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This paper presents a computational study of the stability of the steady state solutions of a biological model with negative feedback
and time delay.Themotivation behind the construction of our system comes from biological gene networks and themodel takes the
form of an integro-delay differential equation (IDDE) coupled to a partial differential equation. Linear analysis shows the existence
of a critical delay where the stable steady state becomes unstable. Closed form expressions for the critical delay and associated
frequency are found and confirmed by approximating the IDDE model with a system of 𝑁 delay differential equations (DDEs)
coupled to 𝑁 ordinary differential equations. An example is then given that shows how the critical delay for the DDE system
approaches the results for the IDDE model as𝑁 becomes large.

1. Introduction

New genetic experiments [1–3] andmathematical approaches
[4–6] have been developed to help us better understand
how genes interact within a cell. Theoretically, the structure
of these interactions or networks are represented by the
various chemical reactions happening at a certain time. If
the reactions under consideration only involve a few genes,
then their dynamic behavior could be understood intuitively
and, most likely, confirmed with a biochemical experiment
[2, 3]. However, if the system is formed of dozens of reactions,
then developing an intuitive understanding of the system’s
dynamicswould be difficult. Nevertheless, current research in
the computational sciences [7, 8] shows that the study of these
large gene networks is an important step which will help us
unravel some of themysteries in the field of cell biology [5, 6].

An important and popular modeling technique in the
applied sciences is based on differential equations in all its
various forms: linear [9], nonlinear [6, 10], partial [11], sto-
chastic [12, 13], and delayed [3, 6, 14]. In this study we focus
our attention to a differential equation model with constant
delay, where the delay arises naturally as the time lag asso-
ciated with various intracellular processes, like movement
within the cell, synthesis of proteins, and transcription of
DNA, among many others. The model that motivated this

work was studied previously by [4–6] and is given by the
following set of delay differential equations (DDEs):𝑑𝑚𝑑𝑡 = −𝜇𝑚𝑚(𝑡) + 𝐻 (𝑝 (𝑡 − 𝑇)) ,

𝑑𝑝𝑑𝑡 = 𝑚 (𝑡) − 𝜇𝑝𝑝 (𝑡) , (1)

where the time dependent variables are the mRNA concen-
tration, 𝑚(𝑡), and its associated protein concentration, 𝑝(𝑡),
and the constants 𝜇𝑚 and 𝜇𝑝 are the decay rates of the mRNA
and proteinmolecules, respectively.The function𝐻(𝑝(𝑡−𝑇))
is generally a Hill equation representing the rate of 𝑑𝑒𝑙𝑎𝑦𝑒𝑑
production of mRNA, where the delay, 𝑇, is assumed to be a
positive constant. The associated biochemical representation
of the system is given in Figure 1(a) and the biological context
is the following: a gene is copied onto mRNA in the nucleus,
which is then translated into a protein in the cytoplasm of
the cell. The protein then returns to the nucleus and acts
as a negative feedback regulator by repressing production of
mRNA (see [4–6] for more biological background).

In this paper, we analyze the steady state stability of a
model motivated by (1) and previously studied by the author
in [15]. The model is given by an integro-delay differential
equation (IDDE) coupled to a partial differential equation

Hindawi
International Journal of Differential Equations
Volume 2018, Article ID 5035402, 6 pages
https://doi.org/10.1155/2018/5035402

http://orcid.org/0000-0002-1023-3110
https://doi.org/10.1155/2018/5035402


2 International Journal of Differential Equations

Linear
decay, 

Protein

Re
pr

es
sio

n

Production
with delay, H((p − T))

Linear
production

mRNA
Linear
decay, 

(a)

Proteins

Proteins

Proteins
Cytoplasm

x

mRNA

DNA

Nucleus

(b)

