀠
(𝑥)

𝑅 (𝑥)

,

𝑓

0
(𝑥) = (𝑛 − 1)

𝑝

2
(1, 𝑥)

𝑅

2
(𝑥)

.

(31)

In the following we will have cause to refer to arbitrary
trigonometric polynomials. The basic form for these is

𝛼

0
+

𝑁

∑

𝑘=1

(𝛼

2𝑘
cos 2𝑘𝜃 + 𝛽

2𝑘
sin 2𝑘𝜃) (32)

if 𝑛 is odd and

𝑁

∑

𝑘=1

(𝛼

2𝑘−1
cos (2𝑘 − 1) 𝜃 + 𝛽

2𝑘−1
sin (2𝑘 − 1) 𝜃) (33)

if 𝑛 is even. The value of 𝑁 depends upon 𝑛 and will vary
according to the circumstance.

3. Basic Results for Generalized Cubic Systems

In this section we develop some of the basic results which
are standard for generalized cubic systems. We begin with
the main result which shows that any center condition for
a homogeneous system of degree 𝑛 can be transformed into
a center condition of the generalized cubic system having
the same value of 𝑛. In this way we can truly think of the
homogeneous systems as being nontrivial particular cases
(𝑝
2
, 𝑞

2
̸= 0) of the corresponding generalized cubic systems.

We present several applications of the theorem and some of
the following propositions in the next section.

Theorem 1. Let 𝜉, 𝜂 given by (11) define a center of (2) and (4)
for some integer 𝑛 ≥ 2. Then this condition can be transformed
to a center condition for the same 𝑛 of the generalized cubic
system defined by 𝜉

1
, 𝜂
1
, 𝜉
2
with 𝜂

2
= 0.

Proof. Wewill show that there exist generalized cubic systems
which satisfy the differential equation (21) which is the same
as (19) for the homogeneous system.The two equationswill be
the same if (𝑛 − 1)𝜉

1
− 𝜂

󸀠

1
= (𝑛 − 1)𝜉 − 𝜂

󸀠 and 𝜉
2
− 𝜉

1
𝜂

1
= −𝜉𝜂.

Set 𝜉
1
= 𝜉 +

̃

𝜉 and 𝜂

1
= 𝜂 + 𝜂̃ where ̃𝜉, 𝜂̃ are trigonometric

polynomials of degree not greater than 𝑛−1 defined by either
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(32) or (33) according to 𝑛 being odd or even. The required
identities will be satisfied if we take

𝜉

1
(𝜃) = 𝜉 (𝜃) +

̃

𝜉 (𝜃) = 𝜉 (𝜃) +

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) ,

𝜂

1
(𝜃) = 𝜂 (𝜃) + 𝜂̃ (𝜃) ,

𝜉

2
(𝜃) = 𝜉 (𝜃) 𝜂̃ (𝜃) +

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) 𝜂 (𝜃)

+

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) 𝜂̃ (𝜃) .

(34)

In this 𝜂̃ can be arbitrarily chosen.

A couple of points are worth mentioning regarding these
results. Since 𝜉, 𝜂 are assumed to define a homogeneous
polynomial system, the manner in which 𝜉

1
, 𝜂
1
are defined

ensures that they too define polynomials. Also, themaximum
degree of 𝜉

2
is 2𝑛 − 2 but the terms 𝜉𝜂̃, 𝜂̃󸀠𝜂 could be of degree

2𝑛 if the degree of 𝜉, 𝜂 is 𝑛+1. However, in accordancewith the
definition of ̃𝜉, 𝜂̃we can show that these highest degree terms
will cancel leaving an expression for 𝜉

2
having degree 2𝑛 − 2.

Another significant consequence of Theorem 1 concerns
the integrability of the systems involved. It follows directly
that if the original homogeneous system is integrable, then
so is the resulting generalized cubic system. This is because
(19) and (21) are the same and (19) must be solvable if the
homogeneous system is integrable.

We now present several more results which help charac-
terize the nature of certain generalized cubic systems.Thefirst
two are valid for general systems and the remainder for the
case 𝜂

2
= 0.

Proposition 2. Let 𝜓
2
, 𝜓
3
, 𝜓
4
and 𝜂

1
, 𝜂
2
be odd and even

trigonometric polynomials, respectively, defined by (11) and
(20) (or there exists a translation 𝜃 → 𝜃 + 𝜃

0
for which it is

true). Then the solution of (18) is an even function of 𝜃 and the
origin is a center for system (1) and (3).

Proof. It is straightforward to show that 𝜌(𝜃) and 𝜌(−𝜃)

satisfy the same differential equation and the evenness of the
solution gives 𝜌(−𝜋) = 𝜌(𝜋).

The conditions of Proposition 2 are clearly satisfied if
𝜉

1
, 𝜉
2
are odd and 𝜂

1
, 𝜂
2
are even. In this case the solution

𝑟(𝜃) of (9) is also an even function. These conditions define
symmetric or time-reversible centers because the 𝑥-axis is a
line of symmetry for the phase portrait.

The next result shows that a center condition of a gener-
alized cubic system for a given 𝑛 is also a center condition for
any generalized cubic system with 𝑛

1
= 𝑛 + 2𝑘 where 𝑘 ≥ 1 is

an integer.

Proposition 3. Let 𝑛
1
≥ 2 be an integer and 𝑛

2
> 𝑛

1
an integer

having the same parity as 𝑛
1
. Suppose that 𝜉

1,𝑛1
, 𝜂
1,𝑛1

, 𝜉
2,𝑛1

, 𝜂
2,𝑛1

defined by (11) define a center for (1) and (3) for 𝑛
1
.Then 𝜉

1,𝑛2
=

(𝑛

1
−1)/(𝑛

2
−1)𝜉

1,𝑛1
, 𝜉
2,𝑛2

= (𝑛

1
−1)/(𝑛

2
−1)𝜉

2,𝑛1
, 𝜂
1,𝑛2

= 𝜂

1,𝑛1
,

𝜂

2,𝑛2
= 𝜂

2,𝑛1
define a center for 𝑛

2
.

Proof. Since 𝑛

1
gives a center the solution of (9) is 2𝜋-

periodic. Setting 𝑅 = 𝑟

𝑛−1 in (9), we have for 𝑛 = 𝑛

2
form

of it

(𝑛

2
− 1) 𝜉

1,𝑛2
(𝜃) = (𝑛

2
− 1)

𝑛

1
− 1

𝑛

2
− 1

𝜉

1,𝑛1
(𝜃)

= (𝑛

1
− 1) 𝜉

1,𝑛1
(𝜃)

(35)

with a similar result for 𝜉
2,𝑛2

.Thus the transformed equation is
unchanged by the substitution and 𝑛

2
system is also a center.

The following is similar to Theorem 1 in structure but
instead relates to generalized cubic systems having a particu-
lar form. It is established in the same manner as Theorem 1.

Proposition 4. Let 𝑛 ≥ 2 be an integer and let 𝜉
1
, 𝜂
1
, 𝜉
2
with

𝜂

2
= 0 define a center condition of (1) and (21).Then the system

defined by 𝜉∗
1
, 𝜂∗
1
, 𝜉∗
2
with 𝜂∗

2
= 0, where

𝜉

∗

1
(𝜃) = 𝜉

1
(𝜃) +

̃

𝜉 (𝜃) = 𝜉

1
(𝜃) +

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) ,

𝜂

∗

1
(𝜃) = 𝜂

1
(𝜃) + 𝜂̃ (𝜃) ,

𝜉

∗

2
(𝜃) = 𝜉

2
(𝜃) + 𝜉

1
(𝜃) 𝜂̃ (𝜃) +

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) 𝜂

1
(𝜃)

+

1

𝑛 − 1

𝜂̃

󸀠
(𝜃) 𝜂̃ (𝜃) ,

(36)

satisfies the same equation (21) as the original system and
defines a center for (1). In this 𝜂̃(𝜃) is a trigonometric polyno-
mial of degree not greater than 𝑛 − 1 defined by either (32) or
(33) according to 𝑛 being odd or even.

