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In this work, we propose a fractional-order model that describes the dynamics of citizens who have the right to register on the
electoral lists and the negative influence of abstainers on the potential electors. By using Routh–Hurwitz criteria and constructing
Lyapunov functions, the local and the global stability of abstaining-free equilibrium and abstaining equilibrium are obtained.
Finally, some numerical simulations are performed to verify the theoretical analysis, and they are given for different parameter
setting of the order of derivative α.

1. Introduction

(e first appearance of the fractional calculus was in a letter
written to Guillaume de l’Hôpital by Gottfried Wilhelm
Leibniz in 1695 [1–3]. It has become an important field of
mathematics due to its immense application in different
areas such as chemistry, physics, engineering, psychology,
finance, and control theory [4–13, 14].

Mathematical modeling by differential fractional equa-
tions has more advantages for modeling and describing the
dynamics of memory phenomena that have hereditary
properties because fractional derivatives depend not only on
local conditions but also on the past and the history of the
phenomenon studied. (is is, precisely, more suitable and
reasonable when modeling sociological phenomena and
description of real-world problems.

In this work, we introduce a fractional order for the
model developed by Balatif et al. in [15], which describes
the dynamics of citizens who have the right to register on
the electoral lists and the negative influence of abstainers,
who abstain registration on the electoral lists and the
electoral process, on the potential electors. (e population

N is divided into three compartments: the potential
electors (P) are entitled to participate in the elections, and
they are not yet registered on the electoral lists; the ab-
stainers (A) who have an attitude of abstaining the elec-
tions and the registration on the electoral lists; and the
registered (R) who are listed on the electoral lists and wish
to vote in the elections:

DαP � Λ − β
AP

N
− (δ + μ)P,

DαA � β
AP

N
− (c + μ)A,

DαR � δP + cA − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where DαP, DαA, and DαR are the derivatives of P(t), A(t),
and R(t), respectively, of an arbitrary order α (where
0≺ α ≺ 1) in the sense of Caputo. Note that when α � 1, the
fractional-order model (1) represents the classical PAR
model studied in [15]. P(0)≥ 0, A(0)≥ 0, and R(0)≥ 0 are
the given initial states.
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We note that all parameters are nonnegative. (ey are
defined in Table 1.

(ere exist several definitions of the fractional de-
rivative operator: Riemann–Liouville, Caputo, Grun-
wald–Letnikov, etc [16–19]. (e reasons to use the Caputo
fractional derivative in this work are firstly, the fractional
derivative of a constant is zero, and the second reason is
that the initial conditions for the fractional-order dif-
ferential equations with Caputo’s derivatives are in the
same form as for the integer-order differential equations
[19–21].

(is paper is organized as follows. In Section 2, we
present some preliminaries about the fractional calculus. In
Section 3, we give some basic properties of the model.
Section 4 is devoted to analyze the local and global stability
of the proposed fractional-order model. Numerical simu-
lations are given and discussed in Section 5. Finally, we
conclude the paper in Section 6.

2. Preliminaries

Firstly, we introduce the definition of the Caputo fractional
derivative, and we present some functions and useful
properties that are used throughout this work [17, 19, 21]:

(1) (e Caputo fractional derivative of order α> 0 of a
continuous function f: R+⟶ R is given by

D
α
f(t) �

1
Γ(n − α)


t

0
(t − x)

n− α− 1
f

(n)
(x)dx, (2)

where D � d/dt, n − 1≺ α ≺ n, n ∈ N, and Γ(.) is the gamma
function.

In particular, when 0≺ α ≺ 1, we have

D
α
f(t) �

1
Γ(1 − α)


t

0

f′(x)

(t − x)α
dx. (3)

(2) (e Laplace transform of the Caputo fractional
derivative is given by

L D
α
f(t)  � λαF(λ) − 

n− 1

k�0
f

(k)
(0)λα− k− 1

, (4)

with F(λ) the Laplace transform of f(t).