Figure 1: (a) Biological circuit diagram of (1). Protein production, protein decay, and mRNA decay are assumed to be linear processes.
Production of mRNA is considered as a process affected by a delayed response of protein repression. Here the arrow (↑) represents activation
and the perpendicular symbol (⊥) represents repression. Solid and dashed lines represent direct chemical reactions and indirect regulatory
signals, respectively. Five small circles represent degradation byproducts. (b) Spatial distribution of protein production in the cytoplasm.
Protein synthesis happens at various locations from the nucleus. The distance from the nucleus is represented here by the variable 𝑥, where0 ≤ 𝑥 ≤ 1.
(PDE) and is characterized by an exponential “weighting”
function that regulates the net repression effect on mRNA
based on protein synthesis location. The model is given by𝑑𝑚𝑑𝑡 = −𝜇𝑚 + ∫1

0
𝑒−|𝑥−𝑥|𝐻(𝑝 (𝑥, 𝑡 − 𝑇)) 𝑑𝑥, (2)

𝑑𝑝𝑑𝑡 = 𝑚 − 𝜇𝑝, (3)

where 𝑚 = 𝑚(𝑥, 𝑡), 𝑝 = 𝑝(𝑥, 𝑡), and 𝑒−|𝑥−𝑥| is a weighting
function that accounts for a “stronger” mRNA repression for
proteins being synthesized closer to the nucleus than more
distant ones. The latter is due to the spatial distribution of
protein production within the cytoplasm, which occurs after
mRNA exits the nucleus and diffuses into the cytoplasm
where it is caught, read, and translated into a protein. The
exact location from the nucleus where this process occurs
is arbitrary and here we quantify it with a distance variable0 ≤ 𝑥 ≤ 1 as explained in Figure 1(b). The latter yields
the integral term in (2) which represents the total sum of
the repression effect that newly synthesized proteins have on
mRNA.

The current work extends our previous study [15] in two
different ways. First, the biological setup explained above
sets our model (2)-(3) on firmer modeling grounds from
our previous study [15]. Here we assume the variable 𝑥 is
“distance” from the nucleus, as opposed to 𝑥 being a variable
that represents gene sites in the DNA as argued in [15].
This is a crucial difference that yields a better understanding
of our computational results. Second, the results from the
analysis of the steady state and its associated stability are
now confirmed via MATLAB’s dde23.m, which provides
more accurate approximations and numerical simulations for

the associated 2𝑁-dimensional system. The latter was not
accomplished in [15] and thus presented here for the first
time.

The rest of the paper is organized as follows. In Section 2,
we present the associated linear stability analysis of (2)-(3)
and characterize the steady state solutions. Linear analysis
reveals the existence of a critical delay where the stable steady
state becomes unstable and thus closed form expressions for
the critical delay, 𝑇cr, and associated frequency 𝜔 are found.
In Section 3, we construct a system of 𝑁 DDEs coupled
to 𝑁 ordinary differential equations (ODEs) and use these
to confirm the results obtained in Section 2. A numerical
example is then given in Section 4, which shows how the
critical delay for the DDE system approaches the results for
the IDDEmodel as𝑁 becomes large. In Section 5, we discuss
our findings and conclusions.

2. Linear Stability Analysis

In this section, we consider the steady state behavior of (2)
and (3). Setting 𝑑𝑚/𝑑𝑡 = 𝑑𝑝/𝑑𝑡 = 0, we see from (3) that at
steady state 𝑚∗ = 𝜇𝑝∗, where (𝑚∗(𝑥), 𝑝∗(𝑥)) represents the
steady state solution. Substituting the latter into (2) gives

𝜇2𝑝∗ (𝑥) = ∫1
0
𝑒−|𝑥−𝑥|𝐻(𝑝∗ (𝑥)) 𝑑𝑥. (4)

Splitting the integration limits

𝜇2𝑝∗ (𝑥) = 𝑒−𝑥 ∫𝑥
0
𝑒𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥

+ 𝑒𝑥 ∫1
𝑥
𝑒−𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥, (5)
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and differentiating twice, we obtain an equivalent second-
order two-point boundary value problem (BVP) for the
equilibrium solution 𝑝∗ = 𝑝∗(𝑥)

𝑑2𝑝∗𝑑𝑥2 = 𝑝∗ − 2𝜇2𝐻(𝑝∗) , (6)

where the boundary conditions (BCs) are given by

𝑝∗ (0) = 1𝜇2 ∫10 𝑒−𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥,
𝑝∗ (1) = 1𝑒𝜇2 ∫10 𝑒𝑥𝐻(𝑝∗ (𝑥)) 𝑑𝑥. (7)