We will refer to any pair of systems which satisfy the
conditions of Proposition 4 as conjugate systems. Conjugate
systems also exist for the homogeneous case but it is much
more difficult to find them because we do not have the
freedom allowed in generalized cubic systems by the simple
definition of 𝜉∗

2
.We gave such a pair of homogeneous systems

in [18], but unfortunately one of the systems was presented
incorrectly. They should be

𝑝 (𝑥, 𝑦) = (𝑎 +

2

9 (𝑛 − 1)

𝑏

2

𝑎

)𝑥

𝑛−1
𝑦,

𝑞 (𝑥, 𝑦) = 𝑎𝑥

𝑛
+ 𝑏𝑥

𝑛−1
𝑦

− ((𝑛 − 1) 𝑎 −

2 (𝑛 − 2)

9 (𝑛 − 1)

𝑏

2

𝑎

)𝑥

𝑛−2
𝑦

2

−

1

3

(𝑛 − 2) 𝑥

𝑛−3
𝑦

3
,

𝑝 (𝑥, 𝑦) =

𝑏

3 (𝑛 − 1)

𝑥

𝑛
− (𝑎 −

2

9 (𝑛 − 1)

𝑏

2

𝑎

)𝑥

𝑛−1
𝑦

−

(2𝑛 − 3) 𝑏

3 (𝑛 − 1)

𝑥

𝑛−2
𝑦

2
,
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𝑞 (𝑥, 𝑦) =

(2𝑛 − 3) 𝑏

3 (𝑛 − 1)

𝑥

𝑛−1
𝑦

− (𝑛 − 2) (𝑎 −

2

9 (𝑛 − 1)

𝑏

2

𝑎

)𝑥

𝑛−2
𝑦

2

−

(𝑛 − 2)

2
𝑏

3 (𝑛 − 1)

𝑥

𝑛−3
𝑦

3

(37)

for 𝑛 ≥ 2 and for arbitrary parameters 𝑎 ̸= 0 and 𝑏. These sys-
tems can be mapped to center conditions for the correspond-
ing generalized cubic systems which will lead to solvable Abel
equations (30) and (31), althoughwe do not pursue this at this
time. An example of such a calculation is given in the final
section of the paper. It is also possible to find other conjugate
homogeneous systems and, of those we know, they produce
centers of generalized cubic systems characterized by part (2)
of Proposition 8 for the particular case of quintic systems.

The case where 𝜂
1
= 0 as well has been extensively studied

and complete sets of center conditions [11, 13] are known
for 𝑛 = 2, 3 systems. In the following result we consider
the general case of these systems and relate them to certain
homogeneous systems.

Proposition 5. Let 𝑛 ≥ 4 be an integer and suppose that a
generalized cubic system satisfies 𝜂

1
= 𝜂

2
= 0. Then any center

condition of the homogeneous system of degree 𝑛 − 2 is a center
condition of this system.

Proof. In this case the system satisfies (22) where 𝜉
1
, 𝜉
2
are

arbitrary and have degrees 𝑛 − 1 and 2(𝑛 − 1), respectively.
The result is established by noting that we can simply select
𝜉

1
= ((𝑛− 3)𝜉− 𝜂

󸀠
)/(𝑛− 1) and 𝜉

2
= −(𝑛−3)𝜉𝜂/(𝑛− 1), where

𝜉, 𝜂 define a center of the homogeneous system.
𝑛 = 2, 3 cases are not covered by this result; however, we

can easily show that they can have only symmetric centers.
For 𝑛 = 3 the most general form is given by (32) with
𝜉

1
(𝜃) = 𝛼

2
cos 2𝜃 + 𝛽

2
sin 2𝜃 + 𝛼

0
and 𝜉

2
(𝜃) = 𝛾

4
cos 4𝜃 +

𝛿

4
sin 4𝜃 + 𝛾

2
cos 2𝜃 + 𝛿

2
sin 2𝜃 + 𝛾

0
. Since there always exists

a transformation 𝜃 → 𝜃 + 𝜃

0
such that 𝛼

2
cos 2(𝜃 + 𝜃

0
) +

𝛽

2
sin 2(𝜃 + 𝜃

0
) is odd, we can take 𝛼

2
= 0. In [19] we used

trigonometric integrals to calculate the first five Lyapunov
coefficients of a certain homogeneous system. Adapting them
to this system (𝜉 − 𝜂

󸀠
/(𝑛 − 1) → 𝜉

1
, −𝜉𝜂 → 𝜉

2
) we see that the

first four Lyapunov coefficients will be zero if

∫

2𝜋

0

𝜉

1
(𝜃) 𝑑𝜃 = ∫

2𝜋

0

𝜉

2
(𝜃) 𝑑𝜃 = ∫

2𝜋

0

𝜉

1
(𝜃) 𝜉

2
(𝜃) 𝑑𝜃

= ∫

2𝜋

0

𝜉

1
(𝜃)

2
𝜉

2
(𝜃) 𝑑𝜃 = 0,

(38)

where 𝜉

󸀠

1
= 𝜉

1
. Evaluating these integrals and assuming

𝜉

1
̸= 0 (otherwise it is just a homogeneous system) we find

sequentially that 𝛼
0

= 𝛾

0
= 𝛾

2
= 𝛾

4
= 0. This leaves

𝜉

1
(𝜃) = 𝛽

2
sin 2𝜃 and 𝜉

2
(𝜃) = 𝛿

4
sin 4𝜃 + 𝛿

2
sin 2𝜃 and in view

of Proposition 2 these are symmetric centers. The proof for
𝑛 = 2 case can be carried out in exactly the same fashion. We
will say more about 𝑛 ≥ 4 cases in the next section.

4. Center Conditions for Generalized
Cubic Systems Such That 𝜂

2
=0

It is generally accepted that two of the independent center
conditions for homogeneous systems are the Hamiltonian
and symmetric systems. On the basis of Theorem 1 we will
determine how each of these conditions transform to center
conditions of generalized cubic systems which satisfy 𝜂

2
= 0.

TheHamiltonian condition for homogeneous systems ismost
easily given in terms of polar representation as 𝜉 = −𝜂

󸀠
/(𝑛+1).

Applying the results ofTheorem 1 and rescaling 𝜌 transforms
(21) to

𝑑𝜌

𝑑𝜂

=

𝑛

2
− 1

4𝑛

2
𝜂𝜌

3
+ 𝜌

2 (39)

which satisfies (28) with a value 𝐶 = (𝑛

2
− 1)/(4𝑛

2
). Thus

we always obtain a constant invariant equation with 𝐼

1
=

729(𝑛

2
+ 3)

3
/(4𝑛

2
(𝑛

2
− 9)

2
) except in the case 𝑛 = 3 when

𝐶 = 2/9. In this last case we obtain a Bernoulli rather than
constant invariant form.

For homogeneous systems the basic condition for sym-
metric centers is given by 𝜉, 𝜂 being, respectively, odd and
even. In this case the coefficients of 𝜌3, 𝜌2 in (19) are both
odd and the solutions of both (10) and (19) are even functions.
The condition 𝑟(−𝜃) = 𝑟(𝜃) shows that these solutions are
symmetric with respect to 𝑥-axis. Application of Theorem 1
to this system gives a generalized cubic system in which
the coefficient functions 𝜉

1
, 𝜂
1
, 𝜉
2
are defined in terms of

an arbitrary trigonometric polynomial of type (32) or (33)
having maximum degree 𝑛 − 1. With 𝜉, 𝜂 having the stated
parity, even for 𝑛 = 2 or 𝑛 = 3 cases there is no reason
to expect any of the coefficient functions of the generalized
cubic system to be either even or odd. By construction (19)
and (21) are still the same equation and have an even solution
𝜌(𝜃) which is the condition which guarantees that they are
centers. On the other hand there is no reason to expect (9)
to have an even solution (or a translated 𝑟(𝜃 + 𝜃

0
) even

solution), so these are not generally symmetric centers. A
similar situation also exists for homogeneous systems and we
gave examples of these in [20].

We now apply Theorem 1 to the two homogeneous
systems for which the center conditions are fully known, that
is, 𝑛 = 2, 3 cases.The general quadratic system can be written
as (the Kapteyn form [21])

𝑝 (𝑥, 𝑦) = 𝑎

0
𝑥

2
+ 𝑎

1
𝑥𝑦 + 𝑎

2
𝑦

2
,

𝑞 (𝑥, 𝑦) = 𝑏

0
𝑥

2
+ 𝑏

1
𝑥𝑦 − 𝑏

0
𝑦

2

(40)

and it is known that there are 4 independent center conditions
for this system.

Theorem 6. The homogeneous quadratic system written in
Kapteyn form has a center at the origin if and only if one of
the following conditions is satisfied:

(1) 𝑏
1
− 2𝑎

0
= 𝑎

1
+ 2𝑏

0
= 0, the Hamiltonian system;

(2) 𝑎
1
= 𝑏

0
= 0, the reversible or symmetric case;
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(3) 𝑎
1
+ 2𝑏

0
= 𝑏

1
+ 3𝑎

0
+ 5𝑎

2
= 𝑏

2

0
+ 2𝑎

2

2
+ 𝑎

0
𝑎

2
= 0, the

critical case;

(4) 𝑎
0
+ 𝑎

2
= 0, the Lotka-Volterra case.