(3) Let α, β> 0. (e Mittag-Leffler function Eα,β of pa-
rameters α and β is defined as follows:

Eα,β(z) � 
∞

k�0

zk

Γ(αk + β)
. (5)

(4) (e Laplace transform of the Mittag-Leffler func-
tions is

L t
β− 1

Eα,β ± at
α

(   �
λα− β

λα∓a
. (6)

(5) Let α, β> 0 and z ∈ C, then the Mittag-Leffler
function satisfies the equality given by

Eα,β(z) � zEα,α+β(z) +
1
Γ(β)

. (7)

(6) Let f: Rn⟶ Rn with n≥ 1. Consider the following
fractional-order system:

Dαx(t) � f(x),

x(0) � x0,
 (8)

with 0≺ α ≺ 1, t0 ∈ R, and x0 ∈ Rn. For the global existence
of a solution of system (9), we need the following lemma.

Lemma 1 (see [22]). Assume that f satisfies the following
conditions:

(i) f(x) and (zf/zx)(x) are continuous for all x ∈ Rn

(ii) ‖f(x)‖ ≤ω + λ‖x‖ for all x ∈ Rn, where ω and λ are
the two positive constants

6en, system (9) has a unique solution on [t0, +∞).

3. Basic Properties of the Model

System (1) describes human population, and therefore it is
necessary to prove that all solutions of system (1) with
positive initial data will remain positive for all times t> 0 and
are bounded.(is will be established by the following lemma
and theorems.

Lemma 2. 6e feasible region Ω defined by

Ω � (P(t), A(t), R(t)) ∈ R4
+, P(t) + A(t)

+ R(t) � N(t)≤N(0) +
Λ
μ

,

(9)

with initial conditions P(0)≥ 0, A(0)≥ 0, and R(0)≥ 0, is a
positive invariant for system (1), where N(0) represents the
initial values of the total population.

Proof. (e fractional derivative of the total population,
obtained by adding all the equations of model (1), is given by

D
α
N(t)≤Λ − μN(t). (10)

Applying the Laplace transform in the previous in-
equality, we obtain

λαL(N(t)) − λα− 1
N(0)≤
Λ
λ

− μL(N(t)), (11)

then

Table 1: Parameters description.

Parameter Definition
Λ Recruitment rate
β Effective contact rate

δ Registration rate of the potential electors on the
electoral lists

c Registration rate of the abstainers on the electoral lists
μ Natural mortality rate
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L(N(t))≤
λα− 1

λα + μ
N(0) +

λα− (α+1)

λα + μ
Λ, (12)

from (6), we deduce

N(t)≤Eα,1 − μt
α

( N(0) + t
α
Eα,α+1 − μt

α
( Λ, (13)

using (7), we have

N(t)≤Eα,1 − μt
α

( N(0) +
Λ
μ

1 − Eα,1 − μt
α

(  , (14)

since

0≤Eα,1 − μt
α

( ≤ 1, (15)

therefore,

N(t)≤N(0) +
Λ
μ

. (16)

It implies that the region Ω is a positive invariant set for
system (1). □

Theorem 3. 6e fractional-order initial value problem (1)
has a unique solution.

Proof. Let

X(t) � PAR 
T
,

D
α
X(t) � F(X(t)),

(17)

where F is the right side of system (1).
Firstly, it is easy to see that F(X) and (zF/zX)(X) satisfy

the first condition of Lemma 1.
Secondly, system (1) can be rewritten as follows:

F(X(t)) � Λ + AM1 + M2( X(t), (18)

where

Λ �

Λ

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M1 �

− (δ + μ) 0 0

0 − (c + μ) 0

δ c − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M2 �

−
β
N

0 0

β
N

0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

Since

‖F(X(t))‖ ≤ ‖Λ‖ + |A| M1
����

���� + M2
����

���� ‖X(t)‖,

≤ ‖Λ‖ c M1
����

���� + M2
����

���� ‖X(t)‖,

≤ω + λ‖X(t)‖,

(20)

where

ω � ‖Λ‖,

λ � c M1
����

���� + M2
����

����.
(21)

(en, system (1) has a unique solution on [0, +∞). □

Theorem 4. If P(0)≥ 0, A(0)≥ 0, and R(0)≥ 0, then the
solutions P(t), A(t), and R(t) of system (1) are positive for all
t≥ 0.

