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For an approximately controllable semilinear system, the problem of computing control for a given target state is converted into
an equivalent problem of solving operator equation which is ill-posed. We exhibit a sequence of regularized controls which steers
the semilinear control system from an arbitrary initial state 𝑥0 to an 𝜖 neighbourhood of the target state 𝑥𝜏 at time 𝜏 > 0 under the
assumption that the nonlinear function 𝑓 is Lipschitz continuous. The convergence of the sequences of regularized controls and
the corresponding mild solutions are shown under some assumptions on the system operators. It is also proved that the target state
corresponding to the regularized control is close to the actual state to be attained.

1. Introduction

Controllability is one of the qualitative properties of a control
system that occupies an important place in control theory.
Controllable systems have many applications in different
branches of science and engineering (see [1–12] for an
extensive review on controllability literature).

Let 𝑉 and 𝑈 be Hilbert spaces called state and control
spaces, respectively. Let 𝑌 = 𝐿2(𝐽, 𝑈) and 𝑋 = 𝐿2(𝐽, 𝑉) be
the function spaces.The inner product and the corresponding
norm on aHilbert space are denoted by ⟨⋅, ⋅⟩, ‖⋅‖, respectively.

Consider the semilinear control system

𝑑𝑥𝑑𝑡 = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) ,
𝑥 (𝑡0) = 𝑥0,

(1)

where 𝐴 : 𝐷(𝐴) ⊆ 𝑉 → 𝑉 is a densely defined closed linear
operator which generates a 𝐶0 semigroup 𝑇(𝑡), 𝑡 ≥ 0. 𝐵 :𝑈 → 𝑉 is a bounded linear operator and 𝑓 : 𝐽 × 𝑉 → 𝑉 is a
nonlinear function where 𝐽 = [𝑡0, 𝜏] ⊆ [0,∞). If 𝑓 ≡ 0, then
the resultant system is called the corresponding linear system
which is denoted by (1)∗.

For 𝑢 ∈ 𝑌, the mild solution (see [13]) of (1) is given by

𝑥 (𝑡) = 𝑇 (𝑡 − 𝑡0) 𝑥0 + ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.
(2)

The control system (1) is said to be exactly controllable if,
for every 𝑥0 and 𝑥𝜏 ∈ 𝑉, there exists 𝑢 ∈ 𝑌 such that the mild
solution 𝑥 ∈ 𝑋 verifies the condition 𝑥(𝜏) = 𝑥𝜏.

The control system (1) is said to be approximately con-
trollable if, for every 𝜖 > 0 and for every 𝑥0 and 𝑥𝜏 ∈ 𝑉, there
exists 𝑢 ∈ 𝑌 such that the corresponding mild solution 𝑥 ∈ 𝑋
satisfies

󵄩󵄩󵄩󵄩𝑥 (𝜏) − 𝑥𝜏󵄩󵄩󵄩󵄩 ≤ 𝜖. (3)

In [3], Naito proved the approximate controllability of
semilinear system (1) under some assumptions which are
given below.

Theorem 1 (see [3]). The semilinear control system (1) is
approximately controllable under the following conditions:

(i) The 𝐶0 semigroup 𝑇(𝑡) is compact ∀𝑡 > 0.
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(ii) The nonlinear function 𝑓(𝑡, 𝑥) is Lipschitz continuous
with respect to 𝑥; that is, ‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ ‖𝑥1 −𝑥2‖∀𝑥1, 𝑥2 ∈ 𝑋, 𝑡 ∈ 𝐽, where 𝑐 > 0 is Lipschitz
constant.

