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On the compact Riemannian manifold of dimension n≥ 5, we study the existence and regularity of nontrivial solutions for
nonlinear second-order elliptic equation with singularities. At the end, we give a geometric application of the above
singular equation.

1. Introduction

Let (M, g) be an (n≥ 3)-dimensional compact Riemannian
manifold, and let a ∈ Lp(M), where p> n/2, and f be a
positive C∞(M) function on M. In this paper, we are in-
terested in studying on, (M, g), the following nonlinear
singular elliptic equation:

Δgu + au � f|u|
N− 2

u, (1)

where Δgu � − ∇i∇iu is the Laplacian–Beltrami operator and
N � 2n/(n − 2) is the critical Sobolev exponent. Equation (1)
is one of the nonlinear second-order equations involving the
singular term a and with critical Sobolev growth. Such
problem arises from various fields of geometry and physics.
(ere are many results for second-order elliptic equations,
but most of them are focused on bounded domains Ω of Rn

or on compact Riemannianmanifold (M, g), see [1–16] for a
survey. A variety of techniques have been used to solve
second-order equations, and variational methods are the
most suitable. Certainly, if the singular term a is replaced by
(n − 2)/4(n − 1)Sg, where Sg is the scalar curvature and
f � 1, then equation (1) becomes the famous prescribed
constant scalar curvature equation which is very known in
the literature as the Yamabe problem. To solve this problem,
Yamabe has used the variational method, and the main
difficulty of this problem is the lack of compactness for
Sobolev embedding theorem. (e problem is now solved,
but it took a very long time to find the good approach. If f is
not a constant, the problem is known as the prescribed scalar

curvature problem. For more details, we refer the reader to
[12, 13] and the references therein.

A famous result concerning the equation of type (1) has
been obtained in [17], and it consists of the classification of
positive solutions of the equation

Δu −
λ

|x|2
u � u

n+2/n− 2
, inRn∖ 0{ }, (2)

where 0< λ< (n − 4)2/4, into the family of functions

uλ(x) � cλ
|x|a− 1

1 +|x|2a􏼠 􏼡

(n/2)− 1

, (3)

where cλ �

���������������

1 − (4λ/(n − 2)2)

􏽱

.
(e singular term a was introduced as follows: in [11],

Madani studied equation (1) with f is a constant,
a � (n − 2)/4(n − 1)Sg, and such that the metric g admits a
finite number of points with singularities and is smooth
outside these points. (is problem can be seen as the
Yamabe problem with singularities. More precisely, let
(M, g) be a compact Riemannian manifold of dimension
n≥ 3; we denote by T∗M the cotangent space of M. (e
metric g ∈ H

p
2(M, T∗M⊗T∗M) is the space of all sections g

(2-covariant tensors) such that, in normal coordinates, the
components gij of g are in H

p
2(M), where H

p
2(M) is the

completion of the space C∞0 (M) with respect to the norm
‖u‖2

H
p

2 (M)
� 􏽒

M
|∇2gu|p + |∇gu|p + |u|pdvg. By Sobolev’s em-

bedding, we get that, for all p> (n/2), H
p
2(M, T∗M⊗
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T∗M) ⊂ C1− [n/p](M, T∗M⊗T∗M), where [n/p] denotes the
entire part of n/p; then, the Christoffel symbols belong to
H

p
1(M), and the components of the Riemannian curvature

tensor Rmg, Ricci tensor Ricg, and the scalar curvature Sg are
in Lp(M). Solving the singular Yamabe problem is equiv-
alent to finding a positive solution u ∈ H

p
2(M) of the

equation

Δgu +
n − 2

4(n − 1)
Sgu � k|u|

N− 2
u, (4)

where k is a real constant, and in this case, the latter equation
is the singular Yamabe equation. Under these assumptions
on the metric g, the author in [11] proved the existence of a
metric g � uN− 2g conformal to g such that u ∈ H

p
2(M),

u> 0, and the scalar curvature Sg of g is constant if (M, g) is
not conformal to the round sphere. Moreover, we define the
Yamabe invariant as follows:

μ(M, g) � inf
u∈H2

1(M),u≠0
E(u), where E(u) �

􏽒
M

uPgudvg

􏽒
M

|u|Ndvg􏼐 􏼑
2/N.

(5)

If μ(M, g)> 0 and let a � ((n − 2)/4(n − 1))Sg, the
singular Yamabe operator Pg � Δg + a is weakly con-
formally invariant, coercive, and invertible.

In [1] Azaiz et al. studied some singular second-order
elliptic equations. (ey focused on the following equation:

Δgu + au � λ|u|
q− 2

u + f|u|
N− 2

u, (6)

where 1< q< 2 and λ is a positive real parameter. In par-
ticular, in (eorem 1.1, under additional assumptions, they
proved the existence of λ∗ > 0 such that, for any λ ∈ (0, λ∗),
the equation has a nontrivial weak solution. For details, see
[1] and the references therein.

2. Notations and Preliminaries

In this section, we introduce some notations and materials
necessary in our study. Let (M, g) be a smooth compact
Riemannianmanifold of dimension n≥ 3; we will work on the
Sobolev space H2

1(M) which is the space of functions u such
that u, |∇gu| ∈ L2(M) and equipped with the usual norm

‖u‖H2
1(M) � 􏽚

M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ u
2dvg􏼒 􏼓

1/2
. (7)

By Sobolev’s embedding (see [12]), H2
1(M) ⊂ Lq(M),

where 1< q≤N, and this embedding is compact when q<N.
(e number N � 2n/(n − 2) is known as the critical

exponent of the Sobolev embedding.
Let K0(n, 1) denote the best constant in Sobolev in-

equality that asserts that there exists a constant B> 0 such
that, for any u ∈ H2

1(M),

􏽚
M

u
N

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N
≤K

2
0(n, 1)􏽚

M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + B‖u‖

2
L2(M).

(8)

Notice that

K
2
0(n, 1) �

4
n(n − 2)ω2/n

n

, (9)

where ωn is the volume of Sn. Denote by Pg the operator
defined in the weak sense on H2

1(M) by

Pg(u) � Δgu + au, (10)

Pg is an elliptic operator self-adjoint and is called coercive if
there exits C> 0 such that, for any u ∈ H2

1(M),

􏽚
M

uPg(u)dvg ≥C‖u‖
2
H2

1(M), (11)

where

􏽚
M

uPg(u)dvg � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2

􏼒 􏼓dvg. (12)

Let F be the functional defined on H2
1(M) by

F(u) � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2

􏼒 􏼓dvg, (13)

and let E be the Sobolev quotient. (en, for any
u ∈ H2

1(M) − 0{ },

E(u) �
F(u)

􏽒
M

f|u|Ndvg􏼐 􏼑
2/N. (14)

Traditionally, to obtain solutions of equation (1), we
will use, when necessary, ideas developed in [9, 11, 18],
and we will use classical variational techniques by min-
imizing the functional F. However, serious difficulties
appear compared with the smooth case. In order, we
define the quantity

λ(M, g) � inf
u∈A

F(u), (15)

where

A � u ∈ H
2
1(M) such that􏽚

M
f|u|

Ndvg � 1 +‖a‖p􏼐 􏼑
N/2

􏼚 􏼛.

(16)

Clearly, the functional E is well defined in H2
1(M) and is

of class C1, and the identity zE(u) � 0 being the equation
[1], where zE(u) is the differential of the functional E at u.
So, for all v ∈ H2

1(M), we have

zE(u)v �
d
dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
E(u + tv). (17)

Note that if f � 1 and a � ((n − 2)/4(n − 1))Sg, it is easy
to see that λ(M, g) is not the Yamabe invariant. Indeed,
λ(M, g) is the infimum over the set A, and as above, the
Yamabe invariant μ(M, g) satisfies

μ(M, g) �
λ(M, g)

1 +‖a‖p

. (18)
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(roughout the paper, we will denote by B(P, δ) a
geodesic ball of center P and of radius δ with
0< δ < (rg(M)/2), where rg(M) is the injectivity radius, and
let η be a smooth function on M such that

η(x) �
1, onB(P, δ),

0, onM − B(P, 2δ).
􏼨 (19)

We also let Sg(P) be the scalar curvature of M at P.
Now, we state our main results.