The case of center conditions for the cubic system satisfying
𝜂

2
= 0 was considered in both [3, 22]. In each case 4 separate

conditions are found and we can easily show that they
correspond exactly to the systems obtained by applying The-
orem 1 and Proposition 4 to the known conditions given in
Theorem 6. In this case there is a one-to-one correspondence
between the center conditions for the two systems and it gives
rise to the question if this is true for all 𝑛. It is not directly true
as there are several more parameters in the cubic system than
in the homogeneous system. However, if we eliminate some
of these parameters from the conditions for the cubic system
we can recover the above conditions. It may be possible that
some type of restricted converse of this type is true, but we
also doubt that it will ever be proved. On the other hand
we think it is a real possibility that we can use results from
the generalized cubic system to find as yet unknown center
conditions for the corresponding homogeneous problem.We
also believe that it is quite likely that application ofTheorem 1
and Proposition 4 to the homogeneous degree 3 system will
produce a complete set of conditions for the quintic (𝑛 = 3)
system.

Lunkevich, Sibiriskii, and Malkin [23, 24] have shown
that the center conditions for the homogeneous system of
degree 3 have three independent components.

Theorem 7. The general homogeneous cubic system can be
written as

𝑝 (𝑥, 𝑦) = 𝑎

0
𝑥

3
+ 𝑎

1
𝑥

2
𝑦 + 𝑎

2
𝑥𝑦

2
+ 𝑎

3
𝑦

3
,

𝑞 (𝑥, 𝑦) = 𝑏

0
𝑥

3
+ 𝑏

1
𝑥

2
𝑦 + 𝑎

1
𝑥𝑦

2
+ 𝑏

3
𝑦

3
.

(41)

This system has a center at the origin if and only if one of the
following conditions is satisfied:

(1) 3𝑎
1
− 𝑏

1
= 𝑎

2
− 3𝑏

3
= 0, the Hamiltonian system;

(2) 𝑎
2
− 𝑏

1
= 𝑎

3
− 𝑏

0
= 𝑎

0
− 𝑏

3
= 0, the reversible or

symmetric case;

(3) 𝑎
2
−𝑏

1
+3(𝑎

0
−𝑏

3
) = 𝑎

3
−𝑏

0
= 5𝑎

0
+2𝑎

2
−𝑏

3
= 𝑎

1
+3𝑎

3
= 0

and (3𝑎
2
+ 𝑏

3
)(𝑎

2
+ 7𝑏

3
) + 100𝑎

2

3
= 0, the critical case.

As with the case of the quadratic system, each of these condi-
tions transforms directly to a center condition for 𝑛 = 3 quin-
tic system. We are not aware of these having been previously
given, so we formally present thembelow in Proposition 8. As
we have seen the Hamiltonian case transforms to a Bernoulli
equation with 𝑠

3
= 0 as defined by (26) and the symmetric

case transforms to a system in which the coefficients of (21)
are odd. Since these ideas were developed with respect to a
polar representation we will continue to present them in this

manner. In order to do so we need to express each of the
homogeneous systems in polar form. We can make the con-
ditions of the third case solvable without radicals by setting
3𝑎

2
+ 𝑏

3
= −𝐾𝑎

3
and 𝑎
2
+ 7𝑏

3
= 100𝑎

3
/𝐾. From this we find

𝜉 (𝜃) = 𝑎

3
sin 4𝜃 −

(𝐾

2
− 100) 𝑎

3

20𝐾

cos 4𝜃

−

(𝐾

2
+ 100) 𝑎

3

10𝐾

cos 2𝜃,

𝜂 (𝜃) = 𝑎

3
cos 4𝜃 +

(𝐾

2
− 100) 𝑎

3

20𝐾

sin 4𝜃

−

(𝐾

2
+ 100) 𝑎

3

20𝐾

sin 2𝜃.

(42)

If 𝑎
3
= 0 we can replace these forms by one of

𝜉 (𝜃) = −𝑎

2
cos 4𝜃 + 2𝑎

2
cos 2𝜃,

𝜂 (𝜃) = 𝑎

2
sin 4𝜃 + 𝑎

2
sin 2𝜃

(43)

or

𝜉 (𝜃) = −𝑏

3
cos 4𝜃 − 2𝑏

3
cos 2𝜃,

𝜂 (𝜃) = 𝑏

3
sin 4𝜃 − 𝑏

3
sin 2𝜃.

(44)

Proposition 8. If any of the following conditions are satisfied,
then the corresponding system is a center of 𝑛 = 3 (quintic)
generalized cubic system defined by 𝜉

1
, 𝜂
1
, 𝜉
2
with 𝜂

2
= 0. In

these 𝜉
1
= 𝜉 +

̃

𝜉 = 𝜉 + 𝜂̃

󸀠
/2, 𝜂
1
= 𝜂 + 𝜂̃, where 𝜂̃ is an arbitrary

trigonometric polynomial havingmaximumdegree 2 as defined
by (32) and 𝜉, 𝜂 define a center of the homogeneous system.The
systems given by (1), (2)(a), and (3) are based onTheorem 1.

(1) Transformation of Hamiltonian condition is as follows:
let 𝜂 be an arbitrary trigonometric polynomial of degree
4 given by (32). Define 𝜉 = −𝜂

󸀠
/4 and set

𝜉

2
(𝜃) = −

1

4

𝜂

󸀠
(𝜃) 𝜂̃ (𝜃) +

1

2

𝜂̃

󸀠
(𝜃) 𝜂 (𝜃)

+

1

2

𝜂̃

󸀠
(𝜃) 𝜂̃ (𝜃) .

(45)

(2) Transformation of symmetric condition is as follows:

(a) Basic form: let 𝜉, 𝜂 be respectively odd and even
arbitrary trigonometric polynomials of degree 4
defined by (32). Define 𝜉

2
by

𝜉

2
(𝜃) = 𝜉 (𝜃) 𝜂̃ (𝜃) +

1

2

𝜂̃

󸀠
(𝜃) 𝜂 (𝜃) +

1

2

𝜂̃

󸀠
(𝜃) 𝜂̃ (𝜃) . (46)

Then the coefficient functions−2𝜉𝜂 = 2(𝜉

2
−𝜉

1
𝜂

1
)

and 2𝜉 − 𝜂

󸀠
= 2𝜉

1
− 𝜂

󸀠

1
of (19) and (21) are odd
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functions and the solutions of these equations are
even functions such that 𝜌(−𝜋) = 𝜌(𝜋). These
forms do not generally define symmetric centers
unless further conditions are imposed on 𝜉

1
, 𝜂
1
.

(b) Alternate form: let 𝜉, 𝜂 be respectively odd
and even arbitrary trigonometric polynomials of
degree 4 defined by (32). Define 𝜉

2
to be any

trigonometric polynomial given by (32) of degree
4 such that its odd part (𝜉

2
)

𝑜
̸= 0 and its even

part (𝜉
2
)

𝑒
is equal to the even part of 𝜉

1
𝜂

1
. That

is, (𝜉
2
)

𝑒
= (𝜉

1
𝜂

1
)

𝑒
. Then the coefficient functions

−2𝜉𝜂, 2(𝜉
2
−𝜉

1
𝜂

1
) and 2𝜉−𝜂󸀠 = 2𝜉

1
−𝜂

󸀠

1
of (19) and

(21) are once again odd functions and the subse-
quent analysis is the same as in the previous part.

(3) Transformation of critical case is as follows: let 𝜉, 𝜂 be
given by any one of (42)–(44) and define 𝜉

2
as in part

(a) of (2).