(iii) ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀0, where𝑀0 is a positive constant.
(iv) For every 𝑝 ∈ 𝑋, there exists a 𝑞 ∈ 𝑅(𝐵) such that

L1𝑝 = L1𝑞, where 𝑅(𝐵) is the range of the bounded
linear operator 𝐵 andL1 : 𝑋 → 𝑉 is a bounded linear
operator defined as

L1𝑝 = ∫𝜏
𝑡0

𝑇 (𝜏 − 𝑠) 𝑝 (𝑠) 𝑑𝑠. (4)

Condition (iv) ofTheorem 1 implies that the correspond-
ing linear system (1)∗ is approximately controllable; for more
details one can see the proof in [3].

In this paper, we study the problem of computing control
for an approximately controllable semilinear system for a
given target state by converting it into an equivalent linear
operator equation which is ill-posed. We find sequence of
regularized controls {𝑢𝑛,𝜆 : 𝑛 ∈ N, 𝜆 > 0} using Tikhonov
regularization and the mild solutions {𝑥𝑛,𝜆 : 𝑛 ∈ N, 𝜆 > 0}
corresponding to {𝑢𝑛,𝜆 : 𝑛 ∈ N, 𝜆 > 0}. Under some
assumptions we prove the convergence of {𝑢𝑛,𝜆} and {𝑥𝑛,𝜆}.

The outline of the paper is as follows. In Section 2,
regularized control, its corresponding mild solutions, their
convergence, and limitations due to the presence of non-
linearity are discussed. Section 3 is devoted to illustrating
our theory through an example. Conclusions are made in
Section 4.

2. Regularized Control

Definition 2 (well-posed problem). LetU andV be normed
linear spaces and L : U → V be a linear operator. The
equation

L𝑢 = V (5)

is said to be well-posed if the following holds:

(i) For every V ∈ V, there exists a unique 𝑢 ∈ U such
thatL𝑢 = V.

(ii) L−1 is a bounded operator. Equivalently, for every V ∈
V and for every 𝜖 > 0, there exists a 𝛿 > 0 with the
following properties: If Ṽ ∈ V with ‖Ṽ − V‖ ≤ 𝛿 and
if 𝑢, 𝑢̃ ∈ U are such that L𝑢 = V and L𝑢̃ = Ṽ, then‖𝑢 − 𝑢̃‖ ≤ 𝜖.

Definition 3 (ill-posed problem). Equation (5) is said to be ill-
posed ifL violates one of the conditions for well-posedness.

Theorem 4 (Tikhonov regularization, see [14]). Let U and
V be Hilbert spaces and L : U → V be a bounded linear
operator. Then for each V ∈V and 𝜆 > 0, there exists a unique𝑢𝜆(V) ∈ U which minimizes the map

𝑢 󳨃󳨀→ ‖L𝑢 − V‖2 + 𝜆 ‖𝑢‖2 , 𝑢 ∈ U. (6)

Moreover, for each 𝜆 > 0, the map

𝑅𝜆 : V 󳨃󳨀→ 𝑢𝜆 (V) , V ∈V, (7)

is a bounded linear operator fromV toU and 𝑅𝜆V fl (L∗L+𝜆𝐼)−1L∗V, where L∗ is the unique adjoint of the bounded
linear operatorL.

Theorem5 (see [14]). For𝜆 > 0, the solution𝑢𝜆 of the operator
equation

(L∗L + 𝜆𝐼) 𝑢𝜆 =L
∗V (8)

minimizes the function 𝑢 → ‖L𝑢 − V‖2 + 𝜆‖𝑢‖2, 𝑢 ∈ U, and‖L𝑢𝜆 − V‖ → 0 as 𝜆 → 0.
Definition 6. For V ∈ V and 𝜆 > 0, the element 𝑢𝜆 ∈ U as in
Theorems 4 and 5 is called the Tikhonov regularized solution
ofL𝑢 = V.

