
Research Article
Computational Optimization of Residual Power
Series Algorithm for Certain Classes of Fuzzy Fractional
Differential Equations

Mohammad Alaroud,1 Mohammed Al-Smadi ,2

Rokiah Rozita Ahmad ,1 and Ummul Khair Salma Din 1

1School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
2Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan

Correspondence should be addressed to Rokiah Rozita Ahmad; rozy@ukm.edu.my

Received 9 February 2018; Revised 28 April 2018; Accepted 9 May 2018; Published 2 July 2018

Academic Editor: Carla Pinto

Copyright © 2018 Mohammad Alaroud et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper aims to present a novel optimization technique, the residual power series (RPS), for handling certain classes of fuzzy
fractional differential equations of order 1 < 𝛾 ≤ 2 under strongly generalized differentiability. The proposed technique relies on
generalized Taylor formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form.The
RPS algorithm is significant and straightforward tool for creating a fractional power series solution without linearization, limitation
on the problem’s nature, sort of classification, or perturbation. Some illustrative examples are provided to demonstrate the feasibility
of the RPS scheme.The results obtained show that the scheme is simple and reliable and there is good agreement with exact solution.

1. Introduction

Fuzzy fractional differential equation is hot and important
branch of mathematics. It has attracted much attention
recently due to potential applications in artificial intelligence,
industrial engineering, physics, chemistry, and other fields
of science. Parameters and variables in many of the nature
studies and technological processes that were designed utiliz-
ing the fractional differential equation (FDE) are specific and
completely defined. Indeed, such information may be vague
and uncertain because of experimentation and measurement
errors that then lead to uncertain models, which cannot
handle these studies. The process of analyzing the relative
influence of uncertainty in inputs information to outputs led
us to study solutions to the qualitative behavior of equations.
Therefore, it is necessary to obtain some mathematical tools
to understand the complex structure of uncertainty models
[1–5]. On the other hand, the theory of fractional calculus,
which is a generalization of classical calculus, deals with
the discussion of the integrals and derivatives of noninteger

order, has a long history, and dates back to the seven-
teenth century [6–10]. Different forms of fractional operators
are introduced to study FDEs such as Riemann–Liouville,
Grunwald-Letnikov, and Caputo. Out of these forms, the
Caputo concept is an appropriate tool for modeling practical
situations due to its countless benefits as it allows the process
to be performed based on initial and boundary conditions as
is traditional and its derivative is zero for constant [11–17].

The residual power series (RPS) method developed in
[18] is considered as an effective optimization technique
to determine and define the power series solution’s values
of coefficients of first- and second-order fuzzy differential
equations [19–22]. Furthermore, the RPS is characterized
as an applicable and easy technique to create power series
solutions for strongly linear and nonlinear equations without
being linearized, discretized, or exposed to perturbation [23–
27]. Unlike the classical power seriesmethod, the RPS neither
requires comparing the corresponding coefficients nor is a
recursion relation needed as well. Besides that, it calculates
the power series coefficients through chain of equations of
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one or more variables and offers convergence of a series
solution whose terms approach quickly, especially when the
exact solution is polynomial.

The remainder of this paper is organized as follows. In
Section 2, essential facts and results related to the fuzzy
fractional calculus will be shown. In Section 3, the concept
of Caputo’s H-differentiability will be presented together with
some closely related results. In Section 4, basic idea of the
RPS method will be presented to solve the fuzzy FDEs of
order 1 < 𝛾 ≤ 2. In Section 5, numerical application will
be performed to show capability, potentiality, and simplicity
of the method. Conclusions will be given in Section 6.

2. Preliminaries

In this section, necessary definitions and results relating
to fuzzy fractional calculus are presented. For the fuzzy
derivative concept, the strongly generalized differentiability
will be adopted, which is considered H-differentiability mod-
ification.

A fuzzy set V in a nonempty set 𝑈 is described by its
membership function V : 𝑈 → [0, 1]. So, for each 𝜂 ∈ 𝑈
the degree of membership of 𝜂 in V is defined by V(𝜂).
Definition 1 ([28]). Suppose that V is a fuzzy subset of R.
Then, V is called a fuzzy number such that V is upper
semicontinuous membership function of bounded support,
normal, and convex.

If V is a fuzzy number, then [V]𝜎 = [V1(𝜎), V2(𝜎)], where
V1(𝜎) = min{𝜂 | 𝜂 ∈ [V]𝜎} and V2(𝜎) = max{𝜂 | 𝜂 ∈ [V]𝜎}
for each 𝜎 ∈ [0, 1]. The symbol [V]𝜎 is called the 𝜎-level
representation or the parametric form of a fuzzy number V.

Theorem 2 ([29]). Suppose that V1, V2 : [0, 1] → R satisfy the
following conditions:

(1) V1 is a bounded nondecreasing function.

(2) V2 is a bounded nonincreasing function.

(3) V1(1) ≤ V2(1).
(4) for each 𝑘 ∈ (0, 1], lim𝜎→𝑘−V1(𝜎) = V1(𝑘) and

lim𝜎→𝑘−V2(𝜎) = V2(𝑘).
(5) lim𝜎→0+V1(𝜎) = V1(0) and lim𝜎→0+V2(𝜎) = V2(0).

Then V : R→ [0, 1] given by V(𝑥) = sup{𝜎 | V1(𝜎) ≤ 𝑥 ≤ V(𝜎)}
is a fuzzy number with parameterization [V1(𝜎), V2(𝜎)].
Definition 3 ([29]). Let V, 𝑤 ∈ RF. If there exists an element
P ∈ RF such that V = 𝑤 + P, then we say that P is the
Hukuhara difference (H-difference) of V and 𝑤, denoted by
V ⊖ 𝑤.

The sign ⊖ stands always for Hukuhara difference.Thus, it
should be noted that V ⊖𝑤 ̸= V + (−1)𝑤.Normally, V + (−1)𝑤
is denoted by V − 𝑤. If the H-difference V ⊖ 𝑤 exists, then[V ⊖ 𝑤]𝜎 = [V1(𝜎) − 𝑤1(𝜎), V2(𝜎) − 𝑤2(𝜎)].