Proof. It follows from the first equation of system (1) that

D
α
P≥ − β

A(t)

N
+(δ + μ) P(t). (22)

Since A(t) is bounded by a constant Λ0, we have

D
α
P≥ − cP(t), (23)

where c is a constant equal to β(Λ0/N) + (δ + μ).
Applying the Laplace transform in the previous in-

equality, we obtain

λαL(P(t)) − λα− 1
P(0)≥ − cL(P(t)), (24)

so

L(P(t)) ≥
λα− 1

λα + c
P(0), (25)

from (6), we deduce

L(P(t))≥ L Eα,1 − ct
α

(  P(0), (26)

then

P(t)≥Eα,1 − ct
α

( P(0). (27)

Since Eα,1(− ctα)≥ 0, therefore the solution P(t) is
positive.

Similarly, from the second and third equations of (1), we
can easily prove that A(t) and R(t) are positive for all
t≥ 0. □

4. Stability Analysis

In this section, we will study the stability behavior of system
(1) at an abstaining-free equilibrium point and an abstaining
equilibrium point. System (1) has two equilibrium points:

(i) Abstaining-free equilibrium given by E0 � ((Λ/δ+

μ), 0, (αΛ/μ(δ + μ))).

(is equilibrium corresponds to the case when there are
no abstainers in the population.

(ii) Abstaining equilibrium point, if R0 ≻ 1, given by
E∗ � (P∗, A∗, R∗), where P∗ � (Λ(c + μ)/μβ), A∗ �
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((Λ(δ + μ)(R0 − 1))/μβ), and R∗ � ((δ Λ2(c+ μ)2 +

cΛ(δ + μ) (c + μ)(R0 − 1))/μβ(c + μ)).

(is equilibrium corresponds to the case when the be-
havior of abstaining the registration on the electoral lists is
able to invade the population.

Where R0 is the basic reproduction number given by

R0 �
μβ

(δ + μ)(c + μ)
. (28)

In epidemiology, the basic reproduction number R0 is
defined as the average number of secondary infections
produced by an infected individual in a completely sus-
ceptible population.

In the context of our work, this threshold indicates the
average number of persons that an abstainer will “infect”
during his “infection” period within the potential elector
population, so that the infected individuals will enter to the
compartment of abstainers. (is number can be obtained by
using the next-generation matrix method formulated in
[15, 23, 24].

4.1. Local Stability Analysis. In this section, we analyze the
local stability of the abstaining-free equilibrium and the
abstaining equilibrium.

Theorem 5. 6e abstaining-free equilibrium E0 is locally
asymptotically stable if R0 < 1, whereas E0 is unstable if
R0 > 1.

Proof. (e Jacobian matrix at E0 is given by

JE0 �

− (δ + μ) −
μβ

(δ + μ)
0

0
μβ

(δ + μ)
− (c + μ) 0

δ c − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

(erefore, eigenvalues of the characteristic equation of
JE0

are

λ1 � − μ,

λ2 � − (δ + μ),

λ3 � (c + μ) R0 − 1( .

(30)

(erefore, all the eigenvalues of the characteristic
equation are negative if R0 < 1. (us, |arg(λi)| � π ≻ (απ/2)

for i � 1, 2, 3.
Hence, the equilibrium point E0 is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.
Now, we study the local stability of the abstaining

equilibrium E∗. (e Jacobian matrix at E∗ is given by

JE∗ �

− β
A∗

N∗
− (δ + μ) − β

P∗

N∗
0

β
A∗

N∗
β

P∗

N∗
− (c + μ) 0

δ c − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Its characteristic equation is

λ3 + a1λ
2

+ a2λ + a3 � 0, (32)

where

a1 �
μβ

(δ + μ)
+ μ,

a2 �
μ2β

(δ + μ)
+(δ + μ)(c + μ) R0 − 1( ,

a3 �
μ3β

(δ + μ)
+ μ(δ + μ)(c + μ) R0 − 1( ,

a1a2 − a3 �
μ3β2

(δ + μ)2
+ μβ(c + μ) R0 − 1( .