We give Cartesian forms of the systems defined by (1) and
(2)(a). For the Bernoulli case we rederived the result in a
Cartesian format in order to obtain a simpler form in which
some of the constants have been suitably redefined. The
transformation of the Hamiltonian case for 𝑛 = 3 gives the
following quintic system:

𝑝

1
(𝑥, 𝑦) = 𝑎

0
𝑥

3
+ 𝑎

1
𝑥

2
𝑦 + 3𝑏

3
𝑥𝑦

2
+ 𝑎

3
𝑦

3
,

𝑞

1
(𝑥, 𝑦) = 𝑏

0
𝑥

3
+ 3𝑎

0
𝑥

2
𝑦 + 𝑏

2
𝑥𝑦

2
+ 𝑏

3
𝑦

3
,

𝑝

2
(𝑥, 𝑦) = 𝑐

0
𝑥

5
+ 𝑐

1
𝑥

4
𝑦 + 𝑐

2
𝑥

3
𝑦

2
+ 𝑐

3
𝑥

2
𝑦

3
+ 𝑐

4
𝑥𝑦

4

(47)

and 𝑞
2
(𝑥, 𝑦) = −𝑦𝑝

2
(𝑥, 𝑦)/𝑥, where

𝑐

1
=

1

3

(𝑎

1
− 𝑏

2
) 𝑏

0
+

1

3

(2𝑎

1
− 3𝑏

0
+ 𝑏

2
)

𝑐

0

𝑎

0

,

𝑐

2
= (𝑎

1
− 𝑏

2
) 𝑎

0
− 3𝑐

0
+ 3𝑏

3

𝑐

0

𝑎

0

,

𝑐

3
=

1

9

(𝑎

2

1
+ 𝑎

1
𝑏

2
− 2𝑏

2

2
) −

1

3

(𝑎

1
− 3𝑎

3
+ 2𝑏

2
)

𝑐

0

𝑎

0

,

𝑐

4
=

1

3

(𝑎

1
− 𝑏

2
) 𝑏

3
− 𝑏

3

𝑐

0

𝑎

0

.

(48)

The symmetric form is developed from the forms 𝜉(𝜃) =

𝑐

4
sin 4𝜃 + 𝑏

2
sin 2𝜃 and 𝜂(𝜃) = 𝑐

4
cos 4𝜃 + 𝑐

2
cos 2𝜃 + 𝑐

0
with 𝜂̃

given by (32) with𝑁 = 1. It can be expressed as

𝑝

1
(𝑥, 𝑦) = 𝛽

2
𝑥

3
+ 𝑎

1
𝑥

2
𝑦 − 3𝛽

2
𝑥𝑦

2
+ 𝑎

3
𝑦

3
,

𝑞

1
(𝑥, 𝑦) = (𝑎

3
+ 2𝛼

2
+ 2𝑐

2
) 𝑥

3
− 3𝛽

2
𝑥

2
𝑦

+ (𝑎

1
− 6𝛼

2
+ 4𝑏

2
− 2𝑐

2
) 𝑥𝑦

2
+ 𝛽

2
𝑦

3
,

𝑝

2
(𝑥, 𝑦) = 𝛽

2
(𝑎

3
+ 2𝛼

2
+ 2𝑐

2
) 𝑥

5
+ 𝑐

1
𝑥

4
𝑦

− 2𝛽

2
(3𝛼

2
− 2𝑏

2
+ 𝑐

2
) 𝑥

3
𝑦

2
+ 𝑐

3
𝑥

2
𝑦

3

− 𝛽

2
𝑎

3
𝑥𝑦

4

(49)

and 𝑞
2
(𝑥, 𝑦) = −𝑦𝑝

2
(𝑥, 𝑦)/𝑥, where

𝑎

1
= 𝛼

0
+ 3𝛼

2
− 2𝑏

2
+ 𝑐

0
+ 𝑐

2
− 3𝑐

4
,

𝑎

3
= 𝛼

0
− 𝛼

2
+ 𝑐

0
− 𝑐

2
+ 𝑐

4
,

𝑐

1
= 2𝛼

0
𝛼

2
− 2 (𝑏

2
+ 2𝑐

4
) + 2𝛼

2

2
− 2 (𝑏

2
− 𝑐

0
− 𝑐

2
+ 𝑐

4
)

− 2𝛽

2

2
,

𝑐

3
= 2𝛼

0
𝛼

2
− 2 (𝑏

2
− 2𝑐

4
) − 2𝛼

2

2
+ 2 (𝑏

2
+ 𝑐

0
− 𝑐

2
− 𝑐

4
)

+ 2𝛽

2

2
.

(50)

For 𝐾 ̸= 0 the homogeneous system upon which case (3) of
Proposition 8 is based has an integrating factor given by

𝜇 (𝑥, 𝑦) =

𝐴 [𝑎

3

3
𝑇

6

1
− 30𝑎

2

3
𝐾𝑇

3

1
𝑇

2
+ 150𝐾

2
𝑎

3
(𝐴 (𝑥

2
+ 𝑦

2
) + 40𝐾𝑥𝑦)] − 20000𝐾

4

(𝑎

2

3
𝑇

4

1
− 20𝐾𝑎

3
𝑇

1
𝑇

2
+ 100𝐾

2
)

4
, (51)

where 𝑇

1
= 10𝑥 + 𝐾𝑦, 𝑇

2
= 𝐾𝑥 + 10𝑦, 𝐴 = 𝐾

2
+ 100.

The corresponding integrating factor for the quintic system
is a massive expression having the same basic form but with
an additional factor which clearly arises from 𝜂̃. It can be
given as 𝜇(𝑥, 𝑦) = [(𝛼

0
+ 𝛼

2
)𝑥

2
+ 2𝛽

2
𝑥𝑦 + (𝛼

0
− 𝛼

2
)𝑦

2
+

1]

2P(𝑥, 𝑦)/Q4(𝑥, 𝑦) where P, Q are polynomials having
degrees 6, 4, respectively, such thatP(0, 0),Q(0, 0) ̸= 0.

The conditions provided byTheorems 6 and 7 can also be
applied directly to systems which satisfy 𝜂

1
= 0 as well. By

Theorem 1 and Proposition 5, Theorem 6 provides a set of 4
center conditions for the septic (𝑛 = 4) system andTheorem 7
gives a set of 3 conditions for the nonic (𝑛 = 5) system.
Once again we think these conditions are probably complete,
but we do not attempt to establish that herein. For systems
satisfying (22) a type of converse can be found. That is, for
general values of 𝑛 and using arbitrary (i.e., not necessarily
center producing) forms for the coefficient functions of (22),
we can transform it to an equation of the form (21) in which
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𝜉

1
, 𝜂
1
, 𝜉
2
have the proper degrees 𝑛 − 1, 𝑛 − 1, and 2𝑛 − 6,

respectively. However, we are not able to satisfy the remaining
conditions on 𝜉

1
, 𝜂
1
such that they would define a polynomial

system, so this form of (21) would instead produce a rational
system. These additional conditions would depend upon the
actual forms of the coefficient functions of (22) and in this
regard it is clear that theymust exist for any of the center cases
which are a consequence of Theorem 1.

5. Constant Invariant Solutions
and Limit Cycles

The origin of the modified system

𝑑𝑥

𝑑𝑡

= 𝜆𝑥 − 𝑦 − 𝑝

1
(𝑥, 𝑦) − 𝑝

2
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= 𝑥 + 𝜆𝑦 + 𝑞

1
(𝑥, 𝑦) + 𝑞

2
(𝑥, 𝑦)

(52)

will be a focus if 𝜆 ̸= 0 or a center or focus if 𝜆 = 0. In [25]
Giné and Llibre considered the problem for the case when
𝜂

1
= 𝜂

2
= 0 for general values of 𝑛. With the help of (28)

they constructed systems with either a center or a focus and
from this determined the existence of certain limit cycles. In
this and the following section we carry out the same type
of analysis for our 𝜂

2
= 0 systems and also extend it to

certain more general cases for which 𝜂

2
̸= 0 as well. It is

straightforward to show that (52) can be transformed to

𝑑𝑟

𝑑𝜃

=

𝜆𝑟 + 𝜉

1
(𝜃) 𝑟

𝑛
+ 𝜉

2
(𝜃) 𝑟

2𝑛−1

1 + 𝜂

1
(𝜃) 𝑟

𝑛−1
+ 𝜂

2
(𝜃) 𝑟

2𝑛−2
(53)

and if 𝜂
2
= 0, the counterpart of (21) is

𝑑𝜌

𝑑𝜃

= (𝑛 − 1) (𝜉

2
(𝜃) − 𝜉

1
(𝜃) 𝜂

1
(𝜃) + 𝜆𝜂

2

1
(𝜃)) 𝜌

3

+ ((𝑛 − 1) 𝜉

1
(𝜃) − 2𝜆 (𝑛 − 1) 𝜂

1
(𝜃) − 𝜂

󸀠

1
(𝜃)) 𝜌

2

+ 𝜆 (𝑛 − 1) 𝜌.