Definition 4 ([30]). The complete metric structure on RF is
given by the Hausdorff distance mapping 𝐷𝐻 : RF × RF →
R+ ∪ {0} such that

𝐷𝐻 (V, 𝑤) = sup0≤𝜎≤1max {󵄨󵄨󵄨󵄨V1𝜎 − 𝑤1𝜎󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V2𝜎 − 𝑤2𝜎󵄨󵄨󵄨󵄨} , (1)

for arbitrary fuzzy numbers V = (V1, V2) and 𝑤 = (𝑤1, 𝑤2).
Definition 5 ([30]). Let 𝜑 : [𝑎, 𝑏] → RF. Then the function 𝜑
is continuous at 𝑥0 ∈ [𝑎, 𝑏] if for every 𝜖 > 0, ∃𝛿 = 𝛿(𝑥0, 𝜖) >0 such that𝐷𝐻(𝜑(𝑥), 𝜑(𝑥0)) < 𝜖, for each𝑥 ∈ [𝑎, 𝑏], whenever|𝑥 − 𝑥0| < 𝛿.
Remark 6. If the function 𝜑(𝑥) is continuous for each 𝑥 ∈[𝑎, 𝑏], where the continuity is one-sided at endpoints of [𝑎, 𝑏],
then 𝜑(𝑥) is continuous function on [𝑎, 𝑏]. This means that𝜑(𝑥) is continuous on [𝑎, 𝑏] if and only if 𝜑1𝜎 and 𝜑2𝜎 are
continuous on [𝑎, 𝑏].
Definition 7 ([28]). For fixed 𝑥0 ∈ [𝑎, 𝑏] and 𝜑 : [𝑎, 𝑏] → RF,
the function 𝜑 is called a strongly generalized differentiable at𝑥0, if there is an element 𝜑󸀠(𝑥0) ∈ RF such that either

(i) the H-differences 𝜑(𝑥0 + 𝜉) ⊖ 𝜑(𝑥0), 𝜑(𝑥0) ⊖ 𝜑(𝑥0 −𝜉) exist, for each 𝜉>0 sufficiently tends to 0 and
lim𝜉→0+((𝜑(𝑥0 + 𝜉) ⊖ 𝜑(𝑥0))/𝜉) = 𝜑󸀠(𝑥0) =
lim𝜉→0+((𝜑(𝑥0) ⊖ 𝜑(𝑥0 − 𝜉))/𝜉), or

(ii) the H-differences 𝜑(𝑥0) ⊖ 𝜑(𝑥0 + 𝜉), 𝜑(𝑥0 − 𝜉) ⊖𝜑(𝑥0) exist, for each 𝜉>0 sufficiently tends to 0 and
lim𝜉→0+((𝜑(𝑥0) ⊖ 𝜑(𝑥0 + 𝜉))/ − 𝜉) = 𝜑󸀠(𝑥0) =
lim𝜉→0+((𝜑(𝑥0 − 𝜉) ⊖ 𝜑(𝑥0))/ − 𝜉),

where the limit here is taken in the complete metric space(RF, 𝐷𝐻).
Theorem 8 ([31]). Suppose that 𝜑 : [𝑎, 𝑏] → RF, where[𝜑(𝑥)]𝜎 = [𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)], ∀𝜎 ∈ [0, 1], then

(1) the functions 𝜑1𝜎 and 𝜑2𝜎 are two differentiable func-
tions and [𝐷11𝜑(𝑥)]𝜎 = [𝜑󸀠1𝜎(𝑥), 𝜑󸀠2𝜎(𝑥)], when 𝜑 is (1)-
differentiable;

(2) the functions 𝜑1𝜎 and 𝜑2𝜎 are two differentiable func-
tions and [𝐷12𝜑(𝑥)]𝜎 = [𝜑󸀠2𝜎(𝑥), 𝜑󸀠1𝜎(𝑥)], when 𝜑 is (2)-
differentiable.

Definition 9 ([31]). Suppose that 𝜑 : [𝑎, 𝑏] → RF. One can
say that 𝜑 is (𝑛,𝑚)-differentiable at 𝑥0 ∈ (𝑎, 𝑏), if 𝐷1𝑛𝜑 exists
on a neighborhood of 𝑥0 as a fuzzy function and it is (𝑚)-
differentiable at 𝑥0.The second-order derivatives of 𝜑 at 𝑥 are
indicated by 𝜑󸀠󸀠(𝑥) = 𝐷2𝑛,𝑚𝜑(𝑥) for 𝑛,𝑚 = {1, 2}.
Theorem 10 ([32]). Let 𝐷11𝜑 : [𝑎, 𝑏] → RF and 𝐷12𝜑 :[𝑎, 𝑏] → RF, where [𝜑(𝑥)]𝜎 = [𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)] for each𝜎 ∈ [0, 1]:

(1) If𝐷11𝜑 is (1)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷21,1𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠1𝜎(𝑥), 𝜑󸀠󸀠2𝜎(𝑥)],

(2) If𝐷11𝜑 is (2)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷21,2𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠2𝜎(𝑥), 𝜑󸀠󸀠1𝜎(𝑥)],



International Journal of Differential Equations 3

(3) If𝐷12𝜑 is (1)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷22,1𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠2𝜎(𝑥), 𝜑󸀠󸀠1𝜎(𝑥)],

(4) If𝐷12𝜑 is (2)-differentiable, then 𝜑󸀠1𝜎 and 𝜑󸀠2𝜎 are differ-
entiable functions and [𝐷22,2𝜑(𝑥)]𝜎 = [𝜑󸀠󸀠1𝜎(𝑥), 𝜑󸀠󸀠2𝜎(𝑥)].

Definition 11 ([32]). Let 𝜑 : [𝑎, 𝑏] → RF and 𝜑 ∈ 𝐶F[𝑎, 𝑏] ∩𝐿F[𝑎, 𝑏]. One can say that 𝜑 is Caputo fuzzy𝐻-differentiable
at 𝑥 when (𝐶𝐷𝛾𝑎+𝜑)(𝑥) = (1/Γ(1 − 𝛾)) ∫𝑥𝑎 𝜑󸀠(𝜏)/(𝑥 − 𝜏)𝛾𝑑𝜏
exists, where 0 < 𝛾 ≤ 1. Also, we say that𝜑 is Caputo [(1)−𝛾]-
differentiable if 𝜑 is (1)-differentiable and 𝜑 is Caputo [(2) −𝛾] differentiable if 𝜑 is (2)-differentiable, where 𝐶F[𝑎, 𝑏] and𝐿F[𝑎, 𝑏] stand for the space of all continuous and Lebesque
integrable fuzzy-valued functions on [𝑎, 𝑏], respectively.
Theorem 12 ([33]). Let 0 < 𝛾 ≤ 1 and 𝜑 ∈ 𝐶F[𝑎, 𝑏].Then, for
each 𝜎 ∈ [0, 1], the Caputo fuzzy fractional derivative exists on(𝑎, 𝑏) such that

[(𝐶𝐷𝛾𝑎+𝜑) (𝑥)]𝜎 = [ 1Γ (1 − 𝛾)
⋅ ∫𝑥
𝑎

𝜑󸀠1𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏, 1Γ (1 − 𝛾) ∫
𝑥

𝑎

𝜑󸀠2𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏]
(2)

for (1)-differentiable and

[(𝐶𝐷𝛾𝑎+𝜑) (𝑥)]𝜎 = [ 1Γ (1 − 𝛾)
⋅ ∫𝑥
𝑎

𝜑󸀠2𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏, 1Γ (1 − 𝛾) ∫
𝑥

𝑎

𝜑󸀠1𝜎 (𝜏)(𝑥 − 𝜏)𝛾 𝑑𝜏]
(3)

for (2)-differentiable.