Lemma 7. Let U,V be Hilbert spaces and L ∈ B(U,V).
Then for 𝜆 > 0,

󵄩󵄩󵄩󵄩󵄩(L∗L + 𝜆𝐼)−1󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩(LL
∗ + 𝜆𝐼)−1󵄩󵄩󵄩󵄩󵄩 ≤ 1𝜆 ,

󵄩󵄩󵄩󵄩󵄩(L∗L + 𝜆𝐼)−1L∗󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩L∗ (LL
∗ + 𝜆𝐼)−1󵄩󵄩󵄩󵄩󵄩 ≤ 1

2√𝜆.
(9)

Formore details on ill-posed problems and regularization
methods one can refer to [14–20].

Let 𝐿 : 𝑌 → 𝑉 be a linear operator defined as

𝐿𝑢 = ∫𝜏
𝑡0

𝑇 (𝜏 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠. (10)

Assumption 8. (i) System (1) is approximately controllable.
(ii) 𝑃 = [𝑀2𝑏𝑐(𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆(𝜏 − 𝑡0)]/2√𝜆 < 1,

where 𝜆 > 0 is a regularization parameter (to be chosen
appropriately) and𝑀, 𝑏 are given by

‖𝑇 (𝑡)‖ ≤ 𝑀,
‖𝐵‖ ≤ 𝑏. (11)

In our analysis, we assume that the control system (1)
satisfies Assumption 8. We obtain a sequence of controls
and corresponding mild solutions for semilinear system (1)
iteratively and also prove that this sequence of controls steers
the semilinear control system from an initial state 𝑥0 to an 𝜖
neighbourhood of the final state 𝑥𝜏 at time 𝜏 > 0.

Consider

𝑥𝑛 (𝑡) = 𝑇 (𝑡 − 𝑡0) 𝑥0 + ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝐵𝑢𝑛 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑛−1 (𝑠)) 𝑑𝑠,
(12)

where 𝑥𝑛(𝜏) = 𝑥1, for all 𝑛 = 0, 1, 2, . . ., and 𝑢𝑛(𝑡) is a control
function such that 𝑥𝑛(𝜏) = 𝑥1. We start with an initial (guess)
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mild solution 𝑥0(𝑡). To find 𝑢𝑛(𝑡) such that 𝑥𝑛(𝜏) = 𝑥1, we
need to solve

𝐿𝑢𝑛 = V𝑛, (13)

where

𝐿𝑢𝑛 = ∫𝜏
𝑡0

𝑇 (𝜏 − 𝑠) 𝐵𝑢𝑛 (𝑠) 𝑑𝑠,
V𝑛 = 𝑥1 − 𝑇 (𝜏 − 𝑡0) 𝑥0

− ∫𝜏
𝑡0

𝑇 (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥𝑛−1 (𝑠)) 𝑑𝑠,
𝑛 = 0, 1, 2, . . . .

(14)

Since (13) is ill-posed in the sense ofHadamard [21], any small
perturbations in V𝑛 can lead to large deviations in the solu-
tion. Hence, in practice it is not advisable to solve (13) directly
to obtain 𝑢𝑛; one has to look for stable approximations 𝑢𝑛,𝜆,𝜆 > 0, such that ‖𝐿𝑢𝑛,𝜆 − V𝑛‖ → 0 as 𝜆 → 0. For this
we shall use the Tikhonov regularization for obtaining the
control function 𝑢𝑛,𝜆 which is given below:

𝑢𝑛,𝜆 = 𝐿∗ (𝐿𝐿∗ + 𝜆𝐼)−1 V𝑛, 𝑛 = 0, 1, 2, . . . . (15)

Convergence of {𝑢𝑛,𝜆} and {𝑥𝑛,𝜆}. We have the sequence of
regularized controls {𝑢𝑛,𝜆} and the sequence of corresponding
mild solutions {𝑥𝑛,𝜆} for each 𝑛 ∈ N, 𝜆 > 0.The inner product
and the corresponding norm on the function space 𝐿2(𝐽, 𝑈)
are given below.