The BVP (6)–(7) has a unique solution as long as the right
hand side (RHS) of (6) has bounded, positive, and continuous
partial derivatives with respect to𝑝∗. For the rest of this work,
we let

𝐻(𝑝 (𝑥, 𝑡)) = 1 − 𝑝 (𝑥, 𝑡) , (8)

which allows mathematical tractability for the stability anal-
ysis presented below. Notice that since (8) satisfies all three
aforementioned BVP conditions, then we are guaranteed the
existence of a unique solution, which can be approximated
using a numerical technique for BVPs, such as finite differ-
ences or a shooting method. See Section 4 for an example.

To study the stability of the steady state solution(𝑚∗(𝑥), 𝑝∗(𝑥)), we set 𝑝(𝑥, 𝑡) = 𝑝∗(𝑥) + 𝜂(𝑥, 𝑡) and𝑚(𝑥, 𝑡) =𝑚∗(𝑥) + 𝜉(𝑥, 𝑡), substitute these into (2)-(3), and linearize the
resulting equations in 𝜂(𝑥, 𝑡) and 𝜉(𝑥, 𝑡) to obtain

𝑑𝜉𝑑𝑡 = −𝜇𝜉 − ∫1
0
𝑒−|𝑥−𝑥|𝜂𝑑 (𝑥) 𝑑𝑥, (9)

𝑑𝜂𝑑𝑡 = 𝜉 − 𝜇𝜂. (10)

Setting 𝜉(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝜆𝑡 and 𝜂(𝑥, 𝑡) = 𝜓(𝑥)𝑒𝜆𝑡 gives
−𝑒𝜆𝑇 (𝜆 + 𝜇) 𝜙 (𝑥) = ∫1

0
𝑒−|𝑥−𝑥|𝜓 (𝑥) 𝑑𝑥,

(𝜆 + 𝜇)𝜓 (𝑥) = 𝜙 (𝑥) , (11)

which yields

𝑟𝜓 (𝑥) = ∫1
0
𝑒−|𝑥−𝑥|𝜓 (𝑥) 𝑑𝑥, (12)

where the RHS has a symmetric integral kernel, 𝜓(𝑥) is an
eigenfunction, and 𝑟 is the associated eigenvalue given by

𝑟 = −𝑒𝜆𝑇 (𝜆 + 𝜇)2 . (13)

Since (12) is a self-adjoint operator of the form

𝐿 (⋅) = ∫1
0
𝐾 (𝑥, 𝑥) (⋅) 𝑑𝑥, (14)

then the eigenvalue problem (12) has real eigenvalues 𝑟 ∈ R.
To compute 𝑟, we transform the integral equation (12) to the
following equivalent second-order BVP:

𝑑2𝜓𝑑𝑥2 + 𝜌𝜓 = 0, (15)

with solutions

𝜓 (𝑥) = 𝑐1 sin (𝜌𝑥) + 𝑐2 cos (𝜌𝑥) , (16)

where 𝑐1 and 𝑐2 are constants and 𝜌 = √2/𝑟 − 1.The endpoint
BCs are obtained from (12) as follows:

𝜓 (0) = 𝜌2 + 12 ∫1
0
𝑒−𝑥𝜓 (𝑥) 𝑑𝑥,

𝜓 (1) = 𝜌2 + 12𝑒 ∫1
0
𝑒𝑥𝜓 (𝑥) 𝑑𝑥. (17)

Substituting the solution (16) into the BCs (17) gives the
system of equations

[ 𝜌 sin 𝜌 − cos 𝜌 − 𝑒 − sin 𝜌 − 𝜌 cos 𝜌 + 𝑒𝜌𝑒𝜌 sin 𝜌 − 𝑒 cos 𝜌 − 1 −𝑒 sin 𝜌 − 𝑒𝜌 cos 𝜌 + 𝜌][𝑐1𝑐2]= 0, (18)

which yields the condition on 𝜌 for nontrivial solutions

(𝜌2 − 1) sin 𝜌 − 2𝜌 cos 𝜌 = 0. (19)

Using a numerical root finding technique on (19), we obtain𝜌 = 1.30654, 3.67319, 6.58462, . . . which gives the corre-
sponding values for 𝑟 = 2/(1 + 𝜌2) = 0.73881, 0.13800,0.04509, . . .. Thus to determine 𝜆 from 𝑟 we have two cases:

(i) For 𝑇 = 0, (13) gives 𝜆 = −𝜇 ± √−𝑟 and since 𝑟 =2/(1 + 𝜌2) > 0 then Re(𝜆) = −𝜇 < 0 for 𝜇 > 0.
The latter shows that the equilibrium solution is stable
when there is no delay.