Theorem 1. Let (M, g) be a Riemannian compact manifold
of dimension n≥ 5. Assume that a ∈ Lp(M), where p> (n/2),
f is a positive C∞(M) function on M, and P ∈M such that
f(P) � supx∈Mf(x). If

Δf(P)

f(P)
<

Sg(P)

3
n + 2
n − 4

− ‖a‖p − 1􏼒 􏼓 ‖a‖p + 1􏼐 􏼑
− 1

, (20)

then

λ(M, g)<
1 +‖a‖p

K2
0(n, 1)( 􏼁 supx∈Mf(x)( 􏼁

2/N, (21)

is satisfied, and (1) has a nontrivial positive weak solution
such that F(u) � λ(M, g) and u ∈ A. Moreover,
u ∈ C1− [n/p](M) and u> 0.

Notice that this theorem is regarded as combined results
between (eorem 3–(eorem 5.

Theorem 2. Let (M, g) be a Riemannian compact manifold
of dimension n≥ 5, P ∈M such that f(P) � supx∈Mf(x), a

be smooth function, and r denote the distance function. If

λ2(M, g)K
2
0(n, 1)(f(P))

2/N < 1 +
a

r2

������

������
p

􏼠 􏼡K
2
(n, 2, − 2),

1 + a(P)K
2
(n, 2, − 2)> 0.

(22)

(en, there exists u ∈ H2
1(M) nontrivial solution to the

following equation:

Δgu +
a(x)

r2
u � f|u|

N− 2
u, (23)

where r, λ2(M, g), and K2(n, 2, − 2) are given in Section 5.
Our paper is organized as follows: in Sections 1 and 2, we

introduce some notations and preliminaries. In Section 3, we
establish the existence and regularity result to equation (1).
Section 4 is devoted to test functions which verify geometric
assumptions and by the same way complete the proofs of our
main theorems ((eorem 1 and (eorem 2). Section 5 deals
with applications to particular equations which could arise
from conformal geometry, and in Section 6, we consider the
critical case α � 2.

(e classical reference for conformal geometry is a
survey by Lee and Parker [13].

3. Existence and Regularity of the Solution

In this section, we establish the existence and regularity
result to equation (1). An elementary result we wish to briefly
discuss here is the following.

Proposition 1. If Pg is coercive, the following norm is
equivalent to the usual norm on H2

1(M):

‖u‖ � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2

􏼒 􏼓dvg􏼒 􏼓
1/2

� 􏽚
M

uPg(u)dvg􏼒 􏼓
1/2

.

(24)

Proof. If Pg is coercive, one finds a constant c> 0 such that,
for any u ∈ H2

1(M),

􏽚
M

uPg(u)dvg ≥ c‖u‖
2
H2

1(M). (25)

Since a ∈ Lp(M), where p> (n/2), and by the embed-
ding Lp(M) ⊂ Ln/2(M), it follows that there exists a constant
c0 > 0 such that ‖a‖n/2 ≤ c0‖a‖p; then, from H€older’s in-
equality, we get that

􏽚
M

uPg(u)dvg � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2

􏼒 􏼓dvg

≤􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + 􏽚

M
a

n/2dvg􏼒 􏼓
2/n

􏽚
M

u
2n/(n− 2)dvg􏼒 􏼓

(n− 2)/n

≤􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg +‖a‖n/2‖u‖

2
N ≤􏽚

M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + c0‖a‖p‖u‖

2
N.

(26)
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Now, from (8), we get that

‖u‖
2
N ≤max K

2
0(n, 1), B􏼐 􏼑‖u‖

2
H2

1(M), (27)

so we obtain

􏽚
M

uPg(u)dvg ≤ ‖u‖
2
H2

1(M) + c0‖a‖p max K
2
0(n, 1), B􏼐 􏼑‖u‖

2
H2

1(M)

≤max 1, c0‖a‖p max K
2
0(n, 1), B􏼐 􏼑􏼐 􏼑‖u‖

2
H2

1(M)

≤ c1‖u‖
2
H2

1(M),

(28)

where c1 � max(1, c0‖a‖p max(K2
0(n, 1), B))> 0. □

Theorem 3. Assume that

λ(M, g)<
1 +‖a‖p

K2
0(n, 1)( 􏼁 supx∈Mf(x)( 􏼁

2/N. (29)

(en, (1) has a nontrivial positive weak solution such
that F(u) � λ(M, g) and u ∈ A.

In particular, if f � 1 and a � ((n − 2)/4(n − 1))Sg,
condition (29) becomes the famous inequality

μ(M, g)<
1

K2
0(n, 1)

. (30)

Proof. First, we show that λ(M, g) is finite. For any
u ∈ H2

1(M) and by H€older’s inequality, one has

􏽚
M

|a|u
2dvg ≤ 􏽚

M
|a|

n/2dvg􏼒 􏼓
2/n

􏽚
M

u
2n/(n− 2)dvg􏼒 􏼓

(n− 2)/n

≤ ‖a‖n/2‖u‖
2
N

≤ c0‖a‖p‖u‖
2
N,

(31)

from

􏽚
M

f u
N

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg � 1 +‖a‖p􏼐 􏼑
N/2

, (32)

we get
1 +‖a‖p

infx∈Mf(x)( 􏼁
2/N ≥ ‖u‖

2
N, (33)

and then,

􏽚
M

|a|u
2dvg ≤ c0‖a‖p

1 +‖a‖p

infx∈Mf(x)( 􏼁
2/N. (34)

(erefore,

F(u) � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2

􏼒 􏼓dvg ≥􏽚
M

au
2dvg

≥ − c0‖a‖p

1 +‖a‖p

infx∈Mf(x)( 􏼁
2/N.

(35)

Consequently, λ(M, g) is finite.
Now, let (um)m be a minimizing sequence in A of the

functional F; the sequence um is such that

λ(M, g) � lim
m⟶+∞

􏽚
M
∇gum

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2
m􏼒 􏼓dvg,

􏽚
M

f u
N
m

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg � 1 +‖a‖p􏼐 􏼑
N/2

.

(36)

It is easy to see that (|um|)m is also a minimizing se-
quence. Hence, we can assume that um ≥ 0; then, for m large
enough, we get

􏽚
M
∇gum

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2
m􏼒 􏼓dvg ≤ λ(M, g) + 1. (37)

If Pg is coercive, by Proposition 1, (um)m is bounded. If
not, we proceed as follows:

􏽚
M
∇gum

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg ≤ λ(M, g) + 1 − 􏽚

M
au

2
mdvg

≤ λ(M, g) + 1 + 􏽚
M

|a|u
2
mdvg.

(38)

By using (34), we still get

􏽚
M
∇gum

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg ≤ λ(M, g) + 1 + c0‖a‖p

1 +‖a‖p

infx∈Mf(x)( 􏼁
N/2.

(39)

On the contrary, by the embedding LN(M) ⊂ L2(M)

and by inequality (33), we get that there exists c> 0 such that

􏽚
M

u
2
mdvg ≤ c um

����
����
2
N
≤ c

1 +‖a‖p

infx∈Mf(x)( 􏼁
N/2. (40)

(is implies in turn that (um)m is bounded in H2
1(M),

and after restriction to a subsequence still labeled (um)m, we
may assume that there exists u ∈ H2

1(M), u≥ 0, such that

(i) um⟶ u weakly in H2
1(M)

(ii) um⟶ u strongly in Lq(M) for all q<N and almost
everywhere on M

Furthermore, by Brezis–Lieb lemma applying to (um)m,
we get that

􏽚
M
∇g um( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg � 􏽚

M
∇g(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg

+ 􏽚
M
∇g um − u( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + o(1).