Thenext characterization theorem shows away to convert
the FFDEs into a system of ordinary fractional differential
equations (OFDEs), ignoring the fuzzy setting approach.

Theorem 13 ([34]). Consider the below fuzzy fractional IVPs

(C𝐷𝛾
𝑡0

+𝜑) (𝑡) = 𝑓 (𝑡, 𝜑 (𝑡)) , 𝑡 > 𝑡0, (4)

subject to

𝜑 (𝑡0) = 𝜑0, (5)

where 𝑓 : [𝑎, 𝑏] ×RF → RF such that
(i) [𝑓(𝑡, 𝜑(𝑡))]𝜎 = [𝑓1𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)), 𝑓2𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡))].
(ii) for any 𝜖 > 0 there exist 𝛿 > 0 such that |𝑓1𝜎(𝑡, 𝑠, 𝑢) −𝑓1𝜎(𝑡1, 𝑠1, 𝑢1)| < 𝜖 and |𝑓2𝜎(𝑡, 𝑠, 𝑢) − 𝑓2𝜎(𝑡1, 𝑠1, 𝑢1)| < 𝜖, ∀𝜎 ∈[0, 1], whenever (𝑡, 𝑠, 𝑢) and (𝑡1, 𝑠1, 𝑢1) ∈ [𝑎, 𝑏]×R2, ‖(𝑡, 𝑠, 𝑢)−(𝑡1, 𝑠1, 𝑢1)‖R3 < 𝛿 and 𝑓1𝜎, 𝑓2𝜎 are uniformly bounded on any

bounded set.
(iii) there is a constant (say) ℓ > 0 such that󵄨󵄨󵄨󵄨𝑓1𝜎 (𝑡2, 𝑠2, 𝑢2) − 𝑓1𝜎 (𝑡1, 𝑠1, 𝑢1)󵄨󵄨󵄨󵄨

≤ ℓ.max {󵄨󵄨󵄨󵄨𝑠2 − 𝑠1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑢2 − 𝑢1󵄨󵄨󵄨󵄨} , ∀𝜎 ∈ [0, 1] (6)

and 󵄨󵄨󵄨󵄨𝑓2𝜎 (𝑡2, 𝑠2, 𝑢2) − 𝑓2𝜎 (𝑡1, 𝑠1, 𝑢1)󵄨󵄨󵄨󵄨
≤ ℓ.max {󵄨󵄨󵄨󵄨𝑠2 − 𝑠1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑢2 − 𝑢1󵄨󵄨󵄨󵄨} , ∀𝜎 ∈ [0, 1] . (7)

Therefore, there are two systems of OFDEs that are equivalent
to FFDEs (4) and (5) as follows:

Case 1. When 𝜑(𝑡) is Caputo [(1)-𝛾]-differentiable
(C𝐷𝛾
𝑡0

+𝜑1𝜎) (𝑡) = 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑡0

+𝜑2𝜎) (𝑡) = 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) , (8)

with 𝜑1𝜎(𝑡0) = 𝜑01𝜎, 𝜑2𝜎(𝑡0) = 𝜑02𝜎.
Case 2. When 𝜑(𝑡) is Caputo [(2)-𝛾]-differentiable

(𝐶𝐷𝛾
𝑡0

+𝜑1𝜎) (𝑡) = 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(𝐶𝐷𝛾
𝑡0

+𝜑2𝜎) (𝑡) = 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) , (9)

with 𝜑1𝜎(𝑡0) = 𝜑01𝜎, 𝜑2𝜎(𝑡0) = 𝜑02𝜎.
3. Formulation of Fuzzy Fractional IVPs of
Order 1 < 𝛾 ≤ 2

Consider the below fuzzy fractional differential equation

(C𝐷𝛾
𝑎+
𝜑) (𝑡) = 𝑔 (𝑡) 𝜑󸀠 (𝑡) + 𝑓 (𝑡, 𝜑 (𝑡)) ,

𝑎 ≤ 𝑡 ≤ 𝑏, 1 < 𝛾 ≤ 2, (10)

subject to fuzzy initial conditions

𝜑 (𝑎) = 𝛼,
𝜑󸀠 (𝑎) = 𝛽. (11)

where 𝛼, 𝛽 ∈ RF, 𝑓 : [𝑎, 𝑏] × RF → RF is a linear
or nonlinear continuous fuzzy-valued function, 𝑔(𝑡) is a
continuous real valued function with nonnegative values on[𝑎, 𝑏], and 𝜑(𝑡) is unknown analytical fuzzy function to be
determined. We assume that the fuzzy fractional IVPs (10)
and (11) have unique smooth solution on the domain of
interest.

Next, some theorems and definitions which are used later
in this paper are presented.

Definition 14. Let 𝜑 : [𝑎, 𝑏] → RF be fuzzy function such
that 𝜑, 𝜑󸀠 ∈ 𝐶F[𝑎, 𝑏]∩𝐿F[𝑎, 𝑏]. Then, for 1 < 𝛾 ≤ 2, Caputo’s
H-derivative of 𝜑 at 𝑥 ∈ (𝑎, 𝑏) is defined as

(𝐶𝐷𝛾𝑎+𝜑) (𝑥) = 1Γ (2 − 𝛾) ∫
𝑥

𝑎
𝜑󸀠󸀠 (𝜏) (𝑥 − 𝜏)1−𝛾𝑑𝜏. (12)

Also, we say that 𝜑 is Caputo [(𝑛,𝑚) − 𝛾]-differentiable
for 𝑛,𝑚 ∈ {1, 2}, when (𝐶𝐷𝛾𝑎+𝜑)(𝑥) exists, and 𝜑 is (𝑛,𝑚)-
differentiable.
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Theorem 15. Let 𝜑, 𝜑󸀠 ∈ 𝐶F[𝑎, 𝑏], such that [𝜑(𝑥)]𝜎 =[𝜑1𝜎(𝑥), 𝜑2𝜎(𝑥)], ∀𝜎 ∈ [0, 1]. Caputo’s H-derivative of order1 < 𝛾 ≤ 2 exists on (𝑎, 𝑏) such that
(i) If 𝜑 is (1,1)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥)].