For 𝑢, 𝑤 ∈ 𝐿2(𝐽, 𝑈),
⟨𝑢, 𝑤⟩𝐿2(𝐽,𝑈) = ∫

𝐽
⟨𝑢 (𝑠) , 𝑤 (𝑠)⟩𝑈 𝑑𝑠,

‖𝑤‖𝐿2(𝐽,𝑈) = √∫
𝐽
‖𝑤 (𝑠)‖2𝑈 𝑑𝑠.

(16)

Theorem 9. Under Assumption 8 and for fixed 𝜆 > 𝑐, the
sequences {𝑢𝑛,𝜆}, {𝑥𝑛,𝜆} are convergent with respect to 𝑛 in𝐿2(𝐽, 𝑈), 𝐿2(𝐽, 𝑉), respectively.
Proof. As 𝐿2(𝐽, 𝑈), 𝐿2(𝐽, 𝑉) are complete spaces, it is suf-
ficient to prove {𝑢𝑛,𝜆} and {𝑥𝑛,𝜆} are Cauchy sequences in𝐿2(𝐽, 𝑈), 𝐿2(𝐽, 𝑉), respectively.

We have 𝑢𝑛,𝜆 = 𝐿∗(𝐿𝐿∗ + 𝜆𝐼)−1V𝑛,󵄩󵄩󵄩󵄩𝑢𝑛+1,𝜆 − 𝑢𝑛,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑈) = 󵄩󵄩󵄩󵄩󵄩𝐿∗ (𝐿𝐿∗ + 𝜆𝐼)−1 (V𝑛+1 − V𝑛)󵄩󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑈)
≤ 1
2√𝜆 󵄩󵄩󵄩󵄩V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩𝑉 ≤ 1
2√𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜏

𝑡0

𝑇 (𝜏 − 𝑠)
⋅ [𝑓 (𝑠, 𝑥𝑛,𝜆 (𝑠)) − 𝑓 (𝑠, 𝑥𝑛−1,𝜆 (𝑠))] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑉 ≤
1
2√𝜆

⋅ 𝑀𝑐∫𝜏
𝑡0

󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 (𝑠) − 𝑥𝑛−1,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑉 𝑑𝑠 ≤ 1
2√𝜆

⋅ 𝑀𝑐√(𝜏 − 𝑡0) 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 − 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) ≤ 1
2√𝜆

⋅ 𝑀𝑐√(𝜏 − 𝑡0)𝑃 󵄩󵄩󵄩󵄩𝑥𝑛−1,𝜆 − 𝑥𝑛−2,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) ≤ 1
2√𝜆

⋅ 𝑀𝑐√(𝜏 − 𝑡0)𝑃2 󵄩󵄩󵄩󵄩𝑥𝑛−2,𝜆 − 𝑥𝑛−3,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
...

≤ 1
2√𝜆𝑀𝑐√(𝜏 − 𝑡0)𝑃𝑛−1 󵄩󵄩󵄩󵄩𝑥1,𝜆 − 𝑥0󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) =

1
2√𝜆

⋅ 𝑀𝑐√(𝜏 − 𝑡0)𝑃𝑛−1 󵄩󵄩󵄩󵄩𝑢1,𝜆 − 𝑢0,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑈) ,
(17)

where 𝑃 = [𝑀2𝑏𝑐(𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆(𝜏 − 𝑡0)]/2√𝜆.
By Assumption 8 of (ii), 𝑃 < 1; hence for large value of 𝑛,

the sequence {𝑢𝑛,𝜆} is Cauchy. Therefore {𝑢𝑛,𝜆} converges.
Similarly, we have

𝑥𝑛,𝜆 (𝑡) = 𝑇 (𝑡 − 𝑡0) 𝑥0 + ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝐵𝑢𝑛,𝜆 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑛−1,𝜆 (𝑠)) 𝑑𝑠,
󵄩󵄩󵄩󵄩𝑥𝑛+1,𝜆 (𝑡) − 𝑥𝑛,𝜆 (𝑡)󵄩󵄩󵄩󵄩𝑉 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