(41)

Putting φm � um − u, then φm⟶ 0 weakly in H2
1(M)

and strongly in Lq(M) for all q<N; therefore,

􏽚
M
∇gum

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg � 􏽚

M
∇gφm

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + 􏽚

M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg

+ 2􏽚
M
∇gφm.∇gudvg.

(42)

We deduce that

F um( 􏼁 � F(u) + ∇gφm

�����

�����
2

2
+ o(1). (43)

By definition of λ(M, g), we obtain F(u)≥
λ(M, g)(􏽒

M
f|uN|dvg)2/N, and by definition of the sequence

(um)m, we obtain F(um) � λ(M, g) + o(1) which implies
that
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λ(M, g) 􏽚
M

f u
N

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N

+ ∇gφm

�����

�����
2

2
≤ λ(M, g) + o(1).

(44)

Again with Brezis–Lieb lemma applying to (um)m, we get
that

1 +‖a‖p􏼐 􏼑
N/2

� 􏽚
M

f um

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg � 􏽚

M
f|u|

Ndvg

+ 􏽚
M

f φm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg + o(1).

(45)

(en,

1 +‖a‖p ≤ 􏽚
M

f|u|
Ndvg􏼒 􏼓

2/N
+ 􏽚

M
f φm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg􏼒 􏼓

2/N
+ o(1),

(46)

and inequality (44) will be written as

∇gφm

�����

�����
2

2
≤ λ(M, g) 1 − 􏽚

M
f u

N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N

􏼢 􏼣 + o(1),

(47)

and multiplying this inequality by 1 + ‖a‖p, then we get

1 +‖a‖p􏼐 􏼑 ∇gφm

�����

�����
2

2
≤ λ(M, g) 1 +‖a‖p􏼐 􏼑 − 1 +‖a‖p􏼐 􏼑 􏽚

M
f u

N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N

􏼢 􏼣 + o(1)

≤ λ(M, g) 􏽚
M

f|u|
Ndvg􏼒 􏼓

2/N
+ 􏽚

M
f φm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg􏼒 􏼓

2/N
− 1 +‖a‖p􏼐 􏼑 􏽚

M
f u

N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N

􏼢 􏼣 + o(1)

≤ λ(M, g) 􏽚
M

f φm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg)

2/N
− ‖a‖p 􏽚

M
f u

N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg􏼒 􏼓
2/N

􏼢 􏼣 + o(1)

≤ λ(M, g) 􏽚
M

f φm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg􏼒 􏼓

2/N
+ o(1).

(48)

Using Sobolev’s inequality, we still get

1 +‖a‖p􏼐 􏼑 ∇gφm

�����

�����
2

2
≤ λ(M, g) sup

x∈M
f(x)􏼠 􏼡

2/N

· K
2
0(n, 1) ∇gφm

�����

�����
2

2
+ o(1).

(49)

(us,

1 +‖a‖p − λ(M, g) sup
x∈M

f(x)􏼠 􏼡

2/N

K
2
0(n, 1)⎛⎝ ⎞⎠ ∇gφm

�����

�����
2

2
≤ o(1).

(50)

Now, if we assume

λ(M, g)<
1 +‖a‖p

K2
0(n, 1)( 􏼁 supx∈Mf(x)( 􏼁

2/N, (51)

we find

∇gφm

�����

�����
2

2
� o(1). (52)

Hence, φm converges strongly to 0 in H2
1(M), and then

um converges strongly to u in H2
1(M) and in LN(M). It

follows that

lim􏽚
M

f um − u
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Ndvg � 0, (53)

which leads to

􏽚
M

f u
N

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg � 1 +‖a‖p􏼐 􏼑
N/2

, (54)

and we can conclude that u ∈ A, and u is a nontrivial positive
weak solution of (1).

Concerning the regularity of solutions of equations (1),
Madani in [11] proved through the classical techniques a
regularity result with f a constant function and
a � ((n − 2)/4(n − 1)Sg. By following the same procedure,
though the presence of the nonconstant function f adds
further technical difficulties, we can prove the regularity of
solutions of equations (1). (is result is formulated in the
following theorem. □

Theorem 4. Let (M, g) be a Riemannian compact manifold
of dimension n≥ 3, and let a ∈ Lp(M), where p> (n/2), and
f be a positive C∞(M) function on M. If u ∈ H2

1(M) is a
nontrivial positive weak solution of

Δgu + au � fu
N− 1

, (55)

then u ∈ H
p
2(M) ⊂ C1− [n/p](M) and u> 0.

Proof. (e proof of this theorem is reduced to show that
u ∈ LN+ϵ for some ϵ> 0. Indeed, u verifies the equation

Δgu + a − fu
N− 2

􏼐 􏼑u � 0, (56)

and if u ∈ LN+ϵ, it follows that a − fuN− 2 ∈ Lr(M), where
r � min(p, (n/2) + ϵ)> (n/2) (see [10] for some details);
hence, one has Δgu ∈ Lp(M), and by the regularity theorem,
we deduce that u ∈ H

p
2(M). Let l> 0 be a real number and

H, F be two continuous functions on R+ given by
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H(x) �
tc, if 0≤ t≤ l,

lq− 1 qlq− 1t − (q − 1)lq( 􏼁, if t> l,
􏼨

F(x) �
tq, if 0≤ t≤ l,

qlq− 1t − (q − 1)lq, if t> l,
􏼨

(57)

where c � 2q − 1 and 1< q< (n(p − 1)/n(p − 2)). Since
u≥ 0 and u ∈ H2

1(M), then it follows that H°u and F°u are
both in H2

1(M),

qH(t) � F(t)F′(t),

F′(t)( 􏼁
2 ≤ qH′(t),

F
2
(t)≥ tH(t).

(58)

Let u be a weak solution of (55); then, for all v ∈ H2
1(M),

one has

􏽚
M
∇gu∇gvdvg + 􏽚

M
auvdvg � 􏽚

M
fu

N− 1
vdvg. (59)

Now, as in Section 2, we define a cutoff function
η ∈ C1(M) such that

η(x) �
1, onB(P, δ),

0, onM − B(P, 2δ).
􏼨 (60)

Chosen v � η2H°u and plugging this function in (59), we
get

􏽚
M
η2H′ ∘ u ∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg + 2􏽚

M
ηH ∘ u∇gu∇gηdvg

� 􏽚
M

fu
N− 1η2H ∘ udvg − 􏽚

M
auη2H ∘ udvg.

(61)

We put h � F ∘ u. Now, let us evaluate each of the above
integrals by using h and (58). We have ∇gh � F′ ∘ u∇gu;
thus, by applying the second relationship of (58), this implies

∇gh
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� F′ ∘ u( 􏼁
2 ∇gu
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤ qH′ ∘ u ∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (62)

We deduce that the first integral of (61) is bounded; then,
1
q
η∇gh

�����

�����
2

2
≤􏽚

M
η2H′ ∘ u ∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg. (63)

(e first relationship of (58) and the Cauchy–Schwarz
inequality imply that the second integral of (61) is bounded;
hence,

2􏽚
M
ηH ∘ u∇gu∇gηdvg �

2
q

􏽚
M
ηh∇gh∇gηdvg

≥
− 2
q

h∇gη
�����

�����2
η∇gh

�����

�����2
.