(ii) If 𝜑 is (1,2)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥)].

(iii) If 𝜑 is (2,1)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥), (𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥)].

(iv) If 𝜑 is (2,2)-differentiable, then [(𝐶𝐷𝛾𝑎+𝜑)(𝑥)]𝜎 =[𝑀∫𝑥
𝑎
𝜑󸀠󸀠1𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏,𝑀∫𝑥𝑎 𝜑󸀠󸀠2𝜎(𝜏)(𝑥 − 𝜏)1−𝛾𝑑𝜏] =[(𝐶𝐷𝛾𝑎+𝜑1𝜎)(𝑥), 𝐶𝐷𝛾𝑎+𝜑2𝜎)(𝑥)], where𝑀 = 1/Γ(2 − 𝛾).

The (𝑛,𝑚)-solution of fuzzy fractional IVPs (10) and
(11) is a function 𝜑 : [𝑎, 𝑏] → RF that has Caputo
[(𝑛,𝑚) − 𝛾]-differentiable and satisfies the FFIVPs (10) and
(11). To compute it, we firstly convert the fuzzy problem into
equivalent system of second OFDEs, called correspondence(𝑛,𝑚)-system, based upon the type of derivative chosen.
Then, by utilizing the 𝜎-cut representation of 𝜑(𝑡), 𝑓(𝑡, 𝜑(𝑡)),
and the initial data in (11) such that [𝜑(𝑡)]𝜎 = [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)],[𝑓(𝑡, 𝜑(𝑡))]𝜎 = [𝑓1𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)), 𝑓2𝜎(𝑡, 𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡))],[𝜑(𝑎)]𝜎 = [𝜑1𝜎(𝑎), 𝜑2𝜎(𝑎)] = [𝛼1𝜎, 𝛼2𝜎], and [𝜑󸀠(𝑎)]𝜎 =[𝜑󸀠1𝜎(𝑎), 𝜑󸀠2𝜎(𝑎)] = [𝛽1𝜎, 𝛽2𝜎], the following corresponding(𝑛,𝑚)-systems will be hold:

(i) (1,1)-system such that

(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(13)

(ii) the (1,2)-system such that

(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(14)

(iii) the (2,1)-system such that

(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(15)

(iv) the (2,2)-system such that

(C𝐷𝛾
𝑎+
𝜑1𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)

+ 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(C𝐷𝛾
𝑎+
𝜑2𝜎) (𝑡) = 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)

+ 𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,
(16)

subject to initial conditions

𝜑1𝜎 (𝑎) = 𝛼1𝜎,
𝜑󸀠1𝜎 (𝑎) = 𝛽1𝜎,
𝜑2𝜎 (𝑎) = 𝛼2𝜎,
𝜑󸀠2𝜎 (𝑎) = 𝛽2𝜎.

(17)

Theorem 16 ([33]). Let 𝑛,𝑚 ∈ {1, 2} and let [𝜑(𝑡)]𝜎 =[𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)] be an (𝑛,𝑚)-solution of FFIVPs (10) and (11)
on [𝑎, 𝑏]. Then, 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡) will be a solution to the
associated (𝑛,𝑚)-system.

Theorem 17 ([33]). Let 𝑛,𝑚 ∈ {1, 2} and let 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡)
be the solution of (𝑛,𝑚)-system for each 𝜎 ∈ [0, 1]. If [𝜑(𝑡)]𝜎 =[𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)] has valid level sets and 𝜑(𝑡) is Caputo [(𝑛,𝑚)−𝛾]-differentiable, then 𝜑(𝑡) is an (𝑛,𝑚)-solution of FFIVPs (10)
and (11) on [𝑎, 𝑏].

The aim of the next algorithm is to perform a strategy
to solve the FFIVPs (10) and (11) in terms of its 𝜎-cut
representation form. Indeed, there are four cases that depend
on type of differentiability.

Algorithm 18. To determine the solutions of FFIVPs (10) and
(11), do the following:

Case (I). If 𝜑(𝑡) is Caputo [(1,1)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (13) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)] and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (1,1)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

Case (II). If 𝜑(𝑡) is Caputo [(1,2)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (14) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (1,2)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].
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Case (III). If 𝜑(𝑡) is Caputo [(2,1)-𝛾]-differentiable and the
FFIVPs (10) and (11) will be converted to crisp system
described in (15) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (2,1)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

Case (IV). If 𝜑(𝑡) is Caputo [(2,2)-𝛾]-differentiable and
the FFIVPs (10) and (11) will be converted to crisp system
described in (16) and (17), then do the following steps:

Step 1: Solve the required system.
Step 2:Ensure that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for each 𝜎 ∈ [0, 1].
Step 3: Construct (2,2)-solution 𝜑(𝑡) whose 𝜎-cut
representation is [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)].

4. Description of Fractional RPS Method

In this section, the RPS scheme is presented for constructing
an analytical solution of FFIVPs (10) and (11) through
substituting the expansion of fractional power series (FPS)
among the truncated residual functions. In view of that, the
resultant equation helps us to derive a recursion formula
for the coefficients’ computation, where the coefficients can
be computed recursively through the recurrent fractional
differentiating of the truncated residual function.

Definition 19 ([35]). A fractional power series (FPS) repre-
sentation at 𝑡0 has the following form:

∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛾 = 𝑐0 + 𝑐1 (𝑡 − 𝑡0)𝛾 + 𝑐2 (𝑡 − 𝑡0)2𝛾 + . . . , (18)

where 0 ≤ 𝑚 − 1 < 𝛾 ≤ 𝑚, 𝑡 ≥ 𝑡0, and 𝑐𝑛’s are the coefficients
of the series.

Theorem 20 ([35]). Suppose that 𝑓 has the following FPS
representation at 𝑡0:

𝑓 (𝑡) = ∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛾 , (19)

where 𝑓(𝑡) ∈ 𝐶[𝑡0, 𝑡0 + 𝑅) and C𝐷𝑛𝛾𝑓(𝑡) ∈ 𝐶(𝑡0, 𝑡0 + 𝑅) for𝑛 = 0, 1, 2, . . .; then the coefficients 𝑐𝑛 will be in the form 𝑐𝑛 =
C𝐷𝑛𝛾𝑓(𝑡0)/Γ(1 + 𝑛𝛾) such that C𝐷𝑛𝛾 = C𝐷𝛾 ⋅ C𝐷𝛾 ⋅ . . . ⋅ C𝐷𝛾
(𝑛-times).