𝑡0

𝑇 (𝑡 − 𝑠)
⋅ (𝐵𝑢𝑛+1,𝜆 (𝑠) − 𝐵𝑢𝑛,𝜆 (𝑠)) 𝑑𝑠 + ∫𝑡

𝑡0

𝑇 (𝑡 − 𝑠)

⋅ (𝑓 (𝑠, 𝑥𝑛,𝜆 (𝑠)) − 𝑓 (𝑠, 𝑥𝑛−1,𝜆 (𝑠))) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑉

≤ 𝑀∫𝑡
𝑡0

󵄩󵄩󵄩󵄩𝐵𝑢𝑛+1,𝜆 (𝑠) − 𝐵𝑢𝑛,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑉 𝑑𝑠
+𝑀∫𝑡

𝑡0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛,𝜆 (𝑠)) − 𝑓 (𝑠, 𝑥𝑛−1,𝜆 (𝑠))󵄩󵄩󵄩󵄩𝑉 𝑑𝑠
≤ 𝑀𝑏∫𝑡

𝑡0

󵄩󵄩󵄩󵄩𝑢𝑛+1,𝜆 (𝑠) − 𝑢𝑛,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑈 𝑑𝑠
+𝑀𝑐∫𝑡

𝑡0

󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 (𝑠) − 𝑥𝑛−1,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑉 𝑑𝑠
≤ 𝑀𝑏∫𝜏

𝑡0

󵄩󵄩󵄩󵄩𝑢𝑛+1,𝜆 (𝑠) − 𝑢𝑛,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑈 𝑑𝑠
+𝑀𝑐∫𝜏

𝑡0

󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 (𝑠) − 𝑥𝑛−1,𝜆 (𝑠)󵄩󵄩󵄩󵄩𝑉 𝑑𝑠
≤ 𝑀𝑏√(𝜏 − 𝑡0) 󵄩󵄩󵄩󵄩𝑢𝑛+1,𝜆 − 𝑢𝑛,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑈)
+𝑀𝑐√(𝜏 − 𝑡0) 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 − 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
≤ 𝑀𝑏𝑀𝑐 (𝜏 − 𝑡0)2√𝜆 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 − 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
+𝑀𝑐√(𝜏 − 𝑡0) 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 − 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
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≤ [𝑀
2𝑏𝑐 (𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆 (𝜏 − 𝑡0)]

2√𝜆 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆
− 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) .

(18)

Thus󵄩󵄩󵄩󵄩𝑥𝑛+1,𝜆 (𝑡) − 𝑥𝑛,𝜆 (𝑡)󵄩󵄩󵄩󵄩𝑉
≤ [𝑀

2𝑏𝑐 (𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆 (𝜏 − 𝑡0)]
2√𝜆 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆

− 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) .
(19)

We have

󵄩󵄩󵄩󵄩𝑥𝑛+1,𝜆 − 𝑥𝑛,𝜆󵄩󵄩󵄩󵄩2𝐿2(𝐽,𝑉) = ∫𝐽 󵄩󵄩󵄩󵄩𝑥𝑛+1,𝜆 (𝑡) − 𝑥𝑛,𝜆 (𝑡)󵄩󵄩󵄩󵄩2𝑉 𝑑𝑡. (20)

From (19) and (20), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1,𝜆 − 𝑥𝑛,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) ≤ 𝑃 󵄩󵄩󵄩󵄩𝑥𝑛,𝜆 − 𝑥𝑛−1,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
≤ 𝑃2 󵄩󵄩󵄩󵄩𝑥𝑛−1,𝜆 − 𝑥𝑛−2,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)
≤ 𝑃3 󵄩󵄩󵄩󵄩𝑥𝑛−2,𝜆 − 𝑥𝑛−3,𝜆󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉)

...
≤ 𝑃𝑛 󵄩󵄩󵄩󵄩𝑥1,𝜆 − 𝑥0󵄩󵄩󵄩󵄩𝐿2(𝐽,𝑉) .