(64)

By using the latter relationship of (58), we obtain
uH°u≤ h2. In the same vain, the two integrals of the right-
hand side member in (61) are bounded; thus,

􏽚
M

fu
N− 1η2H ∘ udvg − 􏽚

M
auη2H ∘ udvg

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ sup
x∈M

f(x)􏼠 􏼡‖u‖
4/(n− 2)
N,2δ ‖ηh‖

2
N +‖a‖p‖ηh‖

2
2p/(p− 1),

(65)

where ‖u‖N
N,r � 􏽒

B(P,r)
uNdvg. If we group these estimates

together, equality (61) becomes

η∇gh
�����

�����
2

2
− 2 h∇gη

�����

�����2
η∇gf

�����

�����2

≤ q sup
x∈M

f(x)􏼠 􏼡‖u‖
4/(n− 2)
N,2δ ‖ηh‖

2
N +‖a‖p‖ηh‖

2
2p/(p− 1)􏼢 􏼣.

(66)

Now, let a1, b1, c1, and d1 be four real numbers; if
a2
1 − 2a1b≤ c21 + d2

1, we easily obtain that a1 ≤ 2b1 + c1 + d1.
(en, (66) becomes

η∇gh
�����

�����2
≤

���������
q sup

x∈M
f(x)

􏽲
‖u‖

2/(n− 2)
N,2δ ‖ηh‖N

+
�����
q‖a‖p

􏽱
‖ηh‖2p/(p− 1) + 2 h∇gη

�����

�����2
.

(67)

By Sobolev’s embedding, we then get that there exists a
constant c> 0 depending only on n such that

‖ηh‖N ≤ c η∇gh
�����

�����2
+ h∇gη

�����

�����2
+ ‖hη‖2􏼒 􏼓. (68)

Since q<N and after using (67), we obtain

1 − c
����������
N sup

x∈M
f(x)

􏽲
‖u‖

2/(n− 2)
N,2δ

⎛⎝ ⎞⎠‖ηh‖N

≤ c
������
N‖a‖p

􏽱
‖ηh‖2p/(p− 1) + 3 h∇gη

�����

�����2
+‖hη‖2􏼒 􏼓.

(69)

For δ sufficiently small, one has

‖u‖
2/(n− 2)
N,2δ ≤

1

2c
����������
N sup

x∈M
f(x)

􏽲 .
(70)

When l goes to +∞, we then get that there exists a
constant C> 0 depending only on n, δ, ‖η‖∞, ‖∇gη‖∞‖a‖p,
and f such that

u
q

����
����N,2δ ≤C u

q
����

����2 + u
q

����
����2p/(p− 1)

􏼒 􏼓. (71)

Now, from the boundedness of u in LN(M) and as
(2p/(p − 1))q<N, we still get

u
q

����
����qN,2δ ≤C. (72)

Since M is compact, it can be covered by a finite number
of balls B(Pi, δ)􏼈 􏼉i∈I, and let (ηi)i∈I be a partition of unity
subordinated to the covering; then,

‖u‖
qN
qN � 􏽘

i∈I
ηiu

����
����

qN

qN,δi
≤C. (73)

It follows that u ∈ LqN(M) with qN>N. □

4. Test Functions

(e purpose of this section is to find conditions such that
(29) will be true. Consider a normal geodesic coordinate
system centered at a point P. Denote by S(r) the geodesic
sphere centered at P and of radius r with r< rg(M), where
rg(M) is the injectivity radius. Let dΩ be the volume
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element of the n − 1-dimensional Euclidean unit sphere
Sn− 1, and put

G(r) �
1

ωn− 1
􏽚

S(r)

���

|g|

􏽱

dΩ, (74)

where ωn− 1 is the volume of Sn− 1 and |g| is the determinant
of the Riemannian metric g. (e formula of Taylor’s ex-
pansion of G(r) in a neighborhood of P is given by

G(r) � 1 −
Sg(P)

6n
r
2

+ o r
2

􏼐 􏼑, (75)

where Sg(P) is the scalar curvature of M at P. As in Section
2, let η be a smooth function on M such that

η(x) �
1, onB(P, δ),

0, onM − B(P, 2δ).
􏼨 (76)

For ϵ> 0, we define the radial function uϵ as follows:

uϵ � η(r) r
2

+ ϵ2􏼐 􏼑
− ((n− 2)/2)

, (77)

where r � d(P, x) is the distance from P to x and
f(P) � maxx∈Mf(x). For further computations, we need
the following integrals; then, for any real positive numbers
p, q such that p − q> 1, we put

I
q
p � 􏽚

+∞

0
(1 + t)

− p
t
qdt. (78)

Furthermore, it can be easily seen that

I
q
p+1 �

p − q − 1
p

I
q
p,

I
q+1
p+1 �

q + 1
p − q − 1

I
q
p+1.

(79)

Theorem 5. Let (M, g) be a Riemannian compact manifold
of dimension n≥ 5. Assume that a ∈ Lp(M), where p> (n/2),
f is a positive C∞(M) function on M, and P ∈M such that
f(P) � supx∈Mf(x). If
Δf(P)

f(P)
<

Sg(P)

3
n + 2
n − 4

− ‖a‖p − 1􏼒 􏼓 ‖a‖p + 1􏼐 􏼑
− 1

, (80)

then, (29) is true.

Proof. To proof this theorem, it suffices to show that

E uε( 􏼁<
1 +‖a‖p

K2
0(n, 1)( 􏼁 supx∈Mf(x)( 􏼁

2/N. (81)

(e aim of the following is to compute expansions of
these integrals:

J1 � 􏽚
M

f uε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Ndvg,

J2 � 􏽚
M

au
2
εdvg,

J3 � 􏽚
M
∇guε

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg,

(82)

on the geodesic ball B(P, δ). To compute the first term, we
need the following limited development of f at P:

f(x) � f(P) +
1
2
∇i,jf(P)y

i
y

j
+ o r

2
􏼐 􏼑. (83)

We have

J1 � 􏽚
M

f uε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Ndvg � 􏽚

δ

0
uε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
N

􏽚
S(r)

f

���

|g|

􏽱

dΩ􏼠 􏼡r
n− 1dr,

(84)

where

􏽚
S(r)

f

���

|g|

􏽱

dΩ � 􏽚
S(r)

f(P) +
1
2
∇i,jf(P)y

i
y

j
􏼒 􏼓

· 1 −
1
6
Ri,j􏼒 􏼓y

i
y

j
􏼓dΩ + o r

2
􏼐 􏼑

� ωn− 1 f(P) −
Δf(P)

2n
+

f(P)Sg(P)

6n
􏼠 􏼡r

2
+ o r

2
􏼐 􏼑􏼠 􏼡.

(85)

Put

L �
Δf(P)

2n
+

f(P)Sg(P)

6n
. (86)

(en,

J1 � ωn− 1 􏽚
δ

0

rn− 1

r2 + ϵ2( )
n f(P) − Lr

2
􏼐 􏼑dr + o r

2
􏼐 􏼑

� ωn− 1 f(P) 􏽚
δ

0

rn− 1

r2 + ϵ2( )
n dr − L 􏽚

δ

0

rn+1

r2 + ϵ2( )
n dr􏼠 􏼡 + o r

n+1
􏼐 􏼑.

(87)

Now, we set

t �
r2

ϵ2
,

dr �
ϵdt

2dt
,

r � ϵ
�
t

√
.

(88)

By changing the variable as above, it follows that

J1 � ωn− 1 f(P) 􏽚
(δ/ϵ)2

0

tn/2

2ϵn− 2(1 + t)n dt􏼠

− L 􏽚
(δ/ϵ)2

0

t(n/2)

2ϵn− 2(1 + t)n dt􏼡 + o ϵn+1
􏼐 􏼑

�
ωn− 1

2ϵn
f(P)I

(n/2)− 1
n − Lϵ2I(n/2)

n􏼐 􏼑 + o ϵ2􏼐 􏼑.

(89)

From

I
n/2
n �

n

n − 2
I

(n/2)− 1
n ,

ωn � 2n− 1ωn− 1I
(n/2)− 1
n ,

(90)
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we get that

J1 �
ωn− 1

2ϵn
I

(n/2)− 1
n f(P) −

Δf(P)

2(n − 2)
+

f(P)Sg(P)

6(n − 2)
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑

�
ωn− 1

2ϵn
I

(n/2)− 1
n f(P) 1 −

Δf(P)

2(n − 2)f(P)
+

Sg(P)

6(n − 2)
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑.