(33)

IfR0 ≻ 1, then a1 > 0, a2 > 0, a3 > 0, and a1a2 > a3. So, the
Routh–Hurwitz conditions are satisfied. Let D(Q) denote
the discriminant of the polynomial Q(λ) given by (32), then

D(Q) � −

1 a1 a2 a3 0

0 1 a1 a2 a3

3 2a1 a2 0 0

0 3 2a1 a2 0

0 0 3 2a1 a2





� 4a
3
1a3 − a

2
1a

2
2 − 18a1a2a3 + 4a

3
2 + 27a

2
3.

(34)

From [25], we have the following theorem. □

Theorem 6. We assume that R0 ≻ 1:

(1) If D(Q)≻ 0 and 0≺ α ≺ 1, then E∗ is locally as-
ymptotically stable

(2) If D(Q)≺ 0 and α≺ 2/3, then E∗ is locally asymp-
totically stable

4.2. Global Stability Analysis. Now, we are concerned with
the global asymptotic stability of abstaining-free equilibrium
E0 and abstaining equilibrium E∗ of model (1), respectively,
using the results in [26–29].

Theorem 7. IfR0 ≤ 1, then the free equilibrium E0 of system
(1) is globally asymptotically stable on Ω.

Proof. To prove the global stability of the free equilibrium
E0, we construct the following Lyapunov function
V: Ω⟶ R:

4 International Journal of Differential Equations



V(P, A) �
1
2

P − P
0

  + A 
2

+
Λ
μβ

(δ + c + 2μ)A. (35)

(en, the time derivative of V is

D
α
V(P, A) � − (δ + μ) P − P

0
 

2
− (c + μ)A

2

−
Λ
μβ

(δ + c + 2μ)(c + μ)A 1 − R0 .

(36)

(us, DαV(P, A)≤ 0 for R0 ≤ 1.
In addition, ifR0 ≤ 1, then DαV(P, A) � 0⇔P � P0 and

A � 0.

Hence, by LaSalle’s invariance principle [30, 31], the free
equilibrium point E0 is globally asymptotically stable on
Ω. □

Theorem 8. IfR0 ≻ 1, then the abstaining equilibrium E∗ of
the system is globally asymptotically stable on Ω.

Proof. For the global stability of the abstaining equilibrium
E∗, we construct the Lyapunov function V: Ω⟶ R given
by

V(P, A) � P − P
∗ ln

P

P∗
  + A − A

∗ ln
A

A∗
 . (37)

×107

8070 90604030 500 10 20
Days (t)

α = 0.3
α = 0.5

α = 0.7
α = 1

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Th
e p

ot
en

tia
l e

le
ct

or
s P

(t)

(a)

8070 90604030 500 10 20
Days (t)

α = 0.3
α = 0.5

α = 0.7
α = 1

0

100

200

300

400

500

600

700

800

900

1000

Th
e a

bs
ta

in
er

s A
(t)

(b)

×106

8070 90604030 500 10 20
Days (t)

α = 0.3
α = 0.5

α = 0.7
α = 1

0

0.5

1

1.5

2

2.5

3

3.5

4

Th
e r

eg
ist

er
ed

 in
di

vi
du

al
s R

(t)

(c)

Figure 1: Stability of the free equilibrium E0 for different values of α.