(21)

Since 𝑃 < 1, for large value of 𝑛, the sequence {𝑥𝑛,𝜆} is also
Cauchy; hence it converges.

This completes the proof.

Remark 10. In practice, to obtain better approximation to
the sequence of controls, 𝜆 (regularization parameter) can be
chosen such that 𝑃 < 1; that is,

𝑀2𝑏𝑐 (𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆 (𝜏 − 𝑡0)2√𝜆 < 1 󳨐⇒
𝑀2𝑏𝑐 (𝜏 − 𝑡0)3/2 + 2𝑀𝑐√𝜆 (𝜏 − 𝑡0) < 2√𝜆 󳨐⇒
2√𝜆 (𝑀𝑐 (𝜏 − 𝑡0) − 1) < −𝑀2𝑏𝑐 (𝜏 − 𝑡0)3/2 󳨐⇒
𝜆 > 𝑀4𝑏2𝑐2 (𝜏 − 𝑡0)3(2 − 2𝑀𝑐 (𝜏 − 𝑡0))2 = 𝑄 (say) .

(22)

If𝑀𝑐(𝜏 − 𝑡0) ≪ 1 then 𝑄 is very small. Then we get better
approximation.

In many practical semilinear control systems, the nonlin-
ear part is a perturbation, in the sense that the Lipschitz con-
stant is sufficiently small so that the system is approximately
controllable. In particular, the regularization parameter 𝜆 >𝑐, where 𝑐 is very small.Then 𝜆 can also be chosen sufficiently
small. Hence we get a regularized control close to the exact
solution.

3. Application for an Approximately
Controllable System

In this section, we illustrate the theory for an approximately
controllable semilinear system. Let 𝑢𝜆 fl lim𝑛→∞𝑢𝑛,𝜆 be the
regularized control. Let 𝑥𝜆 be the mild solution correspond-
ing to 𝑢𝜆.

Then fromTheorem 4 we see that

󵄩󵄩󵄩󵄩𝑥𝜆 (𝜏) − 𝑥 (𝜏)󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝜆 󳨀→ 0 (23)

which shows that the target state corresponding to the
regularized control (𝑥𝜆(𝜏)) is close to the actual state (𝑥(𝜏))
to be attained.

Example 11. Consider the semilinear heat equation given by
the partial differential equation

𝜕𝑧𝜕𝑡 (𝑥, 𝑡) = 𝜕2𝑧𝜕𝑥2 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) + 𝑓 (𝑡, 𝑧 (𝑥, 𝑡)) ,
𝑥 ∈ [0, ℓ] ,

(24)

𝑧 (0, 𝑡) = 0 = 𝑧 (ℓ, 𝑡) ,
𝑧 (𝑥, 0) = 𝑔0 (𝑥) , 𝑔0 ∈ 𝐿2 [0, ℓ] , (25)

where 𝑧(𝑥, 𝑡) represents the temperature at position 𝑥 at time𝑡,𝑔0(𝑥) is the initial temperature profile, and 𝑢(𝑥, 𝑡) is the heat
input (control) along the rod and𝑓 : 𝐽×𝑉 → 𝑉 is a nonlinear
function which is Lipschitz continuous.

We have

𝐽 fl [0, 𝜏] ,
𝑈 = 𝑉 = 𝐿2 [0, ℓ] ,
U = 𝐿2 (𝐽, 𝑈) ,
V = 𝑉.