Conveniently, for obtaining (𝑛,𝑚)-solution of FFIVPs
(10) and (11) utilizing the solution of the corresponding(𝑛,𝑚)-system, we will explain the fashion to determine(1, 1)-solution equivalent to the solution for the system of
OFDEs (13) and (17). Further, samemanner can be applied to
construct other type of (𝑛,𝑚)-solutions. To achieve our goal,

assume that the solution of OFDEs (13) and (17) at 𝑡0 = 0 has
the following form:

𝜑1𝜎 (𝑡) = ∞∑
𝑛=0

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = ∞∑

𝑛=0

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(20)

Since 𝜑1𝜎(𝑡) and 𝜑2𝜎(𝑡) satisfy the initial conditions in
(17), then the following polynomials 𝜑1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 and𝜑2𝜎(𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 will be the initial guesses for the system
and the solutions can also be represented by

𝜑1𝜎 (𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(21)

Consequently, the 𝑘𝑡ℎ-truncated series solutions can be
given by

𝜑𝑘,1𝜎 (t) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + 𝑘∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑𝑘,2𝜎 (t) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + 𝑘∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(22)

The residual functions 𝑅𝑒𝑠1𝜎(𝑡) and 𝑅𝑒𝑠2𝜎(𝑡) are defined
as follows:

𝑅𝑒𝑠1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,

𝑅𝑒𝑠2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2𝜎 (𝑡)
−𝑓2𝜎 (𝑡, 𝜑1𝜎 (𝑡) , 𝜑2𝜎 (𝑡)) ,

(23)

and the 𝑘𝑡ℎ-residual functions 𝑅𝑒𝑠𝑘,1𝜎(𝑡) and 𝑅𝑒𝑠𝑘,2𝜎(𝑡) for𝑘 = 1, 2, 3, . . . 𝑛 are defined as follows:

𝑅𝑒𝑠𝑘,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑𝑘,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠𝑘,1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑𝑘,1𝜎 (𝑡) , 𝜑𝑘,2𝜎 (𝑡)) ,

𝑅𝑒𝑠𝑘,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑𝑘,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠𝑘,2𝜎 (𝑡)
−𝑓2𝜎 (𝑡, 𝜑𝑘,1𝜎 (𝑡) , 𝜑𝑘,2𝜎 (𝑡)) .

(24)

From (23), we have 𝑅𝑒𝑠𝑛𝜎(𝑡) = 0 and lim𝑘→∞𝑅𝑒𝑠𝑘,𝑛𝜎(𝑡) =𝑅𝑒𝑠𝑛𝜎 ≡ 0 for 𝑛 = 1, 2 and each 𝑡 ≥ 0, which
leads to C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(𝑡) = 0. Also, the fractional derivatives
C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(𝑡) and C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(𝑡) are equivalent at 𝑡 =0 for each 𝑚 = 0, 1, 2, . . . , 𝑘, that is, C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑛𝜎(0) =
C𝐷𝑚𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(0) = 0. However, C𝐷(𝑘−1)𝛾𝑡 𝑅𝑒𝑠𝑘,𝑛𝜎(0) = 0 holds
for 𝑛 = 1, 2.
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Regarding employing the RPS algorithm to obtain the 1st
unknown coefficients, 𝑐1and 𝑑1, substitute the 1st approxima-
tions 𝜑1,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) and 𝜑1,2𝜎(𝑡) =𝛼2𝜎 + 𝛽2𝜎𝑡 + 𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st residual functions𝑅𝑒𝑠1,1𝜎(𝑡) and 𝑅𝑒𝑠1,2𝜎(𝑡) of (24) such that

𝑅𝑒𝑠1,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1,1𝜎 (𝑡)
− 𝑓1𝜎 (𝑡, 𝜑1,1𝜎 (𝑡) , 𝜑1,2𝜎 (𝑡)) ,

𝑅𝑒𝑠1,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑1,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠1,2𝜎 (𝑡)
− 𝑓2𝜎 (𝑡, 𝜑1,1𝜎 (𝑡) , 𝜑1,2𝜎 (𝑡)) ,

(25)

and based upon the facts 𝑅𝑒𝑠1,1𝜎(0) = 𝑅𝑒𝑠1,2𝜎(0) = 0, we have𝑐1 = 𝑔(0)𝜑󸀠1,1𝜎(0) − 𝑓1𝜎(0, 𝛼1𝜎, 𝛼2𝜎) and 𝑑1 = 𝑔(0)𝜑󸀠1,2𝜎(0) −𝑓2𝜎(0, 𝛼1𝜎, 𝛼2𝜎). Therefore, the 1st RPS approximate solutions
can be written as

𝜑1,1𝜎 (t)
= 𝛼1𝜎 + 𝛽1𝜎𝑡
+ (𝑔 (0) 𝜑󸀠1,1𝜎 (0) − 𝑓1𝜎 (0, 𝛼1𝜎, 𝛼2𝜎)) 𝑡𝛾Γ (1 + 𝛾) ,

𝜑1,2𝜎 (t)
= 𝛼2𝜎 + 𝛽2𝜎𝑡
+ (𝑔 (0) 𝜑󸀠1,2𝜎 (0) − 𝑓2𝜎 (0, 𝛼1𝜎, 𝛼2𝜎)) 𝑡𝛾Γ (1 + 𝛾) .

(26)

Currently, for the 2nd unknown coefficients, 𝑐2 and 𝑑2
substitute 𝜑2,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∑2𝑛=1 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) and𝜑2,2𝜎(𝑡) = 𝛼2𝜎 + 𝛽2𝜎𝑡 + ∑2𝑛=1 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) into the 2nd
residual functions, 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) of (24) such that

𝑅𝑒𝑠2,1𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2,1𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2,1𝜎 (𝑡)
−𝑓1𝜎 (𝑡, 𝜑2,1𝜎 (𝑡) , 𝜑2,2𝜎 (𝑡)) ,

𝑅𝑒𝑠2,2𝜎 (𝑡) = (𝐶𝐷𝛾0+𝜑2,2𝜎) (𝑡) − 𝑔 (𝑡) 𝜑󸀠2,2𝜎 (𝑡)
− 𝑓2𝜎 (𝑡, 𝜑2,1𝜎 (𝑡) , 𝜑2,2𝜎 (𝑡)) .