(91)

(erefore,

J
− (2/N)
1 � J

− ((n− 2)/n)
1

�
ωn− 1

2ϵn
I

(n/2)− 1
n f(P)􏼒 􏼓

− ((n− 2)/n)

1 +
n − 2

n

Δf(P)

2(n − 2)f(P)
+

Sg(P)

6(n − 2)
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑

�
2((n− 2)/n)ϵn− 2

ωn− 1I
(n− 2)− 1
n f(P)􏼐 􏼑

((n− 2)/n)
1 +
Δf(P)

2nf(P)
+

Sg(P)

6n
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑.

(92)

Let us compute the third integral. First, we have

∇guε

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
zuε

zr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� (n − 2)

r

r2 + ϵ2( )
n/2. (93)

(en, in a similar way, we get

J3 � ωn− 1 􏽚
δ

0

(n − 2)2r2

r2 + ϵ2( )
n 1 −

Sg(P)

6n
r
2

+ o r
2

􏼐 􏼑􏼠 􏼡r
n− 1dr

�
(n − 2)2ωn− 1

ϵn− 2 􏽚
(δ/ϵ)2

0

tn/2dt

2(1 + t)n − 􏽚
(δ/ϵ)2

0

Sg(P)ϵ2t(n/2)+1dt

12n(1 + t)n + o ϵ2􏼐 􏼑

�
(n − 2)2ωn− 1

ϵn− 2
n

2(n − 2)
I

(n/2)− 1
n −

Sg(P)ϵ2n(n + 2)

12n(n − 4)(n − 2)
I

(n/2)− 1
n + o ϵ2􏼐 􏼑􏼠 􏼡

�
(n − 2)2

ϵn− 2 ωn− 1I
(n/2)− 1
n

n

2(n − 2)
−

Sg(P)ϵ2n(n + 2)

12n(n − 4)(n − 2)
+ o ϵ2􏼐 􏼑􏼠 􏼡

�
(n − 2)

ϵn− 2 ωn− 1I
(n/2)− 1
n

n

2
−

Sg(P)ϵ2n(n + 2)

12n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡.

(94)

(at is,

J3 �
(n − 2)

ϵn− 2 ωn− 1I
(n/2)− 1
n

n

2
1 −

Sg(P)ϵ2(n + 2)

6n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡.

(95)

Now, compute the second integral J2. By using H€older’s
inequality, we get

J2 � 􏽚
M

au
2
εdvg

≤ 􏽚
M

a
pdvg􏼒 􏼓

1/p
􏽚

M
u
2p/(p− 1)dvg􏼒 􏼓

(p− 1)/p

≤ ‖a‖p uε
����

����
2
2p/(p− 1)

.

(96)

(en, a direct computation shows that
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uε
����

����
2
2p/(p− 1)

� 􏽚
M

u
2p/(p− 1)
ε dvg􏼒 􏼓

(p− 1)/p

� ωn− 1( 􏼁
(p− 1)/p

􏽚
δ

0

rn− 1

r2 + ϵ2( )
(n− 2)p/(p− 1)

−
Sg(P)

6n

rn+1

r2 + ϵ2( )
(n− 2)p/(p− 1)

+ o r
n+1

􏼐 􏼑􏼠 􏼡dr􏼠 􏼡

(p− 1)/p

�
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

I
(n/2)− 1
(n− 2)p/(p− 1) −

Sg(P)

3n
ϵ2I(n/2)

(n− 2)p/(p− 1) + o ϵ2􏼐 􏼑􏼠 􏼡

(p− 1)/p

�
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

I
(n/2)− 1
(n− 2)p/(p− 1) −

Sg(P)(n + 2)(p − 1)

3n(pn − 8p + 4 − n)
ϵ2I(n/2)− 1

(n− 2)p/(p− 1) + o ϵ2􏼐 􏼑􏼠 􏼡

(p− 1)/p

�
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

I
(n/2)− 1
(n− 2)p/(p− 1)􏼐 􏼑

(p− 1)/p
1 −

Sg(P)(n + 2)(p − 1)

3n(pn − 8p + 4 − n)
ϵ2 + o ϵ2􏼐 􏼑􏼠 􏼡

(p− 1)/p

�
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

I
(n/2)− 1
(n− 2)p/(p− 1)􏼐 􏼑

(p− 1)/p
1 − βϵ2 + o ϵ2􏼐 􏼑􏼐 􏼑,

(97)

where

β �
Sg(P)(n + 2)(p − 1)2

3np(pn − 8p + 4 − n)
. (98)

It follows that

uε
����

����
2
2p/(p− 1)

�
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

I
(n/2)− 1
(n− 2)p/(p− 1)􏼐 􏼑

(p− 1)/p
1 − βϵ2 + o ϵ2􏼐 􏼑􏼐 􏼑,

􏽚
M

au
2
εdvg ≤

1
2

􏼒 􏼓
p− 1/p

ωn− 1( 􏼁
p− 1/pϵ− n+2+2− (n/p)

‖a‖p I
(n/2)− 1
(n− 2)p/p− 1􏼐 􏼑

p− 1/p
1 − βϵ2 + o ϵ2􏼐 􏼑􏼐 􏼑.

(99)

Independently, we can easily show that, for φ � |∇guε|
2

or φ � f|uε|
N or φ � au2

ε , we get

􏽚
B(P,2δ)− B(P,δ)

φdvg⟶ 0. (100)

Let us derive estimates for E(uε). Using expansions of
J1, J2, and J3, we get that

E uε( 􏼁 � 􏽚
M
∇guε

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ au
2
εdvg􏼒 􏼓 􏽚

M
f uε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
Ndvg􏼒 􏼓

− (2/N)

,

(101)

which yields

E uε( 􏼁≤
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ− n+2+2− (n/p)

‖a‖p I
(n/2)− 1
(n− 2)p/p− 1􏼐 􏼑

(p− 1)/p
1 − βϵ2 + o ϵ2􏼐 􏼑􏼐 􏼑􏼢

+
(n − 2)

ϵn− 2 ωn− 1I
(n/2)− 1
n

n

2
1 −

Sg(P)ϵ2(n + 2)

6n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡􏼣

×
2n− 2/nϵn− 2

ωn− 1I
(n/2)− 1
n f(P)􏼐 􏼑

n− 2/n 1 +
Δf(P)

2nf(P)
+

Sg(P)

6n
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(102)

Next,
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E uε( 􏼁≤
1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ2− (n/p)

‖a‖p I
(n/2)− 1
(n− 2)p/p− 1􏼐 􏼑

(p− 1)/p
1 − βϵ2 + o ϵ2􏼐 􏼑􏼐 􏼑􏼢

+(n − 2)ωn− 1I
(n/2)− 1
n

n

2
1 −

Sg(P)ϵ2(n + 2)

6n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡􏼣

×
2n− 2/n

ωn− 1I
(n/2)− 1
n f(P)􏼐 􏼑

n− 2/n 1 +
Δf(P)

2nf(P)
+

Sg(P)

6n
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(103)

Let ϵ be sufficiently small such that

1
2

􏼒 􏼓
(p− 1)/p

ωn− 1( 􏼁
(p− 1)/pϵ2− (n/p)

‖a‖p I
(n/2)− 1
(n− 2)p/p− 1􏼐 􏼑

(p− 1)/p

·
2(n− 2)/n

ωn− 1I
(n/2)− 1
n f(P)􏼐 􏼑

(n− 2)/n
⎛⎜⎜⎝ ⎞⎟⎟⎠≤ ‖a‖pA,

(104)

where A � (n − 2)n((ωn− 1I
(n/2)− 1
n )/2)2/n(f(P))− (2/N), and as

2 − (n/p)> 0,

ϵ2− (n/p)βϵ2 � o ϵ2􏼐 􏼑. (105)

(en, we get that

E uε( 􏼁≤ ‖a‖pA + o ϵ2􏼐 􏼑 +(n − 2)ωn− 1I
(n/2)− 1
n

n

2
2(n− 2/n)

ωn− 1I
(n/2)− 1
n f(P)􏼐 􏼑

(n− 2/n)
⎛⎜⎜⎝ ⎞⎟⎟⎠ 1 −

Sg(P)ϵ2(n + 2)

6n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

× 1 +
Δf(P)

2nf(P)
+

Sg(P)

6n
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑􏼢 􏼣.