(26)

Define the operator 𝐴 by

𝐴ℎ = 𝑑2ℎ𝑑𝑥2 , ℎ ∈ 𝐷 (𝐴) , (27)

where

𝐷(𝐴)
fl {ℎ ∈ 𝐿2 [0, ℓ] : ℎ󸀠󸀠 ∈ 𝐿2 [0, ℓ] , ℎ (0) = 0 = ℎ (ℓ)} . (28)

Let 𝐵 = 𝐼, the identity operator on 𝐿2[0, ℓ]. By using
the notations 𝑧̃(𝑡) fl 𝑧(⋅, 𝑡), 𝑢̃(𝑡) fl 𝑢(⋅, 𝑡), 𝑓̃(𝑡, 𝑧̃(𝑡)) fl𝑓(𝑡, 𝑧(⋅, 𝑡)), (24) takes the form of a control system defined
on 𝐿2[0, ℓ] which is given below:

𝑑𝑧̃ (𝑡)𝑑𝑡 = 𝐴𝑧̃ (𝑡) + 𝑢̃ (𝑡) + 𝑓̃ (𝑡, 𝑧̃ (𝑡)) , 𝑡 ∈ [0, 𝜏] , (29)

𝑧̃ (0) = 𝑔0. (30)
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The 𝐶0 semigroup generated by the operator 𝐴 [22] is

𝑇 (𝑡) 𝑔 = ∞∑
𝑗=1

𝑒(−𝑗2𝜋2/ℓ2)𝑡 ⟨𝑔, 𝜙𝑗⟩𝜙𝑗,

where 𝜙𝑗 (𝑥) = √2ℓ sin(𝑗𝜋𝑥ℓ ) .
(31)

For 𝑢̃ ∈ U, the mild solution of (29) is given by

𝑧̃ (𝑡) = 𝑇 (𝑡) 𝑔0 + ∫𝑡
0
𝑇 (𝑡 − 𝑠) 𝑢̃ (𝑠) 𝑑𝑠

+ ∫𝑡
0
𝑇 (𝑡 − 𝑠) 𝑓̃ (𝑠, 𝑧̃ (𝑠)) 𝑑𝑠.

(32)

Let 𝐿0 : U→V be the operator defined by

𝐿0𝑢̃ = ∫𝜏
0
𝑇 (𝜏 − 𝑠) 𝑢̃ (𝑠) 𝑑𝑠. (33)

Then we have

(𝐿∗0V) (𝑠) fl ∞∑
𝑗=1

𝑒(−𝑗2𝜋2/ℓ2)(𝜏−𝑠) ⟨V, 𝜙𝑗⟩𝜙𝑗,

𝐿0𝐿∗0V = ∞∑
𝑗=1

𝜎2𝑗 ⟨V, 𝜙𝑗⟩𝜙𝑗,

where 𝜎2𝑗 fl [1 − 𝑒((−2𝑗2𝜋2/ℓ2)𝜏)2𝑗2𝜋2 ] ℓ2.

(34)

Since the semigroup (31) is compact, 𝐿 is a compact oper-
ator; consequently the control system (24) is approximately
controllable. The control system (24) satisfies Assumption 8.
Hence, the regularized control of system (24) for a given
target state 𝑔𝜏 (desired temperature profile) is obtained as
follows:

𝑧̃𝑛,𝜆 (𝑡) = 𝑇 (𝑡) 𝑔0 + ∫𝑡
0
𝑇 (𝑡 − 𝑠) 𝑢̃𝑛,𝜆 (𝑠) 𝑑𝑠

+ ∫𝑡
0
𝑇 (𝑡 − 𝑠) 𝑓̃ (𝑠, 𝑧̃𝑛−1,𝜆 (𝑠)) 𝑑𝑠,

(35)

where 𝑧̃𝑛,𝜆(𝜏) = 𝑔𝜏, for all 𝑛 = 0, 1, 2, . . ., and 𝑢̃𝑛,𝜆(𝑡) is a
control function such that 𝑧̃𝑛,𝜆(𝜏) = 𝑔𝜏.