(ii) For 𝑇 = 𝑇cr and 𝜆 = 𝑖𝜔, (13) becomes 𝑟 = −𝑒𝑖𝜔𝑇cr(𝑖𝜔 +𝜇)2 which gives the two real equations

𝑟 = 2𝜇𝜔 sin (𝜔𝑇cr) + (𝜔2 − 𝜇2) cos (𝜔𝑇cr) ,
0 = (𝜔2 − 𝜇2) sin (𝜔𝑇cr) − 2𝜇𝜔 cos (𝜔𝑇cr) . (20)

Solving (20) for sin(𝜔𝑇cr) and cos(𝜔𝑇cr), and using the
identity sin2(𝜔𝑇cr) + cos2(𝜔𝑇cr) = 1, we obtain

𝜔 = √𝑟 − 𝜇2. (21)

Dividing the expressions for sin(𝜔𝑇cr) and cos(𝜔𝑇cr) and
solving for 𝑇cr, we obtain

𝑇cr = 1√𝑟 − 𝜇2 arctan(
2𝜇√𝑟 − 𝜇2𝑟 − 2𝜇2 ), (22)
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which gives the value of the delay where the equilibrium
solution loses stability. The smallest value for 𝑇cr is obtained
by setting 𝑟 = 0.73881 to obtain an expression in terms of the
decay rate 𝜇. In Section 4, we present a numerical example to
confirm these results.

3. Approximating the IDDE-PDE Equations
with a DDE-ODE System

To check our previous results, we “discretize” the variables𝜉(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) in (9) and (10) with a set of 2𝑁 variables𝜉𝑖(𝑡) and 𝜂𝑖(𝑡) for 𝑖 = 1, 2, . . . , 𝑁. This replaces the original
model (9) and (10) with a 2𝑁-dimensional system of𝑁DDEs
coupled to𝑁ODEs and replaces the integral in (9)with a sum
of𝑁 terms as follows:

̇𝜉𝑖 = −𝜇𝜉𝑖 − 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁𝜂𝑗 (𝑡 − 𝑇) ,
̇𝜂𝑖 = 𝜉𝑖 − 𝜇𝜂𝑖,

(23)

where 𝑖 = 1, 2, . . . , 𝑁. By assuming solutions of the form 𝜉𝑖 =𝜙𝑖𝑒𝜆𝑡 and 𝜂𝑖 = 𝜓𝑖𝑒𝜆𝑡 and substituting them into (23), we obtain

−𝑒𝜆𝑇 (𝜆 + 𝜇) 𝜙𝑖 = 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁𝜓𝑗,
(𝜆 + 𝜇) 𝜓𝑖 = 𝜙𝑖,

(24)

which yields the following eigenvalue problem:

𝑐𝜓𝑖 = 𝑁∑
𝑗=1

𝑒−|𝑖−𝑗|/𝑁𝜓𝑗, (25)

where 𝑐 = 𝑁𝑟 and 𝑟 = −𝑒𝜆𝑇(𝜆 + 𝜇)2. For nontrivial solutions,
system (25) of 𝑁 equations must satisfy det(𝐾 − 𝑐𝐼) = 0,
where 𝐾 is the 𝑁 × 𝑁 matrix 𝐾 = [𝑒−|𝑖−𝑗|/𝑁] and 𝑐 is its
associated eigenvalue. Since𝐾 is a symmetric matrix, then all
of its eigenvalues are real. Furthermore,𝐾 is positive definite
because det(𝑀𝑖𝑖) > 0 for 𝑖 = 1, 2, . . . , 𝑁, where𝑀𝑖𝑖 is the 𝑖th
minor of𝐾 along the main diagonal. Hence𝐾 is a symmetric
positive definite matrix, which shows that 𝑐 is a positive real
number.The steady state stability results are thus summarized
as follows:

(i) For 𝑇 = 0, we have that 𝜆 = −𝜇 ± √−𝑐/𝑁, where𝜇,𝑁, 𝑐 > 0. This shows that Re(𝜆) < 0 and so the
equilibrium solution with no delay is stable.