(27)

Then, by applying the fractional derivative C𝐷𝛾𝑡 on
both sides of 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡), using the facts
C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0 as well, the values of 𝑐2
and 𝑑2 will be given by

𝑐2 = Γ (2𝛾)Γ (𝛾) (
Γ (𝛾) 𝛽1𝜎 (C𝐷𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐1 (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓1𝜎 (0, 𝑐1, 𝑑1)Γ (2𝛾) − (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨𝑡=0 ) ,

𝑑2 = Γ (2𝛾)Γ (𝛾) (
Γ (𝛾) 𝛽2𝜎 (C𝐷𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑1 (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓2𝜎 (0, 𝑐1, 𝑑1)Γ (2𝛾) − (C𝐷𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨𝑡=0 ) .

(28)

For the 3rd unknown coefficients, 𝑐3 and 𝑑3 substitute𝜑3,1𝜎(𝑡) = 𝛼1𝜎 + 𝛽1𝜎𝑡 + ∑3𝑛=1 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) and 𝜑3,2𝜎(𝑡) =𝛼2𝜎 + 𝛽2𝜎𝑡 + ∑3𝑛=1 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) into the 3rd residual
functions, 𝑅𝑒𝑠3,1𝜎(𝑡) and 𝑅𝑒𝑠3,2𝜎(𝑡) of (24), and then by

computing C𝐷2𝛾𝑡 𝑅𝑒𝑠3,1𝜎(𝑡) and C𝐷2𝛾𝑡 𝑅𝑒𝑠3,2𝜎(𝑡) and using the
facts C𝐷2𝛾𝑡 𝑅𝑒𝑠3,1𝜎(0) = C𝐷2𝛾𝑡 𝑅𝑒𝑠3,2𝜎(0) = 0, the coefficients,𝑐3 and 𝑑3, will be given such that

𝑐3
= Γ (3𝛾)Γ (𝛾) Γ (2𝛾) (

Γ (𝛾) Γ (2𝛾) 𝛽1𝜎 (C𝐷2𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐1 ( C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑐2 (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓1𝜎 (0, 𝑐2, 𝑑2)Γ (3𝛾) − (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡3𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 ) ,
𝑑3
= Γ (3𝛾)Γ (𝛾) Γ (2𝛾) (

Γ (𝛾) Γ (2𝛾) 𝛽2𝜎 (C𝐷2𝛾𝑡 (𝑔 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑1 ( C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑑2 (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡2𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝑓2𝜎 (0, 𝑐2, 𝑑2)Γ (3𝛾) − (C𝐷2𝛾𝑡 (𝑔 (𝑡) .𝑡3𝛾−1)󵄨󵄨󵄨󵄨󵄨𝑡=0 ) .

(29)

Using similar argument, the 4th unknown coef-
ficients, 𝑐4 and 𝑑4, will be given utilizing the facts
C𝐷3𝛾𝑡 𝑅𝑒𝑠4,1𝜎(0) = C𝐷3𝛾𝑡 𝑅𝑒𝑠3,1𝜎(0) = 0. The same manner

can be repeated until we obtain on the coefficients’
arbitrary order of the FPS solution for the OFDE
(13).
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5. Numerical Simulation and Discussion

This section aims to verify the efficiency and applicability
of the proposed algorithm by applying the RPS method to
a numerical example. Here, all necessary calculations and
analysis are done using Mathematica 10.

For this purpose, let us consider the fuzzy fractional
differential equation

(C𝐷𝛾
0+
𝜑) (𝑡) = 𝜇, 0 ≤ 𝑡 ≤ 1, (30)

with the fuzzy initial conditions

𝜑 (0) = 𝛼,
𝜑󸀠 (0) = 𝛽, (31)

where 𝛾 ∈ (1, 2] and 𝜇, 𝛼, 𝛽 are the fuzzy numbers whose 𝜎-
cut representation is [𝜎 − 1, 1 − 𝜎].

Based on the type of differentiability, the FFIVPs (30) and
(31) can be converted into one of the following systems.

Case 1. If 𝜑(𝑡) is (1,1)-solution, then the corresponding (1,1)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 𝜎 − 1,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 1 − 𝜎,
𝜑1𝜎 (0) = 𝜑󸀠1𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠2𝜎 (0) = 1 − 𝜎.

(32)

If 𝛾 = 2, then the exact solution of (32) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 + 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. In finding the
fuzzy (1,1)-solution of FFDEs (30), let𝜑(𝑡) beCaputo [(1,1)-𝛾]-
differentiable. Sequentially, after selecting the initial guesses
as 𝜑0,1𝜎(𝑡) = (𝜎 − 1) + (𝜎 − 1)𝑡 and 𝜑0,2𝜎(𝑡) = (1 − 𝜎) + (1 −𝜎)𝑡, the FPS expansion of solutions for OFDEs (32) can be
represented as follows:

𝜑1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(33)

To determine the 1st RPS approximate solution for
OFDEs (32), substitute the 1st-truncated series 𝜑1,1𝜎(𝑡) = (𝜎−1)+ (𝜎−1)𝑡+ 𝑐1(𝑡𝛾/Γ(1+𝛾)) and 𝜑1,2𝜎(𝑡) = (1−𝜎)+ (1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st-residual functions 𝑅𝑒𝑠1,1𝜎(𝑡) and𝑅𝑒𝑠1,2𝜎(𝑡) such that 𝑅𝑒𝑠1,1𝜎(𝑡) = 1 − 𝜎 + 𝑐1 and 𝑅𝑒𝑠1,2𝜎(𝑡) =𝜎 − 1 + 𝑑1. Thus, based upon the facts 𝑅𝑒𝑠1,1𝜎(0) = 0 and𝑅𝑒𝑠1,2𝜎(0) = 0, we have 𝑐1 = 𝜎 − 1 and 𝑑1 = 1 − 𝜎. Hence, the1st RPS approximate solution for OFDEs (32) can be written
in the form of

𝜑1,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑1,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) .

(34)

Similarly, to find out the 2nd RPS approximate solution
for OFDEs (32), substitute the 2nd truncated series 𝜑2,1𝜎(𝑡) =(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) + 𝑐2(𝑡2𝛾/Γ(1 + 2𝛾)) and𝜑2,2𝜎(𝑡) = (1−𝜎)+(1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1+𝛾))+𝑑2(𝑡2𝛾/Γ(1+2𝛾))
into the 2nd residual functions 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) such
that 𝑅𝑒𝑠2,1𝜎(𝑡) = (C𝐷𝛾0+𝜑2,1𝜎)(𝑡) − (𝜎 − 1) = 1 − 𝜎 + 𝑐1 +𝑐2(𝑡𝛾/Γ(1 + 𝛾)) and 𝑅𝑒𝑠2,2𝜎(𝑡) = (C𝐷𝛾0+𝜑2,2𝜎)(𝑡) − (1 − 𝜎) =−1 + 𝜎 + 𝑑1 + 𝑑2(𝑡𝛾/Γ(1 + 𝛾)). Now, applying the fractional
derivative C𝐷𝛾𝑡 on both sides of𝑅𝑒𝑠2,1𝜎(𝑡) and𝑅𝑒𝑠2,2𝜎(𝑡) yields
the following: C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(𝑡) = 𝑐2 and C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(𝑡) = 𝑑2.
So, the 2nd unknown coefficients are 𝑐2 = 0 and 𝑑2 = 0
through using the facts C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0.
Therefore, the 2nd RPS approximate solution for OFDEs (32)
is given by

𝜑2,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑2,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) .