𝐿0𝐿∗0V𝑛 = ∞∑
𝑗=1

𝜎2𝑗 ⟨V𝑛, 𝜙𝑗⟩𝜙𝑗,

(𝐿0𝐿∗0 + 𝜆𝐼) V𝑛 = ∞∑
𝑗=1

(𝜎2𝑗 + 𝜆) ⟨V𝑛, 𝜙𝑗⟩𝜙𝑗,
(𝐿∗0𝜙𝑗) (𝑠) = 𝑒(−𝑗2𝜋2/ℓ2)(𝜏−𝑠)𝜙𝑗.

(36)

We have

𝑢̃𝑛,𝜆 = 𝐿∗0 (𝐿0𝐿∗0 + 𝜆𝐼)−1 V𝑛. (37)

Thus, using (36) in (37) we get

𝑢̃𝑛,𝜆 (𝑠) = ∞∑
𝑗=1

1𝜎2𝑗 + 𝜆 ⟨V𝑛, 𝜙𝑗⟩ (𝐿
∗
0𝜙𝑗) (𝑠)

= ∞∑
𝑗=1

𝑒−𝑗2𝜋2(𝜏−𝑠)/ℓ2𝜎2𝑗 + 𝜆 ⟨V𝑛, 𝜙𝑗⟩𝜙𝑗, 𝑛 ∈ N.
(38)

Error involved in the regularization procedure is given by

V𝑛 − 𝐿0𝑢̃𝑛,𝜆 = ∞∑
𝑗=1

𝜆𝜎2𝑗 + 𝜆 ⟨V𝑛, 𝜙𝑗⟩𝜙𝑗, (39)

󵄩󵄩󵄩󵄩V𝑛 − 𝐿0𝑢̃𝑛,𝜆󵄩󵄩󵄩󵄩2 =
∞∑
𝑗=1

𝜆2
(𝜎2𝑗 + 𝜆)2

󵄨󵄨󵄨󵄨󵄨⟨V𝑛, 𝜙𝑗⟩󵄨󵄨󵄨󵄨󵄨2 , 𝑛 ∈ N. (40)

From (40), it is clear that ‖V𝑛 − 𝐿0𝑢̃𝑛,𝜆‖ → 0 as 𝜆 → 0.
Problem 12. Consider (24) and (25) with 𝑓(𝑡, 𝑧(𝑥, 𝑡)) =
𝑐 ∫1
0
‖𝑧(𝑥, 𝑡)‖2𝑑𝑥, and 𝑔0(𝑥) = sin(𝜋𝑥), 𝑡 ∈ 𝐽 fl [0, 2], ℓ = 1,𝑥 ∈ [0, 1]; that is,
𝜕𝑧𝜕𝑡 (𝑥, 𝑡) = 𝜕2𝑧𝜕𝑥2 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) + 𝑐 ∫

1

0
‖𝑧 (𝑥, 𝑡)‖2 𝑑𝑥, (41)

𝑧 (0, 𝑡) = 0 = 𝑧 (1, 𝑡) ,
𝑧 (𝑥, 0) = sin (𝜋𝑥) . (42)

Here we have the system constants:𝑀 = 1, 𝜏 = 2, 𝑡0 = 0, and𝑐 is the Lipschitz constant.
In order to obtain better approximation to the regularized

control, the regularization parameter 𝜆 can be chosen in
such a way that 𝜆 > 8𝑐2/(2 − 4𝑐)2, 𝑐 ̸= 1/2. Then the
semilinear control system (41) satisfies Assumption 8. Hence,
the convergence of the sequences of regularized controls{𝑢𝑛,𝜆} and the corresponding mild solutions {𝑥𝑛,𝜆} follows
fromTheorem 9.

4. Conclusions

In the mathematical control theory literature, Tikhonov
regularization is not given much attention to the problems
related to approximately controllable system. We use the
Tikhonov regularization method and exhibited a sequence of
regularized controls and their corresponding mild solutions.
The convergence of the sequences under some assumptions
has also been established. The results are illustrated with an
example.However, the casewhere𝐵 ̸= 𝐼 should be considered
for future work as the theory will change substantially.
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