10 20 30 40 50 60 70 80 900
Days (t)

0

5

10

15

Th
e p

ot
en

tia
l e

le
ct

or
s P

(t)

×106

(a)

10 20 30 40 50 60 70 80 900
Days (t)

0

2

4

6

8

10

12

Th
e a

bs
ta

in
er

s A
(t)

×106

(b)

10 20 30 40 50 60 70 80 900
Days (t)

1

2

3

4

5

6

7

8

9

10

11

Th
e r

eg
ist

er
ed

 in
di

vi
du

al
s R

(t)

×106

(c)

Figure 2: Stability of E0 for different initial values for each variable of state.
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(en, the time derivative of the Lyapunov function is
given by

D
α
V(P, A) � P

∗
D

α P

P∗
− ln

P

P∗
   + A

∗
D

α A

A∗
− ln

A

A∗
  

≤P
∗ 1 −

P∗

P
 D

α P

P∗
  + A

∗ 1 −
A∗

A
 D

α A

A∗
 

≤ 1 −
P∗

P
 D

α
P + 1 −

A∗

A
 D

α
A.

(38)

Using (1) and the expressions of the coordinates of the
equilibrium point E∗, we get

D
α
V(P, A)≤ −

Λ P − P∗( )2

PP∗
≤ 0. (39)

Furthermore, it is clear that the largest invariant set of
(P, A) ∈ Ω: DαV(P, A) � 0{ } is the singleton E∗{ }. Hence, by
LaSalle’s invariance principle [30, 31], the abstaining equi-
librium point E∗ is globally asymptotically stable on Ω. □

5. Numerical Simulation

In this section, we present some numerical simulations of
system (1) to illustrate our results. By choosing Λ � 73.8×

104, α � 0.01, β � 0.1, c � 0.06, μ � 0.04, tf � 90, and dif-
ferent values of α, we have the abstaining-free equilibrium
E0 � (14.76 × 106, 0, 3.7 × 106) and R0 � 0.8≺ 1. In this
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Figure 3: Stability of the abstaining equilibrium E∗ for different values of α.
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Figure 4: Stability of E∗ for different initial values for each variable of state.
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case, according to theorem (7), the abstaining-free equi-
librium E0 of system (1) is globally asymptotically stable on
Ω (see Figure 1).

For a fixed value of α and for different initial values for
each variable of state, we show in Figure 2 that the solutions
converge to the abstaining-free equilibrium E0 � (14.76 ×

106, 0, 3.7 × 106) when R0 � 0.8≺ 1, which implies that the
abstaining-free equilibrium E0 of system (1) is globally as-
ymptotically stable on Ω.

Concerning the stability analysis of the abstaining
equilibrium E∗, we have E∗ � (2.85 × 106, 6.1433×

106, 10.007 × 106) and R0 � 1.79≻ 1 for Λ � 10.45 × 105,
α � 0.15, β � 0.5, c � 0.02, μ � 0.055, and tf � 90. In this
case, according to theorem (9), the abstaining equilibrium
E∗ of system (1) is globally asymptotically stable on Ω (see
Figure 3).

In addition, we show in Figure 4 that for a fixed value of α
and for different initial values for each variable of state, the
solutions converge to the abstaining equilibrium E∗ �

(2.85 × 106, 6.1433 × 106, 10.007 × 106) and R0 � 1.79≻ 1,
which implies that the abstaining equilibrium E∗ of system
(1) is globally asymptotically stable on Ω.

From all these figures, we show that the equilibrium
points E0 and E∗ of system (1) are globally asymptotically
stable on Ω if the conditions of theorems (7) and (9) are
satisfied. Also, all solutions of model (1) converge to the
equilibrium points E0 and E∗ for different values of α. In
addition, the solutions converge rapidly to their steady state
when the value of α is very small.

6. Conclusion

In this work, we presented a fractional-order model that
describes the dynamics of citizens who have the right to
register on the electoral lists and the negative influence of
abstainers on the potential electors. By using the
Routh–Hurwitz criteria and constructing Lyapunov func-
tions, the local and the global stability of abstaining-free
equilibrium and abstaining equilibrium are obtained. (e
numerical simulation was carried out using Matlab.
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