(35)

Accordingly, the unknown coefficients 𝑐𝑛 and 𝑑𝑛 will be
vanished for 𝑛 ≥ 3 by continuing in the similar approach, that
is,∑∞𝑛=3 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0 and∑∞𝑛=3 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0.
Hence, the RPS approximate solutions corresponding to (1,1)-
system are coinciding well with the exact solutions 𝜑1𝜎(𝑡) =(1 + 𝑡 + (𝑡𝛾/Γ(1 + 𝛾)))(𝜎 − 1) and 𝜑2𝜎(𝑡) = (1 + 𝑡 +𝑡𝛾/Γ(1+ 𝛾))(1 −𝜎). Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)], and[𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈ [0, 1].
Moreover,𝜑(𝑡) = 𝜇(1 + 𝑡 + 𝑡𝛾/Γ(1 + 𝛾)) is a (1,1)-solution for
FFIVPs (30) and (31) on [0, 1].
Case 2. If 𝜑(𝑡) is (1,2)-solution, then the corresponding (1,2)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 1 − 𝜎,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 𝜎 − 1,
𝜑1𝜎 (0) = 𝜑󸀠1𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠2𝜎 (0) = 1 − 𝜎,

(36)

If 𝛾 = 2, then the exact solution of (36) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 + 𝑡 − 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. In finding the fuzzy
(1,2)-solution of FFDEs (30), let 𝜑(𝑡) be Caputo [(1,2)-𝛾]-
differentiable. Sequentially, after selecting the initial guesses
as in case 1, the FPS expansion of solutions for OFDEs (36)
can be represented by

𝜑1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + ∞∑
𝑛=1

𝑐𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) ,
𝜑2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + ∞∑

𝑛=1

𝑑𝑛 𝑡𝑛𝛾Γ (1 + 𝑛𝛾) .
(37)

To determine the 1st RPS approximate solution for
OFDEs (36), substitute the 1st truncated series 𝜑1,1𝜎(𝑡) =
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(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) and 𝜑1,2𝜎(𝑡) = (1 −𝜎) + (1 − 𝜎)𝑡 + 𝑑1(𝑡𝛾/Γ(1 + 𝛾)) into the 1st residual functions𝑅𝑒𝑠1,1𝜎(𝑡) and 𝑅𝑒𝑠1,2𝜎(𝑡) such that 𝑅𝑒𝑠1,1𝜎(𝑡) = 𝜎 − 1 + 𝑐1
and 𝑅𝑒𝑠1,2𝜎(𝑡) = 1 − 𝜎 + 𝑑1. Thus, based upon the facts𝑅𝑒𝑠1,1𝜎(0) = 𝑅𝑒𝑠1,2𝜎(0) = 0, we have 𝑐1 = 1−𝜎 and 𝑑1 = 𝜎−1.
Hence, the 1st RPS approximate solution for OFDEs (36) can
be written in the form of

𝜑1,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑1,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) .

(38)

Similarly, to find out the 2nd RPS approximate solution
for OFDEs (36), substitute the 2nd truncated series 𝜑2,1𝜎(𝑡) =(𝜎 − 1) + (𝜎 − 1)𝑡 + 𝑐1(𝑡𝛾/Γ(1 + 𝛾)) + 𝑐2(𝑡2𝛾/Γ(1 + 2𝛾)) and𝜑2,2𝜎(𝑡) = (1−𝜎)+(1−𝜎)𝑡+𝑑1(𝑡𝛾/Γ(1+𝛾))+𝑑2(𝑡2𝛾/Γ(1+2𝛾))
into the 2nd residual functions 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡) such
that 𝑅𝑒𝑠2,1𝜎(𝑡) = 1 − 𝜎 + 𝑐1 + 𝑐2(𝑡𝛾/Γ(1 + 𝛾)) and 𝑅𝑒𝑠2,2𝜎(𝑡) =−1 + 𝜎 + 𝑑1 + 𝑑2(𝑡𝛾/Γ(1 + 𝛾)). Then, applying the fractional
derivative C𝐷𝛾𝑡 on both sides of 𝑅𝑒𝑠2,1𝜎(𝑡) and 𝑅𝑒𝑠2,2𝜎(𝑡)yields
the following: C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(𝑡)=𝑐2 and C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(𝑡)=𝑑2. So, the2nd unknown coefficients are 𝑐2 = 0 and 𝑑2 = 0 through using
the facts C𝐷𝛾𝑡𝑅𝑒𝑠2,1𝜎(0) = C𝐷𝛾𝑡𝑅𝑒𝑠2,2𝜎(0) = 0.Therefore, the2nd RPS approximate solution for OFDEs (36) is given by

𝜑2,1𝜎 (𝑡) = (𝜎 − 1) + (𝜎 − 1) 𝑡 + (1 − 𝜎) 𝑡𝛾Γ (1 + 𝛾) ,
𝜑2,2𝜎 (𝑡) = (1 − 𝜎) + (1 − 𝜎) 𝑡 + (𝜎 − 1) 𝑡𝛾Γ (1 + 𝛾) .