(ii) For 𝑇 = 𝑇cr, we take the smallest value of 𝑐 for any
given 𝑁 and use (21) and (22) to obtain values for 𝜔
and 𝑇cr where we set 𝑟 = 𝑐/𝑁. A numerical example
of this case is presented in the following section.

4. Numerical Example

In this section, we present a numerical example to compare
and confirm our previous results. From (6) and (8), we obtain𝑑2𝑝∗𝑑𝑥2 − 𝛾𝑝∗ = 1 − 𝛾, (26)
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Figure 2: Numerical comparison between the steady state solutions
for (29) and the 44-dimensional system given by (30). Here we also
present a time course simulation for 𝑁 = 22, which shows the
short transient response to equilibrium. The asterisk marks (∗) are
the numerical values extracted from 𝑡 = 40 in the time course
simulation for the 22 variables 𝑝𝑖 for 𝑖 = 1, 2, . . . , 22.
where 𝛾 = 1 + 2/𝜇2 > 0 gives the following solution:

𝑝∗ (𝑥) = 𝑐1 sinh (√𝛾𝑥) + 𝑐2 cosh (√𝛾𝑥) + 2𝜇2𝛾 . (27)

Substituting (27) into the BCs (7), we obtain

𝑐1 = (1 − 𝑒√𝛾)
⋅ ( 1 − √𝛾 − (1 + √𝛾) 𝑒√𝛾𝛾 [(𝜇2√𝛾 + 𝜇2 + 1) 𝑒2√𝛾 + 𝜇2√𝛾 − 𝜇2 − 1]) ,

𝑐2 = (1 + 𝑒√𝛾)
⋅ ( 1 − √𝛾 − (1 + √𝛾) 𝑒√𝛾𝛾 [(𝜇2√𝛾 + 𝜇2 + 1) 𝑒2√𝛾 + 𝜇2√𝛾 − 𝜇2 − 1]) .

(28)

Letting 𝜇 = 0.2, we obtain
𝑝∗ (𝑥) = 0.12 sinh (7.14𝑥) − 0.12 cosh (7.14𝑥)+ 0.98, (29)

which we have plotted in Figure 2 (solid). To confirm and
compare this result, we numerically integrate the system

𝑚̇𝑖 = −𝜇𝑚𝑖 + 1𝑁 𝑁∑𝑗=1𝑒−|𝑖−𝑗|/𝑁 (1 − 𝑝𝑗 (𝑡 − 𝑇)) ,
𝑝̇𝑖 = 𝑚𝑖 − 𝜇𝑝𝑖,

(30)

for 𝑁 = 22, 𝜇 = 0.2, and 𝑇 = 0 using MATLAB’s
built-in function dde23.m. Figure 2 shows a summary of the
comparison between (29) and the 44-dimensional system
(30), where we can see that good agreement was found
between both systems as 𝑁 becomes large. In addition,
Figure 2 also presents a time course simulation for 𝑁 = 22,
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Table 1: Numerical results for 𝜇 = 0.2 and various𝑁.

𝑁 𝑐 𝜔 𝑇cr

2 1.6065 0.87365 0.51518
5 3.7453 0.84206 0.55386
10 7.4137 0.83748 0.55982
15 11.0992 0.83663 0.56094
22 16.2655 0.83627 0.56142
30 22.1729 0.83612 0.56161
50 36.9457 0.83601 0.56175
100 73.8836 0.83596 0.56181
200 147.7634 0.83595 0.56183
1000 738.8111 0.83595 0.56184
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Figure 3: Numerical simulations for 𝜇 = 0.2,𝑁 = 22, and different delay values. Here we plotted 𝑝1, which serves as a representative for the
other 21 𝑝𝑖’s, since they all exhibit the same time course simulations. We can see that the equilibrium solution is stable for 𝑇 = 0.55 < 𝑇cr and
unstable for 𝑇 = 0.57 > 𝑇cr. For 𝑇cr = 0.56142 the system exhibits oscillations with a frequency 𝜔 = 2𝜋/period = 2𝜋/(99.794 − 92.281) =
0.83628. These are the simulations associated with the𝑁 = 22 case in Table 1.

where we exhibit the short transients to equilibrium for the
22 variables 𝑝𝑖 for 𝑖 = 1, 2, . . . , 22.