(106)

(erefore,

E uε( 􏼁≤ ‖a‖pA + o ϵ2􏼐 􏼑 +(n − 2)n
ωn− 1I

(n/2)− 1
n

2
􏼠 􏼡

2/n

(f(P))
− (2/N) 1 −

Sg(P)ϵ2(n + 2)

6n(n − 4)
+ o ϵ2􏼐 􏼑􏼠 􏼡⎡⎣ ⎤⎦

× 1 +
Δf(P)

2nf(P)
+

Sg(P)

6n
􏼠 􏼡ϵ2􏼠 􏼡 + o ϵ2􏼐 􏼑􏼢 􏼣.

(107)

Put

C �
Sg(P)(n + 2)

6n(n − 4)
,

D �
Δf(P)

2nf(P)
+

Sg(P)

6n
,

(108)

i.e.,
E uε( 􏼁≤ ‖a‖pA + o ϵ2􏼐 􏼑 + A − ACϵ2 + o ϵ2􏼐 􏼑􏽨 􏽩 × 1 + Dϵ2 + o ϵ2􏼐 􏼑􏽨 􏽩.

(109)

Direct calculation gives

E uε( 􏼁≤A ‖a‖p + 1􏼐 􏼑 1 + ‖a‖pD + D − C􏼐 􏼑
ϵ2

‖a‖p + 1
􏼢 􏼣 + o ϵ2􏼐 􏼑.

(110)

Knowing that

(n − 2)n
ωn− 1I

(n/2)− 1
n

2
􏼠 􏼡

2/n

� K
− 2
0 (n, 1), (111)

we obtain
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E uε( 􏼁≤K
− 2
0 (n, 1)(f(P))

− (2/N)
‖a‖p + 1􏼐 􏼑

· 1 + ‖a‖pD + D − C􏼐 􏼑
ϵ2

‖a‖p + 1
􏼢 􏼣 + o ϵ2􏼐 􏼑.

(112)

To ensure assumption (29),

λ(M, g)<
1 +‖a‖p

K2
0(n, 1)( 􏼁 supx∈Mf(x)( 􏼁

2/N, (113)

we must take

‖a‖pD + D − C< 0. (114)

(en, we get that

E uε( 􏼁< 1 +‖a‖p􏼐 􏼑 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
. (115)

It follows that (114) means that
Δf(P)

f(P)
<

Sg(P)

3
n + 2
n − 4

− ‖a‖p − 1􏼒 􏼓 ‖a‖p + 1􏼐 􏼑
− 1

. (116)
□

5. Application

Let P ∈M; we define a function on M by

rp(q) �
d(p, q), if d(p, q)< δ(M),

δ(M), if d(p, q)≥ δ(M),
􏼨 (117)

where δ(M) is the injectivity radius of M. For brevity, we
denote this function by r. We define the weighted Lp(M, rc)

space as the set of measurable functions u on M such that
rc|u|p are integrable, where p≥ 1. We endow Lp(M, rc) with
the norm

‖u‖
p
p,rc � 􏽚

M
r

c
|u|

pdvg􏼒 􏼓. (118)

In this section, we need the Hardy–Sobolev inequality
and the Rellich–Kondrakov embedding whose proofs are
given in [11].

Theorem 6 (Hardy inequality). For any function in
u ∈ C∞0 (M), there exists a constant c> 0 such that

|x|
c
u

����
����p
≤ c |x|

β∇u
�����

�����q
, (119)

where 1≤ q≤p≤ (qn/(n − lq)), c � β − l + n((1/q) − (1/
p))> − (n/p) and n> lq.

(is type of inequality in one dimension was introduced by
Hardy and generalized for all dimensions. For more details, see
the book of V. G. Maz’ja, where we can find the proof of this
theorem. In our case, we are interested when β � 0 and l � 1.
(e following theorems were proved by Madani in [11].

Theorem 7. Let (M, g) be a Riemannian compact manifold
of dimension n and p, q and c be real numbers such that ((c +

n)/p) � − 1 + (n/q)> 0 and 1≤ q≤p≤ (qn/(n − q)). For any
ϵ> 0, there exists A(ϵ, q, c) such that, for any u ∈ H

q
1(M),

‖u‖p,rc ≤ (K(n, q, c) + ϵ) ∇gu
�����

�����q
+ A(ϵ, q, c)‖u‖q, (120)

where the number K(n, q, c) � c is the best constant in Hardy
inequality.

In particular, K(n, q, 0) � K(n, q) is the best constant in
Sobolev’ embedding u ∈ H

q
1(M) ⊂ Lp(M).

Moreover, in the case of q � 2, we obtain

‖u‖
2
p,rc ≤ K

2
(n, 2, c) + ϵ􏼐 􏼑 ∇gu

�����

�����
2

2
+ A(ϵ, 2, c)‖u‖

2
2, (121)

where (c + n/p) � − 1 + (n/2)> 0 and 2≤p≤ (2n/n − 2).

Lemma 1. For all function u ∈ H
q
1(M) with compact support

included in the ball B(P, δ), we get

‖u‖p,rc ≤ (K(n, q, c) + ϵ) ∇gu
�����

�����q
, (122)

and when δ tends to 0, Kδ(n, q, c) goes to K(n, q, c).

Theorem 8. Let (M, g) be a Riemannian compact manifold
of dimension n.

(1) If ((c + n)/p) � − 1 + (n/q)> 0 and 1≤ q≤p, then the
embedding u ∈ H

q
1(M) ⊂ Lp(M, rc) is continuous

(2) If (c + n/p) � − 1 + (n/q)> 0, c≤ 0 and q≤p, then
this embedding is compact

We consider the following second-order equation:

Δgu +
a(x)

rα
u � f|u|

N− 2
u, (123)

where a is the smooth function, r denotes the distance function
defined as above, and α will be precise later. Let

Fα(u) � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
a(x)

rα
u
2

􏼠 􏼡dvg, (124)

be the energy functional, and consider the Sobolev quotient:
for any u ∈ H2

1(M) − 0{ },

Eα(u) �
Fα(u)

􏽚
M

f uN| |dvg􏼒 􏼓
2/N.

(125)

Let

λα(M, g) � inf
u∈A

Fα(u), (126)

where

A � u ∈ H
2
1(M) such that􏽚

M
f u

N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dvg � 1 +
a

rα

������

������
p

􏼠 􏼡

N/2⎧⎨

⎩

⎫⎬

⎭.

(127)

Proposition 2. If 0< α< (n/p)< 2 and

λα(M, g)< 1 +‖a‖p􏼐 􏼑 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
, (128)

then equation (123) has a positive solution uα ∈ C1− [n/p](M)

such that
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Fα uα( 􏼁 � λα(M, g). (129)

Proof. Let a � (a(x)/rα); since α< (n/p)< 2, it follows that
a ∈ Lp(M), and then from(eorem 3 and(eorem 4, we get
the result.