(39)

By continuing in the similar manner, the unknown
coefficients 𝑐𝑛 and 𝑑𝑛 will be vanished for 𝑛 ≥ 3, that is,∑∞𝑛=3 𝑐𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0 and ∑∞𝑛=3 𝑑𝑛(𝑡𝑛𝛾/Γ(1 + 𝑛𝛾)) = 0.
Hence, theRPS approximate solutions corresponding to (1,2)-
system are coinciding well with the exact solutions 𝜑1𝜎(𝑡) =(1+𝑡−𝑡𝛾/Γ(1+𝛾))(𝜎−1) and𝜑2𝜎(𝑡) = (1+𝑡−𝑡𝛾/Γ(1+𝛾))(1−𝜎).
Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠1𝜎(𝑡), 𝜑󸀠2𝜎(𝑡)], and [𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are
valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈ [0, 1]. On the other hand,𝜑(𝑡) = 𝜇(1+𝑡− 𝑡𝛾/Γ(1+𝛾)) is a (1,2)-solution for FFIVPs (30)
and (31) on [0, 1].
Case 3. If 𝜑(𝑡) is (2,1)-solution, then the corresponding (2,1)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 1 − 𝜎,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 𝜎 − 1,
𝜑1𝜎 (0) = 𝜑󸀠2𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠1𝜎 (0) = 1 − 𝜎,

(40)

If 𝛾 = 2, then the exact solution of (40) is [𝜑(𝑡)]𝜎 = [𝜎 −1, 1 − 𝜎](1 − 𝑡 − 𝑡𝛾/Γ(1 + 𝛾)), 𝑡 ∈ (0, √3 − 1). To obtain the
fuzzy (2,1)-solution of FFDEs (30), let 𝜑(𝑡) is Caputo [(2,1)-𝛾]-differentiable. By using the samemanner in previous cases,

the solutions for (2,1)-system can be obtained such as𝜑1𝜎(𝑡) =(1−𝑡−𝑡𝛾/Γ(1+𝛾))(𝜎−1) and 𝜑2𝜎(𝑡) = (1−𝑡−𝑡𝛾/Γ(1+𝛾))(1−𝜎). It is easy to check that [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)] and[𝜑󸀠󸀠2𝜎(𝑡), 𝜑󸀠󸀠1𝜎(𝑡)] are also valid level sets for 𝜎 ∈ [0, 1] and 𝑡 ∈[0, √3−1].Thus, 𝜑(𝑡) = 𝜇(1−𝑡−𝑡𝛾/Γ(1+𝛾)) is a (2,1)-solution
for FFIVPs (30) and (31) on (0, √3 − 1].
Case 4. If𝜑(𝑡) is (2,2)-solution, then the corresponding (2,2)-
system will be

(C𝐷𝛾
0+
𝜑1𝜎) (𝑡) = 𝜎 − 1,

(C𝐷𝛾
0+
𝜑2𝜎) (𝑡) = 1 − 𝜎,
𝜑1𝜎 (0) = 𝜑󸀠2𝜎 (0) = 𝜎 − 1,
𝜑2𝜎 (0) = 𝜑󸀠1𝜎 (0) = 1 − 𝜎,

(41)

If 𝛾 = 2, then the exact solution of OFDEs (41) is [𝜑(𝑡)]𝜎 =[𝜎 − 1, 1 − 𝜎](1 − 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)), 𝑡 ∈ [0, 1]. Finally, to
determine the fuzzy (2,2)-solution of FFDEs (30), let 𝜑(𝑡) be
Caputo [(2,2)-𝛾]-differentiable. By using the same manner in
previous cases, the solutions for (2,2)-system can be obtained
such as 𝜑1𝜎(𝑡) = (𝜎 − 1)(1 − 𝑡 + 𝑡𝛾/Γ(1 + 𝛾)) and 𝜑2𝜎(𝑡) =(1−𝜎)(1−𝑡+𝑡𝛾/Γ(1+𝛾)). Here, [𝜑1𝜎(𝑡), 𝜑2𝜎(𝑡)], [𝜑󸀠2𝜎(𝑡), 𝜑󸀠1𝜎(𝑡)]
and [𝜑󸀠󸀠1𝜎(𝑡), 𝜑󸀠󸀠2𝜎(𝑡)] are also valid level sets for 𝜎 ∈ [0, 1] and𝑡 ∈ [0, 1]. However, 𝜑(𝑡) = 𝜇(1 − 𝑡 + 𝑡𝛾/Γ(𝛾 + 1)) defines as a
(2,2)-solution for FFIVPs (30) and (31) on (0, 1].

To demonstrate the agreement between the exact and
approximate solution, Table 1 shows the absolute error of
the 10th PRS approximate solution for FFIVPs (30) and (31)
obtained for different values of 𝜎-cut representations and
nodes with fractional order 𝛾 = 1.9. Some graphical results
are also presented in Figures 1 and 2. The numerical results
obtained indicate that the RPS approximate solutions are in
good agreement with each other and with the exact solutions
for all cases of differentiability.

6. Conclusion

In this paper, the RPS algorithm is successfully developed,
investigated, and applied to solve the fuzzy differential
equation of fractional order 1 < 𝛾 ≤ 2 with fuzzy
initial constraints under the fuzzy concept of Caputo H-
differentiability. The fuzziness is represented using upper
semicontinuous membership function of bounded support,
convex, and normalized fuzzy numbers based on its single
parametric form. The behavior of approximate solution for
different values of fractional order 𝛾 is discussed quan-
titatively as well as graphically. The numerical results in
this paper demonstrate the efficiency of the algorithm. We
conclude that the proposed scheme is highly accurate in
solving widely array of fuzzy fractional issues.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 1: Plots of 𝛼-cut representations of 𝜑𝑘,1𝜎(𝑡), 𝜑𝑘,2𝜎(𝑡) with 𝑘 = 10, 𝜎 = 0.25, and different values of 𝛾 ∈ {2, 1.9, 1.8, 1.7} (--- Exact, ⋅ ⋅ ⋅
RPS-approximation).
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Figure 2: Plots of exact and RPS-approximation at 𝛾 = 2 with different values of 𝜎-levels, 𝜎 ∈ {0, 0.25, 0.5, 0.75, 1} (--- Exact, ⋅ ⋅ ⋅ RPS-
approximation).
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Table 1: The absolute error of 10th approximation of FFIVPs (30) and (31).

(𝑛, 𝑚)-solution 𝑡 𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 0.75
(1, 1)-system

0.2 2.0578567 × 10−4 1.5433927 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.1821803 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(1, 2) -system

0.2 2.9676224 × 10−4 2.2257168 × 10−4 1.4838112 × 10−4 5.1446419 × 10−50.4 4.7033136 × 10−4 3.5274852 × 10−4 2.3516568 × 10−4 9.6163547 × 10−50.6 6.3684312 × 10−4 4.7763234 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.9857642 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(2, 1) -system

0.2 2.0578567 × 10−4 1.5433925 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 6.3684312 × 10−4 5.3746353 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
(2, 2) -system

0.2 2.0578567 × 10−4 1.5433925 × 10−4 1.0289283 × 10−4 5.1446419 × 10−50.4 3.8465419 × 10−4 2.8849064 × 10−4 1.9232709 × 10−4 9.6163547 × 10−50.6 5.5428820 × 10−4 4.1571615 × 10−4 2.7714410 × 10−4 1.3857205 × 10−40.8 7.1821803 × 10−4 5.3866352 × 10−4 3.5910901 × 10−4 1.7955450 × 10−4
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