Now we use (21) and (22) to compute the critical delay
and frequency where the steady state 𝑝∗(𝑥) loses its stability.
For the IDDE system, setting 𝜇 = 0.2 in (29) gives the values𝜔 = 0.83595 and 𝑇cr = 0.56184, which we show as the
limiting value for the DDE system when 𝑁 becomes large.
Table 1 shows the results for 𝜇 = 0.2 for various values of 𝑁
and Figure 3 presents the numerical simulations for 𝜇 = 0.2,

𝑁 = 22, and various delay values using MATLAB’s dde23.m.
For the case 𝑁 = 22, Figure 3 shows that the equilibrium
solution is stable for 𝑇 = 0.55 < 𝑇cr and unstable for𝑇 = 0.57 > 𝑇cr. For 𝑇cr = 0.56142, the system exhibits
oscillations with a frequency 𝜔 = 2𝜋/period = 2𝜋/(99.794 −92.281) = 0.83628 as predicted. Notice that in Figure 3 we
only plotted 𝑝1, which we use as one of the representatives
for the other 21𝑝𝑖’s, since they all exhibit the same time course
simulation. Table 1 also shows the approach to the limiting
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value 𝑇cr = 0.56184 which was approximately achieved in a
system of 2000 equations.

5. Conclusions

In this work, we investigated the equilibrium solutions and
their associated stability of a biological model with negative
feedback and time delay. The model is formed of an IDDE
coupled to a PDE having time, 𝑡, and distance, 𝑥, as inde-
pendent variables.The study considers linear production and
degradation rates of mRNA and protein and an exponential
weighting function that models the net repression of all
proteins due to spatial distribution in the cytoplasm. Our
steady state analysis was accomplished by transforming the
steady state integral equation into a second-order two-point
boundary value problem, and it showed that the equilibrium
solution, 𝑝∗, depends on the distance, 𝑥. Stability analysis
then revealed that the nondelayed system is stable and that
there exists a critical value for the delaywhere the equilibrium
loses its stability.

We confirmed our results by “discretizing” our original
model and approximating it with a system of 𝑁 DDEs
coupled to 𝑁 ODEs. This resulted in a 2𝑁-dimensional
system with delay where numerical evaluations for different𝑁 were performed and good agreement was found with
the “continuous” IDDE counterpart as 𝑁 became large. In
particular, Table 1 shows that𝑇discrete

cr → 𝑇continuous
cr = 0.56184

as 𝑁 → ∞, which was confirmed using MATLAB’s built-
in function dde23.m on the full DDE model in a system
of 2000 equations. Unfortunately, there are no numerical
routines available in MATLAB for the simulation of IDDEs,
but our results confirm that it is possible to dissect and
understand the dynamics of such complicated equations via
a discretization approach, as the one presented in Section 3.
The currentwork corrects and extends our previous study [15]
via MATLAB’s dde23.m and thus providing more accurate
and reliable approximations (and numerical simulations) for
the associated 2𝑁-dimensional system used to confirm our
results. Table 1 summarizes and corrects our previous results
[15] by showcasing the 𝑁 = 22 numerical simulations and
their transition from stable to unstable behavior as seen in
Figure 3. It is thus hoped that our approach will be useful
to researchers in the field of computational mathematics and
gene networks trying to model physical or biological systems
characterized by IDDEs and PDEs. Future possible directions
for this work include choosing 𝐻(𝑝) nonlinear, multiple
delays, or a detailed bifurcation study proving that the system
undergoes a Hopf bifurcation when 𝑇 = 𝑇cr.
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