In the case of α � 2, a does not necessarily belong to
Lp(M), and (eorem 3 is no longer valid, so we look for
subcritical cases 0< α< 2 and we tend α to 2. (is can be
done by adding an assumption and using Lebesgue’s the-
orem. Let Pg be such that

Pg,α � Δg +
a

rα
. (130)

□

Proposition 3. If Pg,2 is coercive, the following norm is
equivalent to the usual norm on H2

1(M):

‖u‖ � 􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
a

r2
u
2

􏼒 􏼓dvg􏼒 􏼓
1/2

� 􏽚
M

uPg,2(u)dvg􏼒 􏼓
1/2

.

(131)

Proof. If Pg is coercive, then there exits c0 > 0 such that, for
any u ∈ H2

1(M),

􏽚
M

uPg,2(u)dvg ≥ c0‖u‖
2
H2

1(M). (132)

By Hardy–Sobolev inequality (121) with p � 2 and
c � − 2, we get

􏽚
M

uPg,2(u)dvg ≤􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg +‖a‖∞􏽚

M

u2

r2
dvg

≤􏽚
M
∇gu

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dvg +‖a‖∞ K(n, 2, − 2)

2
+ ϵ􏼐 􏼑 ∇gu

�����

�����
2

2
+ A(ϵ, 2, − 2)‖u‖

2
2􏼒 􏼓

≤max 1, ‖a‖∞( K(n, 2, − 2)
2
, ‖a‖∞A(ϵ, 2, − 2)􏼐 􏼑‖u‖

2
H2

1(M)

≤ cα‖u‖
2
H2

1(M),

(133)

where

cα � max 1, ‖a‖∞K(n, 2, − 2)
2
, ‖a‖∞A(ϵ, 2, − 2)􏼐 􏼑􏼐 > 0.

(134)

(erefore,

c0‖u‖
2
H2

1(M) ≤􏽚
M

uPg,2(u)dvg ≤ cα‖u‖
2
H2

1(M). (135)
□

Proposition 4. Let (M, g) be a Riemannian compact
manifold of dimension n≥ 5 such that the metric
g ∈ H

p
2(M, T∗M⊗T∗M). Assume that f is a positive

C∞(M) function on M and P ∈M such that
f(P) � supx∈Mf(x). If μ(M, g)> 0 and
Δf(P)

f(P)
<

Sg(P)

3
n + 2
n − 4

− ‖a‖p − 1􏼒 􏼓 ‖a‖p + 1􏼐 􏼑
− 1

, (136)

where a � (n − 2/4(n − 1))Sg, then there exists a metric g �

uN− 2g conformal to g such that the scalar curvature Sg � f.

Proof. As in Section 1, if the singular Yamabe invariant
μ(M, g)> 0, the singular Yamabe operator Pg � Δg + a is
weakly conformally invariant, and by (eorem 3, (eorem
4, and (eorem 5, there exists u ∈ C1− [n/p](M), u> 0, so-
lution of the following equation:

Δgu +
n − 2

4(n − 1)
Sgu � f|u|

N− 2
u. (137)

On the contrary, by the weak conformal invariance of Pg

and if g � uN− 2g is conformal to g, one has

Δgu +
n − 2

4(n − 1)
Sgu � Sg|u|

N− 2
u. (138)

(en, we deduce that the metric g � uN− 2g is such that
the scalar curvature Sg � f. □

6. The Critical Case α= 2

Keeping the notations adapted above, in this section, we are
going to prove the second main theorem, (eorem 2.

Proof □

Step 1. We have F2(u)> − ∞ and

lim
α⟶2

λα(M, g) � λ2(M, g). (139)

Let δ(M) be the injectivity radius of M. For any ϵ> 0,
there exists δ such that 0< δ <min(1, δ(M)), and if
Q ∈ B(P, δ), we get |a(Q) − a(P)|< ϵ, and also, if
u ∈ H2

1(M) with 􏽒
M

f|uN|dvg � (1 + ‖a/r2‖p)N/2, then we
have

􏽚
M

a

r2
u
2dvg ≥ (a(P) − ϵ)􏽚

B(P,δ)
r

− 2
u
2dvg −

‖a‖∞

δ2
‖u‖

2
2.

(140)

By applying (eorem 7, the following inequality holds:

􏽚
B(P,δ)

u2

r2
dvg ≤ K

2
(n, 2, − 2) + ϵ􏼐 􏼑 ∇gu

�����

�����
2

2
+ A(ϵ, 2, − 2)‖u‖

2
2.

(141)
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Combining (140) and (141), we get

􏽚
M

a
u2

r2
dvg ≥ (min(a(P), 0) − ϵ) K

2
(n, 2, − 2) + ϵ􏼐 􏼑 ∇gu

�����

�����
2

2

+ (min(a(P), 0) − ϵ)A(ϵ, 2, − 2) −
‖a‖∞

δ2
􏼨 􏼩‖u‖

2
2.

(142)

Independently, by H€older’s inequality, one has

‖u‖
2
2 ≤ 1 +

a

r2

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

. (143)

(en, we get that

􏽚
M

a
u2

r2
dvg ≥ (min(a(P), 0) − ϵ) K

2
(n, 2, − 2) + ϵ􏼐 􏼑 ∇gu

�����

�����
2

2

+ (min(a(P), 0) − ϵ)A(ϵ, 2, − 2) −
‖a‖∞

δ2
􏼨 􏼩 1 +

a

r2

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

.

(144)

Hence,

F2(u)≥ ∇gu
�����

�����
2

2
+(min(a(P), 0) − ϵ) K

2
(n, 2, − 2) + ϵ􏼐 􏼑 ∇gu

�����

�����
2

2

+ (min(a(P), 0) − ϵ)A(ϵ, 2, − 2) −
‖a‖∞

δ2
􏼨 􏼩 1 +

a

r2

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

,

(145)

which yields

F2(u)≥ (1 +(min(a(P), 0) − ϵ) K
2
(n, 2, − 2) + ϵ􏼐 􏼑􏽮 􏽯 ∇gu

�����

�����
2

2

+ (min(a(P), 0) − ϵ)A(ϵ, 2, − 2) −
‖a‖∞

δ2
􏼨 􏼩 1 +

a

r2

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

.

(146)

Now, if 1 + a(P)K2(n, 2, − 2)> 0, then we can chose ϵ
sufficiently small such that the first term of the right-hand
side of the latter equality will be strictly positive; then, it
follows that

F2(u)> (min(a(P), 0) − ϵ)A(ϵ, 2, − 2) −
‖a‖∞

δ2
􏼨 􏼩

· 1 +
a

r2

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

.

(147)

Consequently,

F2(u)> − ∞. (148)

On the contrary, by Lebesgue’s dominated convergence
theorem, we get that

􏽚
M

a

rα
u
2dvg⟶ 􏽚

M

a

r2
u
2dvg, when α⟶ 2. (149)

Hence,

lim
α⟶2

Eα(u) � E2(u), (150)

and by passing to the infimum over u such that
􏽒

M
f|uN|dvg � (1 + ‖a/rα‖p)N/2, we obtain

lim
α⟶2

λα(M, g) � λ2(M, g), (151)

which implies that there exists α0 such that, for all
α ∈ [α0, 2), we also have

λα(M, g)≤ 1 +
a

r2

������

������
p

􏼠 􏼡 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
. (152)

Step 2. We claim that the sequence (uα)α is bounded in
H2

1(M) and converges to a weak solution.
In a similar way, by Proposition 4 and from H€older’s

inequality, we get then for all α ∈ [α0, 2), the solution uα of
equation (123) satisfies

uα
����

����
2
2 ≤ 1 + a/rα

����
����p

􏼒 􏼓 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

.