(54)

The form of (54) having 𝜂
1
= 0 was used in [25] and it was

shown that this equation has constant invariant solutions.We
show that the general formof (54) has similar solutionswhich
for particular values of 𝜆 and𝐶 subsume those in [25]. All the
systems that we obtain in this section are Darboux integrable
since they lead to constant invariant Abel equations.

Using the coefficient functions of (54) we can write (28)
as

𝑑𝑢

𝑑𝜃

+ 𝜆 (𝑛 − 1) 𝑢 = 𝐶𝜓 (𝜃) ,
(55)

where 𝑢 = 𝑓

3
/𝑓

2
and 𝜓 = (𝑛−1)𝜉

1
−2𝜆(𝑛−1)𝜂

1
−𝜂

󸀠

1
. Solving

this equation, substituting for 𝑢, and isolating 𝜉
2
give

𝜉

2
(𝜃) =

𝐶𝑒

−𝜆(𝑛−1)𝜃

𝑛 − 1

(∫ 𝑒

𝜆(𝑛−1)𝜃
𝜓 (𝜃) 𝑑𝜃 + 𝐴)𝜓 (𝜃)

− 𝜆𝜂

2

1
(𝜃) + 𝜉

1
(𝜃) 𝜂

1
(𝜃) .

(56)

The integration constant 𝐴 is nonzero only in the case for
which 𝜆 = 0 and 𝑛 is odd. The result does produce a
trigonometric polynomial and it does give constant invariant
forms for (56); however, the only way to satisfy themaximum
degree requirement of 𝜉

2
being 2𝑛 − 2 is to restrict the

maximum degrees of 𝜉
1
, 𝜂
1
to 𝑛 − 1.

In [18] we showed that a constant invariant Abel equation
(23) always has particular solutions of the form

𝑦 (𝑥) =

1

𝑓

3
(𝑥)

(𝐾

󸀠
𝑠

3
(𝑥)

(1/3)
−

𝑓

2
(𝑥)

3

) , (57)

where 𝑠

3
is given by (26) and 𝐾

󸀠 is a constant. In the case
where 𝑓

0
= 0 and (28) is satisfied we can write 𝑓󸀠

3
𝑓

2
− 𝑓

3
𝑓

󸀠

2
+

𝑓

1
𝑓

2
𝑓

3
= 𝐶𝑓

3

2
and 𝑠
3
becomes

𝑠

3
(𝑥) = (

2

27

−

𝐶

3

)𝑓

3

2
(𝑥) . (58)

With this the particular solution is just

𝑦 (𝑥) = 𝐾

𝑓

2
(𝑥)

𝑓

3
(𝑥)

(59)

for some constant 𝐾. For (54) 𝐾 is defined by the equation
𝐾

2
+ 𝐾 + 𝐶 = 0 which only has real solutions if 𝐶 ≤ 1/4. We

can use the coefficient functions of (54) to find the particular
solutions, but it is easier to use the equation obtained from it
by using the usual rationalizing substitution 𝑧 = tan 𝜃. There
are no useful results when 𝑛 is even, so we will restrict our
attention to odd values by considering the case 𝑛 = 3. Also,
the expressions obtained become very large so we will further
restrict our attention to those systems in which 𝐶 = −2 and
𝜆 = 1.There is little loss of generality bymaking these specific
choices, except for the values 𝐶 = 0, 1/4 which must be dealt
with separately.We will briefly consider these cases at the end
of the section. Also, we do not consider 𝜆 = 0 because these
systems are centers. For the indicated choices there are two
separate solutions arising from (59) given by

𝜌 (𝑧) =

−4 (𝑧

2
+ 1)𝐾

𝐶 ((2𝑎

2
+ 8𝑎

3
+ 𝐵 − 𝑏

3
) 𝑧

2
+ (8𝑎

2
+ 2𝐵 + 10𝑏

3
) 𝑧 + 2𝑎

2
+ 7𝑏

0
− 3𝑏

1
+ 𝑏

2
+ 𝑏

3
)

,

(60)
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where 𝐵 = 𝑏

0
− 𝑏

1
− 𝑏

2
and 𝐾/𝐶 = −1/2, 1. Substituting for 𝑧

will then give the appropriate forms for (54).
The Cartesian form of the system which is obtained from

(56) can be given as

𝑝

1
(𝑥, 𝑦) = (𝑎

2
− 𝑏

1
+ 𝑏

3
) 𝑥

3
+ (𝑎

3
+ 𝑏

0
− 𝑏

2
) 𝑥

2
𝑦

+ 𝑎

2
𝑥𝑦

2
+ 𝑎

3
𝑦

3
,

𝑞

1
(𝑥, 𝑦) = 𝑏

0
𝑥

3
+ 𝑏

1
𝑥

2
𝑦 + 𝑏

2
𝑥𝑦

2
+ 𝑏

3
𝑦

3
,

𝑝

2
(𝑥, 𝑦) = 𝑐

0
𝑥

5
+ 𝑐

1
𝑥

4
𝑦 + 𝑐

2
𝑥

3
𝑦

2
+ 𝑐

3
𝑥

2
𝑦

3
+ 𝑐

4
𝑥𝑦

4

(61)

and 𝑞
2
(𝑥, 𝑦) = −𝑦𝑝

2
(𝑥, 𝑦)/𝑥, where

𝑐

0
=

1

4

(3𝑎

2
− 2𝑏

1
+ 3𝑏

3
) (2𝑎

2
− 3𝑏

1
+ 𝑏

2
+ 𝑏

3
) + 8𝑏

2

0

+

1

4

(33𝑎

2
− 30𝑏

1
+ 4𝑏

2
+ 29𝑏

3
) 𝑏

0
,

𝑐

1
=

1

2

(18𝑎

2
− 19𝑏

1
− 3𝑏

2
+ 37𝑏

3
) 𝑎

2
+ 𝑏

2

1
+

5

2

𝑏

1
𝑏

2

−

21

2

𝑏

1
𝑏

3
−

1

2

𝑏

2

2
− 𝑏

2
𝑏

3
+

19

2

𝑏

2

3
−

3

2

𝑏

2

0
+ 8𝑎

3
𝑏

0

+

1

2

(35𝑎

2
− 3𝑏

1
− 14𝑏

2
+ 40𝑏

3
) 𝑏

0

+ (2𝑎

2
− 3𝑏

1
+ 𝑏

2
+ 𝑏

3
) 𝑎

3
,

𝑐

2
= (10𝑎

2
− 3𝑏

1
− 8𝑏

2
+ 19𝑏

3
) 𝑎

2
+

1

2

𝑏

2

1
+

3

2

𝑏

1
𝑏

2
+ 𝑏

2

2

−

19

2

𝑏

2
𝑏

3
+

19

2

𝑏

2

3
+ 19𝑎

3
𝑏

0

−

1

2

(2𝑎

2
+ 𝑏

1
+ 2𝑏

2
+ 19𝑏

3
) 𝑏

0

+ (18𝑎

2
− 10𝑏

1
− 𝑏

2
+ 19𝑏

3
) 𝑎

3
,

𝑐

3
= −

1

2

(𝑏

1
+ 3𝑏

2
+ 17𝑏

3
) 𝑎

2
+

1

2

𝑏

1
𝑏

2
+

1

2

𝑏

1
𝑏

3
+

1

2

𝑏

2

2

+ 𝑏

2
𝑏

3
−

19

2

𝑏

2

3
+ 9𝑎

2

3
−

1

2

𝑏

2

0
− 𝑎

3
𝑏

0

−

1

2

(𝑎

2
− 𝑏

1
) 𝑏

0

+ (20𝑎

2
− 3𝑏

1
− 8𝑏

2
+ 19𝑏

3
) 𝑎

3
,

𝑐

4
= −

1

4

(𝑎

2
+ 3𝑏

3
) (2𝑎

2
+ 𝑏

0
− 𝑏

1
− 𝑏

2
− 𝑏

3
) + 9𝑎

2

3

+ 𝑎

3
𝑏

0
− (𝑏

1
+ 𝑏

2
+ 8𝑏

3
) 𝑎

3
.

(62)

Reversing the transformations which led to (54) and its
equivalent form in terms of 𝑧 gives us two invariant curves
of the original system. From (60) and (61) we obtain a pair of
conicsC

1
,C
2
having general form𝐴

𝑘
𝑥

2
+𝐵

𝑘
𝑥𝑦+𝐶

𝑘
𝑦

2
+𝐷

𝑘
=

0 for 𝑘 = 1, 2. The coefficients of these are linear expressions

given in terms of the six arbitrary parameters 𝑎
2
, 𝑎
3
, 𝑏
0
, 𝑏
1
, 𝑏
2
,

𝑏

3
of the system. We have

(2𝑎

2
+ 5𝑏

0
− 3𝑏

1
+ 𝑏

2
+ 𝑏

3
) 𝑥

2

+ 2 (3𝑎

2
+ 𝑏

0
− 𝑏

1
− 𝑏

2
+ 4𝑏

3
) 𝑥𝑦

+ (2𝑎

2
+ 6𝑎

3
+ 𝑏

0
− 𝑏

1
− 𝑏

2
− 𝑏

3
) 𝑦

2
− 2 = 0,

(2𝑎

2
+ 11𝑏

0
− 3𝑏

1
+ 𝑏

2
+ 𝑏

3
) 𝑥

2

+ 2 (6𝑎

2
+ 𝑏

0
− 𝑏

1
− 𝑏

2
+ 7𝑏

3
) 𝑥𝑦

+ (2𝑎

2
+ 12𝑎

3
+ 𝑏

0
− 𝑏

1
− 𝑏

2
− 𝑏

3
) 𝑦

2
+ 4 = 0.

(63)

Since the determinant of the coefficient matrix of the lin-
ear system defined by the coefficients of these relations
is nonzero, we can uniquely solve for any set of values
{𝐴

1
, 𝐵

1
, 𝐶

1
, 𝐴

2
, 𝐵

2
, 𝐶

2
} in terms of the system parameters.

That is, any combination of hyperbolae, pairs of lines, circles,
ellipses, or null conics is possible in this system.The situation
is similar for any other choice of 𝜆, 𝐶 except for those values
explicitly mentioned, so nothing is lost by considering the
specific values 𝜆 = 1, 𝐶 = −2. Also, in determining the form
of (63) we find that the transformation from (60) shows that
𝑥

2
+ 𝑦

2
= 0 is another invariant of these systems.

A necessary condition that a curve be a limit cycle is
that it is a closed curve encircling the critical point. For
the invariant curves defined by (63) this means that we are
dealing with ellipses or circles which have their centers at the
origin. However, not all such curves are limit cycles because
they are dependent upon the particular configuration. If one
invariant curve (circle or ellipse) lies entirely inside another,
then they are both limit cycles provided that no critical points
of the system lie on either of the curves. However, if they
intersect the flowpattern ismarkedly different with the points
of intersection being saddle points (see (64) below and the
results in the next section). In the following we give examples
of both of these situations. The system

𝑑𝑥

𝑑𝑡

= 𝑥 − 𝑦 −

49

144

𝑥

3
+

1

9

𝑥

2
𝑦 −

37

144

𝑥𝑦

2
+

1

9

𝑦

3

+

13

576

𝑥

5
+

1

144

𝑥

4
𝑦 +

1

32

𝑥

3
𝑦

2
+

1

144

𝑥

2
𝑦

3

+

5

576

𝑥𝑦

4
,

𝑑𝑦

𝑑𝑡

= 𝑥 + 𝑦 −

5

36

𝑥

3
−

53

144

𝑥

2
𝑦 −

5

36

𝑥𝑦

2
−

41

144

𝑦

3

+

13

576

𝑥

4
𝑦 +

1

144

𝑥

3
𝑦

2
+

1

32

𝑥

2
𝑦

3
+

1

144

𝑥𝑦

4

+

5

576

𝑦

5

(64)
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has a solution given byU(𝑥, 𝑦) = C, where

U (𝑥, 𝑦) = 3 ln (𝑥2 + 𝑦

2
) + 6 arctan(𝑥

𝑦

)

− ln (2𝑥2 + 𝑥𝑦 + 𝑦

2
− 24)

− 2 ln (𝑥2 + 𝑦

2
− 4) .

(65)

Since the circle 𝑥

2
+ 𝑦

2
= 4 lies entirely inside the ellipse

2𝑥

2
+ 𝑥𝑦 + 𝑦

2
= 24 and the system has no other real-valued

critical points, both are limit cycles. The origin is an unstable
focus (𝜆 = 1) so the circle is stable and the ellipse is unstable
as 𝑡 → ∞. The system

𝑑𝑥

𝑑𝑡

= 𝑥 − 𝑦 −

5

16

𝑥

3
−

3

16

𝑥

2
𝑦 −

5

4

𝑥𝑦

2
+

3

4

𝑦

3
+

1

64

𝑥

5

+

5

64

𝑥

4
𝑦 +

17

64

𝑥

3
𝑦

2
+

5

64

𝑥

2
𝑦

3
+

1

4

𝑥𝑦

4
,

𝑑𝑦

𝑑𝑡

= 𝑥 + 𝑦 −

1

8

𝑥

3
−

5

16

𝑥

2
𝑦 −

17

16

𝑥𝑦

2
−

5

4

𝑦

3

+

1

64

𝑥

4
𝑦 +

5

64

𝑥

3
𝑦

2
+

17

64

𝑥

2
𝑦

3
+

5

64

𝑥𝑦

+

1

4

𝑦

5

(66)

has the circle 𝑥2 + 𝑦

2
= 4 and the ellipse 𝑥2 + 16𝑦

2
= 16

as invariant curves. It has nine real-valued critical points;
one at the origin and four others at the intersections of the
invariant curves. These last four are saddle points which are
given by (𝑥

∗
, 𝑦

∗
) = (±4/

√
5, ±2/

√
5) in which we take all

combinations of the signs. Translating each of these points
to the origin we find that the eigenvalues of the linear portion
of the resulting systems are given by the two sets of values 𝑟 =
±1, ∓2. The remaining four critical points are centers which
are located in the four regions outside one of the curves and
inside the other.They are given by (𝑥󸀠, 𝑦󸀠) = (−50𝛼

3
+14𝛼, 2𝛼)

where 𝛼 is a root of 125𝑥4 − 45𝑥

2
+ 2 = 0. Translating each

to the origin, we find that the eigenvalues of the linear parts
satisfy one of the two relations 𝑟2 + (123 ± 13

√
41)/50 = 0.

Hence they are pure imaginary and a rotation and rescaling
of the time will allow us to write the systems in standard form
as ̇

𝑋 = −𝑌 + ⋅ ⋅ ⋅ , ̇

𝑌 = 𝑋 + ⋅ ⋅ ⋅ . The critical points are centers
because the systems are integrable.

In presenting system (66) our original intention was to
give a system in which the invariant curves intersect at some
general set of points, but we found the complexity of the
resulting behaviour somewhat surprising. For example, letD
be the region containing the critical point at the origin. The
boundary 𝜕D ofD consists of four arcs, two from the ellipse
and two from the circle, which meet at the four critical points
(𝑥

∗
, 𝑦

∗
). Clearly, these are points where a unique tangent fails

to exist on 𝜕D. Any trajectory originating in D approaches
𝜕D in a fashion similar to that of a general limit cycle but
is displaced from this boundary as it approaches one of the
critical (saddle) points. Thus 𝜕D acts somewhat like a stable

limit cycle for trajectories inD except that in this case it is not
smooth. The behaviour in the four bounded regions outside
D as well as in the unbounded region exterior to both curves
is also quite interesting.We believe that it would be of interest
to analyze this system (or ones like it) more fully than we can
do here.

The final case we present is the simple system

𝑝

1
(𝑥, 𝑦) =

1

3𝑅

2

1
𝑅

2

2

(𝑥

2
+ 𝑦

2
)

⋅ (3 (𝑅

2

1
+ 𝑅

2

2
) 𝑥 − (2𝑅

2

1
+ 𝑅

2

2
) 𝑦) ,

𝑞

1
(𝑥, 𝑦) = −

1

3𝑅

2

1
𝑅

2

2

(𝑥

2
+ 𝑦

2
)

⋅ ((2𝑅

2

1
+ 𝑅

2

2
) 𝑥 + 3 (𝑅

2

1
+ 𝑅

2

2
) 𝑦) ,

𝑝

2
(𝑥, 𝑦) = −

1

𝑅

2

1
𝑅

2

2

𝑥 (𝑥

2
+ 𝑦

2
)

2

,

𝑞

2
(𝑥, 𝑦) =

1

𝑅

2

1
𝑅

2

2

𝑦 (𝑥

2
+ 𝑦

2
)

2

.