(153)

Knowing that

Fα uα( 􏼁 � 􏽚
M
∇guα

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
a

rα
u
2

􏼒 􏼓dvg

≥􏽚
M
∇guα

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽚
B(P,δ)

a

rα
u
2

−
uα

����
����∞

δ2
uα

����
����
2
2dvg,

(154)
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we get by the assumption made in (128) that

1 +
a

r2

������

������
p

􏼠 􏼡 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N) ≥Fα uα( 􏼁≥ ∇guα

�����

�����
2

2

+ 􏽚
B(P,δ)

a

rα
u
2

−
uα

����
����∞

δ2
􏽚

M
u
2
αdvg,

(155)

which leads to

1 +
a

r2

������

������
p

􏼠 􏼡 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
+

uα
����

����∞

δ2
􏽚

M
u
2
αdvg

≥ ∇guα

�����

�����
2

2
+ 􏽚

B(P,δ)

a

rα
u
2dvg,

(156)

and by letting

A � 1 +
a

r2

������

������
p

􏼠 􏼡 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
, (157)

the last inequality will be written as

A +
uα

����
����∞

δ2
􏽚

M
u
2
αdvg ≥ ∇guα

�����

�����
2

2
+ 􏽚

B(P,δ)

a

rα
u
2
αdvg. (158)

By applying (153), we still get

A +
‖a‖∞

δ2
1 +

a

rα

������

������
p

􏼠 􏼡 inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

≥ ∇guα

�����

�����
2

2
+ 􏽚

B(P,δ)

a

rα
u
2
αdvg,

(159)

and as

1 +
a

r2

������

������
p

􏼠 􏼡≤ 1 +
a

rα

������

������
p

􏼠 􏼡, (160)

by letting

B � 1 +
a

rα

������

������
p

􏼠 􏼡 K
− 2
0 (n, 1)􏼐 􏼑(f(P))

− (2/N)
􏽮

+
‖a‖∞

δ2
inf
x∈M

f(x)􏼒 􏼓
− (2/N)

V(M)
1− (2/N)

􏼩,

(161)

we also get

B≥ ∇guα

�����

�����
2

2
+ 􏽚

B(P,δ)

a

rα
u
2
αdvg. (162)

Now, by Lemma 1 and for δ sufficiently small, we obtain

􏽚
B(P,δ)

a

rα
u
2
αdvg ≥ (min(a(P), 0) − ϵ)K2

(n, 2, − 2) ∇guα

�����

�����
2

2
.

(163)

(en, inequality (162) gives

1 +(min(a(P), 0) − ϵ)K2
(n, 2, − 2) ∇guα

�����

�����
2

2
≤B. (164)

(en, the sequence (uα)α is bounded in H2
1(M), and

then there exists a sequence αm ∈ [α0, 2) which converges to
2 such that the sequence (uαm

)m � (um)m converges weakly
in H2

1(M), and after restriction to a subsequence still labeled
(um)m, we may assume that there exists u ∈ H2

1(M) such
that

(i) um⟶ u weakly in H2
1(M).

(ii) um⟶ u strongly in Lp(M) for all p<N and almost
everywhere on M. (en, from Hardy–Sobolev’s
embedding (eorem 8, we have um⟶ u weakly in
L2(M, r− 2), and we deduce that, for any φ ∈ L2(M),

􏽚
M

a

r2
umφdvg � 􏽚

M

a

r2
uφdvg + o(1). (165)

In particular, for any φ ∈ H2
1(M), we have

􏽚
M
Δgum +

a

rαm

um􏼒 􏼓φdvg � λm(M, g)􏽚
M

f um

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
N− 2

umφdvg.

(166)

By the weak convergence in H2
1(M), we get

􏽚
M
φΔgumdvg � 􏽚

M
φΔgudvg + o(1),

􏽚
M
φ

a

rαm

um −
a

r2
u􏼒 􏼓dvg � 􏽚

M
φ

a

rαm

um −
a

r2
um +

a

r2
um −

a

r2
u􏼒 􏼓dvg

� 􏽚
M

aφum

1
rαm

−
1
r2

􏼒 􏼓dvg + 􏽚
M

a

r2
φ um − u( 􏼁dvg.

(167)
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Again with the weak convergence in L2(M, r− 2) and
Lebesgue’s dominated convergence theorem, we get that

􏽚
M

aφum

1
rαm

−
1
r2

􏼒 􏼓dvg + 􏽚
M

a

r2
φ um − u( 􏼁dvg⟶ 0.

(168)

On the contrary, since (um) is bounded in LN(M), the
sequence (|um|N− 2um)m is bounded in LN/(N− 1)(M); hence,

λm(M, g)􏽚
M

f um

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
N− 2

umφdvg⟶ λ(M, g)􏽚
M

f|u|
N− 2

uφdvg.

(169)

Step 3. u is nonidentically null.

By Sobolev’s inequality applying to (um)m, we can easily
have

1 +
a

rαm

������

������
p

􏼠 􏼡(f(P))
− (2/N) ≤ um

����
����
2
N
≤K

2
0(n, 1) ∇gum

�����

�����
2

2
+ B um

����
����
2
2,

(170)

and since um satisfies (123), we also have

∇gum

�����

�����
2

2
� λm(M, g) − 􏽚

M
u
2
m

a

rαm

dvg. (171)

Writing

􏽚
M

a
u2

m

rαm

dvg ≥ (min(a(P), 0) − ϵ) K
2
(n, 2, − α) + ϵ􏼐 􏼑 ∇gum

�����

�����
2

2

+ (min(a(P), 0) − ϵ)A(ϵ, 2, − α) −
‖a‖∞

δ2
􏼨 􏼩 um

����
����
2
2,

(172)

then

∇gum

�����

�����
2

2
≤ λm(M, g) − (min(a(P), 0) − ϵ) K

2
(n, 2, − α) + ϵ􏼐 􏼑 ∇gum

�����

�����
2

2

− (min(a(P), 0) − ϵ)A(ϵ, 2, − α) −
‖a‖∞

δ2
􏼨 􏼩 um

����
����
2
2.

(173)

It follows that
1 +(min(a(P), 0) − ϵ) K

2
(n, 2, − α) + ϵ􏼐 􏼑􏽮 􏽯 ∇gum

�����

�����
2

2

≤ λm(M, g) − (min(a(P), 0) − ϵ)A(ϵ, 2, − α) −
‖a‖∞

δ2
􏼨 􏼩 um

����
����
2
2,

(174)

which implies

∇gum

�����

�����
2

2
≤
λm(M, g) − (min(a(P), 0) − ϵ)A(ϵ, 2, − α) − ‖a‖∞/δ

2
􏼐 􏼑􏽮 􏽯 um

����
����
2
2

1 +(min(a(P), 0) − ϵ) K2(n, 2, − α) + ϵ( )
. (175)

Plugging this in (170), we get

1 +
a

rαm

������

������
p

􏼠 􏼡(f(P))
− (2/N) ≤

λm(M, g) − (min(a(P), 0) − ϵ)A(ϵ, 2, − α) − ‖a‖∞/δ
2

􏼐 􏼑􏽮 􏽯 um

����
����
2
2

1 +(min(a(P), 0) − ϵ) K2(n, 2, − α) + ϵ( )
K

2
0(n, 1) + B um

����
����
2
2.

(176)

Hence,

1 +
a

rαm

������

������
p

􏼠 􏼡(f(P))
− (2/N)

−
λm(M, g)K2

0(n, 1)

1 +(min(a(P), 0) − ϵ) K2(n, 2, − α) + ϵ( )

≤ B −
K2

0(n, 1) (min(a(P), 0) − ϵ)A(ϵ, 2, − α) − ‖a‖∞/δ
2

􏼐 􏼑􏽮 􏽯

1 +(min(a(P), 0) − ϵ) K2(n, 2, − α) + ϵ( )

⎧⎨

⎩

⎫⎬

⎭ um

����
����
2
2.

(177)
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In the end, if (22) is satisfied, as above for m large
enough, we can chose ϵ sufficiently small such that

0< 1 +
a

rαm

������

������
p

􏼠 􏼡(f(P))
− (2/N)

−
λm(M, g)K2

0(n, 1)

1 +(min(a(P), 0) − ϵ) K2(n, 2, − α) + ϵ( )
. (178)

(en, it follows that the solution u is not trivial.
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