(67)

It has only a single critical point at the origin if 𝑅
2

̸= 𝑅

1
and

has two circular limit cycles 𝑥2 + 𝑦

2
= 𝑅

2

1
, 𝑥2 + 𝑦

2
= 𝑅

2

2
. For

𝑅

2

1
= 1 and 𝑅

2

2
= 3 a somewhat different system than this,

based on the values 𝜆 = −3, 𝐶 = 3/16 and the condition 𝜂

1
=

0, was given in [23]. See also the results in the next section.
The preceding discussion does not apply directly to the

two cases 𝐶 = 0, 1/4. If 𝐶 = 0 we can see from (56) that
the coefficient of 𝜌3 in the trigonometric Abel equation (54)
vanishes and the equation reduces to a Bernoulli equation.
The roots of 𝐾2 + 𝐾 + 𝐶 = 0 are 𝐾 = 0, −1 and the main
consequence of this is that there is only one conic C

1
rather

than the two which occur in the general case. For𝐶 = 1/4 the
roots are equal and the two conics coalesce, so we again have
a situation in which there is only a single conic.

6. Concentric Circular Invariant Curves

In [26] Llibre and Rodŕıguez construct a vector field having
an arbitrary distribution of circular limit cycles and show
that this system has a Darboux first integral. The solution
of (67) is very close to the general form given in [26] but
with some minor differences in the coefficients. Here we
consider somewhat more general conditions for which a
generalized cubic system for which 𝑛 being odd can have two
isolated, concentric circular invariant curves by removing the
condition that 𝜂

2
should be zero. This will produce systems

which have (at least) two isolated closed trajectories, but in
many cases these are not limit cycles. For the forms that we
consider these systems are transformable to Riccati equations
which frequently can be solved in terms of special functions.
Clearly, the easiest way to search for such solutions is to use
a polar representation. Let 𝜉

1
, 𝜉
2
be given by (32) and write

𝜉

2
= 𝑎+

̃

𝜉

2
, 𝜉
1
= 𝑏+

̃

𝜉

1
where 𝑎, 𝑏 are constants and ̃

𝜉

2
, ̃𝜉
1
have

no constant parts. If 𝑟 = 𝑅

0
̸= 0 is a constant solution of (53)
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then we must have 𝜆𝑅
0
+ 𝑅

𝑛

0
𝜉

1
+ 𝑅

2𝑛−1

0
𝜉

2
= 𝑅

0
(𝜆 + 𝑅

𝑛−1

0
(𝑏 +

̃

𝜉

1
) + 𝑅

2(𝑛−1)

0
(𝑎 +

̃

𝜉

2
)) = 0. Since the trigonometric functions

(as in (32)) are independent this splits into two equations:

𝑎𝑅

2(𝑛−1)

0
+ 𝑏𝑅

𝑛−1

0
+ 𝜆 = 0,

̃

𝜉

1
(𝜃) + 𝑅

𝑛−1

0

̃

𝜉

2
(𝜃) = 0.

(68)

If 𝑅
1
, 𝑅
2
are distinct roots of the quadratic this gives 𝑎 =

𝜆/(𝑅

1
𝑅

2
)

2 and 𝑏 = −𝜆(𝑅

2

1
+ 𝑅

2

2
)/(𝑅

1
𝑅

2
)

2. Then from the
second equation of (68) we have

̃

𝜉

2
(𝜃) = −

1

𝑅

𝑛−1

1

̃

𝜉

1
(𝜃) = −

1

𝑅

𝑛−1

2

̃

𝜉

1
(𝜃) (69)

which can be satisfied only if ̃𝜉
1
=

̃

𝜉

2
= 0. Hence, in order

to have two distinct solutions of this type we assume in the
following that 𝜉

2
= 𝜆/(𝑅

1
𝑅

2
)

2, 𝜉
1
= −𝜆(𝑅

2

1
+𝑅

2

2
)/(𝑅

1
𝑅

2
)

2.This
can be seen to be the case for system (67). At this point we
can choose 𝜂

1
, 𝜂
2
arbitrarily subject to the necessary degree

constraints. If we take 𝜂
1
= 𝜂

2
= 0 and 𝑅

1
= 1, 𝑅

2
=

√
3,

𝜆 = −3 we obtain the system given in [25] mentioned in the
last section.

In what follows we will take 𝜂
1
(𝜃) = 𝑐

2
cos 2𝜃+𝑑

2
sin 2𝜃+

𝑐

0
and 𝜂

2
(𝜃) = 𝛼

2
cos 2𝜃 + 𝛽

2
sin 2𝜃 + 𝛼

0
. These forms can

be assumed for any odd value of 𝑛, but we will once again
restrict our attention to the particular case 𝑛 = 3. With
𝑟

2
= 𝑅, (53) becomes

𝑑𝑅

𝑑𝜃

=

2𝜆

𝑅

2

1
𝑅

2

2

𝑅 (𝑅 − 𝑅

2

1
) (𝑅 − 𝑅

2

2
)

1 + (𝑐

2
cos 2𝜃 + 𝑑

2
sin 2𝜃 + 𝑐

0
) 𝑅 + (𝛼

2
cos 2𝜃 + 𝛽

2
sin 2𝜃 + 𝛼

0
) 𝑅

2
.

(70)

Eliminating the trigonometric functions by setting 𝑧 = tan 𝜃
and then interchanging the roles of 𝑧 and𝑅 lead to the Riccati
equation

𝑑𝑧

𝑑𝑅

=

𝑅

2

1
𝑅

2

2

2𝜆

(𝛼

0
− 𝛼

2
) 𝑅

2
+ (𝑐

0
− 𝑐

2
) 𝑅 + 1

𝑅 (𝑅 − 𝑅

2

1
) (𝑅 − 𝑅

2

2
)

𝑧

2

+

𝑅

2

1
𝑅

2

2

𝜆

𝛽

2
𝑅 + 𝑑

2

(𝑅 − 𝑅

2

1
) (𝑅 − 𝑅

2

2
)

𝑧

+

𝑅

2

1
𝑅

2

2

2𝜆

(𝛼

0
+ 𝛼

2
) 𝑅

2
+ (𝑐

0
+ 𝑐

2
) 𝑅 + 1

𝑅 (𝑅 − 𝑅

2

1
) (𝑅 − 𝑅

2

2
)

.

(71)

The usual substitution 𝑦 = −𝑢

󸀠
/(𝑃(𝑥)𝑢) for 𝑦󸀠 = 𝑃(𝑥)𝑦

2
+

𝑄(𝑥)𝑦+𝑅(𝑥)will then further convert this to a linear, second-
order equation. We do not give the result of this conversion
except tomention that it has certain similarities to the general
Heun differential equation [27]

𝑦

󸀠󸀠
+ (

𝛾

𝑧

+

𝛿

𝑧 − 1

+

𝜖

𝑧 − 𝑎

)𝑦

󸀠
+

𝛼𝛽𝑧 − 𝑞

𝑧 (𝑧 − 1) (𝑧 − 𝑎)

𝑦

= 0

(72)

and its confluent forms.These equations are very general and
include the hypergeometric cases

2
F
1
,
1
F
1
,
0
F
1
as well as

other classes of functions.The solutions of (71) are frequently
expressible in terms of Heun functions with 𝑅 = 0, 𝑅2

1
, 𝑅2
2

reflecting the singularities which appear in (72). In addition
to the solutions given in [25], it is possible for (71) to have
other elementary solutions. For example, the pair of systems
given by

𝜂

1
(𝜃) = ±

𝑅

2

1
− 𝑅

2

2

𝑅

2

1
𝑅

2

2

cos 2𝜃 ±
𝜆 (𝑅

2

1
− 𝑅

2

2
)

𝑅

2

1
𝑅

2

2

sin 2𝜃

−

𝑅

2

1
+ 𝑅

2

2

𝑅

2

1
𝑅

2

2

,

𝜂

2
(𝜃) = ∓

𝑅

4

1
− 𝑅

4

2

2𝑅

2

1
𝑅

2

2

cos 2𝜃 +
𝑅

4

1
+ 𝑅

4

2

2𝑅

2

1
𝑅

2

2

(73)

reduce the linearized form of (71) to the Euler equation 𝑧

󸀠󸀠
+

𝑧

󸀠
/𝑅 − 𝑧/(4𝜆

2
𝑅

2
) = 0.

Each of the systems defined by (71) has the property that
the circles 𝑟 = 𝑅

1
, 𝑅

2
are invariant curves, although most

of the solutions are non-Liouvillian. By considering certain
numerical examples it can be seen that there are systems for
which both, one, or neither of these circles is a limit cycle. As
we saw in the cases of systems (64)–(67) the exact nature of
the curves is dependent upon the existence and location of
other critical points of the system.

We have not considered the remaining possibility in (68)
when the quadratic has equal roots. Instead we will look at
the case of the center-focus form (𝜆 = 0) when the system
has a single invariant circle 𝑟 = 𝑅

1
. Similar calculations

show that a relation, 𝜉
2

= −𝜉

1
/𝑅

𝑛−1

1
, of the same type as

the second equation of (68) must be satisfied. Due to parity
considerations, such an equality is only possible for odd
values of 𝑛 and shows that circular invariant curves centered
at the origin cannot exist if 𝑛 is even.Whether or not the circle
is a limit cycle is once again dependent upon the structure of
the system. The system

𝑑𝑥

𝑑𝑡

= −𝑦 +

4

5

𝑥

3
−

22

5

𝑥

2
𝑦 +

8

5

𝑥𝑦

2
+

4

5

𝑦

3

−

4

5

𝑥 (𝑥

2
+ 𝑦

2
) (𝑥

2
− 4𝑥𝑦 − 4𝑦

2
) ,

𝑑𝑦

𝑑𝑡

= 𝑥 +

12

5

𝑥

3
−

8

5

𝑥

2
𝑦 −

14

5

𝑥𝑦

2
−

4

5

𝑦

3

−

2

5

(𝑥

2
+ 𝑦

2
) (3𝑥

3
+ 8𝑥

2
𝑦 − 5𝑥𝑦

2
− 2𝑦

3
)

(74)

has 𝑥2+𝑦2 = 1 as an invariant curve and in this case it is not a
limit cycle.The origin is asymptotically stable (as 𝑡 → ∞) and
apart from this the system has eight other real-valued critical
points. Four of these lie on the circle with two of these being
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unstable nodes and two saddle points. The saddle points are
given by

(𝑥, 𝑦) = (±

√
38

13

±

3
√
14

26

, ±

3
√
38

26

∓

√
14

13

)

≈ (±0.906, ±0.423)

(75)

and the nodes by

(𝑥, 𝑦) = (±

√
38

13

∓

3
√
14

26

, ±

3
√
38

26

±

√
14

13

)

≈ (±0.042, ±0.999) .

(76)

All trajectories inside the circle appear to emanate (as 𝑡 →

−∞) from one of the nodes or the other, but it does not seem
to be possible to specify from which one a particular trajec-
tory originates. As a trajectory approaches a neighbourhood
of one of the saddle points, it is deflected away in a direction
towards the origin. The remaining four critical points lie just
outside the circle and in conjunction with those on the circle
give rise to a fairly complex flow pattern in that region.

7. Application to Abel Differential Equations

Many physical systems can be converted to Abel differential
equations and because of this it is always of interest when
solvable Abel equations are encountered. In an earlier work
[17] we showed that a homogeneous system can be trans-
formed to such an equation (set𝑝

2
= 0,𝑝

1
= 𝑝, 𝑞

1
= 𝑞 in (30))

having rational coefficients and herein we have shown that
𝜂

2
= 0 generalized cubic systems can also be similarly trans-

formed. One consequence of this is that any integrable system
of this type can be transformed to a solvable Abel equation.
In the papers by Cheb-Terrab and Roche [16, 28] the authors
clearly demonstrate the need for a convenientmethod of clas-
sifying Abel equations. Two Abel equations are said to belong
to the same equivalence class if one can be transformed into
the other using a transformation of a specific type (see [28]).
If this is possible then if one equation of a particular class is
solvable so are all the othermembers of that class.Many of the
ideas in these papers have been incorporated in the computer
algebra system Maple. All symbolic computations in this
paper were carried out in the most recent version Maple
2016 which has an excellent suite of routines for solving such
equations; however, we encountered several equations which
could not be solved.These include (21) and its corresponding
rational form given by setting 𝑧 = tan 𝜃 as well as (30) and its
first kind formdefined by (31). In the followingwewill present
an example of a systemwhich produces Abel equations which
were not solved by the software but which can be transformed
to a solvable equation using a nonstandard transformation.

One simple cubic system defined from case 4 of Theo-
rem 6 by the functions

𝜉 (𝜃) =

1

4

(2𝑎

1
− 𝑏

2
) sin 3𝜃 − 1

4

(𝑎

2
+ 2𝑏

1
) cos 3𝜃

−

1

4

(2𝑎

1
+ 𝑏

2
) sin 𝜃 + 1

4

(𝑎

2
− 2𝑏

1
) cos 𝜃,

𝜂 (𝜃) =

1

4

(𝑎

2
+ 2𝑏

1
) sin 3𝜃 + 1

4

(2𝑎

1
− 𝑏

2
) cos 3𝜃

+

1

4

(𝑎

2
− 2𝑏

1
) sin 𝜃 + 1

4

(2𝑎

1
+ 𝑏

2
) cos 𝜃

(77)

and 𝜂̃(𝜃) = 𝛼

1
cos 𝜃 + 𝛽

1
sin 𝜃 with 𝑎

1
= 5/2, 𝑎

2
= 𝑏

1
= −𝑏

2
=

3,𝛼
1
= 5, 𝛽

1
= 9/2 produced a system having four invariant

lines. The phase plane equation (3) is

𝑑𝑦

𝑑𝑥

= −

4𝑥 + 30𝑥

2
+ 48𝑥𝑦 − 30𝑦

2
+ 75𝑥

2
𝑦 + 95𝑥𝑦

2
− 75𝑦

3

4𝑦 − 6𝑥

2
+ 28𝑥𝑦 + 6𝑦

2
− 75𝑥

3
− 95𝑥

2
𝑦 + 75𝑥𝑦

2
.

(78)

This is easily solved by Maple using symmetries and the
resulting rational (Darboux) solution can be expressed as

U (𝑥, 𝑦)

=

(5𝑦 + 2)

66

(21𝑥 − 2𝑦 + 2)

39

(13𝑥 + 18𝑦 + 2)

77

(10𝑥 + 9𝑦 + 2)

182

= C.

(79)

This cubic system produces an Abel equation (30) given by

𝑑𝑦

𝑑𝑥

= −

5 (15𝑥

2
− 19𝑥 − 15) 𝑦

3
+ 2 (3𝑥

2
+ 14𝑥 − 3) 𝑦

2
+ 4𝑥𝑦

2 (3𝑥

3
− 𝑥

2
+ 21𝑥 + 15) 𝑦 + 4𝑥

2
+ 4

(80)

and the corresponding homogeneous system produces the
equation

𝑑𝑦

𝑑𝑥

= −

6 (𝑥

2
+ 𝑥 − 1) 𝑦

2
− 2𝑥𝑦

(𝑥 − 1) (2𝑥 + 5) (3𝑥 + 1) 𝑦 − 2𝑥

2
− 2

,

(81)

neither of which was solved by Maple. Since the transforma-
tion 𝑦 = −2𝑢/((9𝑥 + 10)𝑢 − 2) transforms (80) into (81) these
equations belong to the same equivalence class. Moreover,
the equation arising from (21) has the same first absolute
invariant 𝐼

1
(when suitably modified) as (80) and (81), so it

too belongs to the same equivalence class. Thus failure of the
algorithm to solve one means that the others would also not
be solved. However, each of these equations is solvable since
solutions can be obtained by suitably transforming (79).

If we transform (81) by setting

𝑥 = −

3V − 5𝑢 + 13

9V − 2𝑢 + 13

,

𝑦 =

3

13

V −
2

39

𝑢 +

1

3

(82)
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we obtain the Abel equation

𝑑V
𝑑𝑢

= −

2

3

33V2 − (29𝑢 − 91) V
30𝑢V − 11𝑢

2
+ 52𝑢

.

(83)

Since (82) is not of a type which will preserve the equivalence
class of the original equation (or even guarantee that the new
equation is of Abel type), (83) belongs to a different class
than (81). In the terminology of [28] it is of type AIA (Abel,
Inverse-Abel) which means that if we interchange the roles
of 𝑢 and V we obtain a new equation having the same form,
but of a different equivalence class. In the case of this example,
both of these new equations are of type constant invariant and
hence are solvable.

Theprimary reason for presenting this particular example
is because of its simplicity and clarity. In this study we have
encountered systems whose first integrals are much more
complicated than the one just given but will still generate
solvable Abel equations. At this time we have not studied
the nature of these new Abel equations, although it is highly
unlikely that they are as simple as (83) with regard to
solvability.
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[25] J. Giné and J. Llibre, “A family of isochronous foci with Darboux
first integral,” Pacific Journal of Mathematics, vol. 218, no. 2, pp.
343–355, 2005.
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