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In this paper, we present an application of optimal control theory on a two-dimensional spatial-temporal SEIR (susceptible,
exposed, infected, and restored) epidemic model, in the form of a partial differential equation. Our goal is to minimize the number
of susceptible and infected individuals and to maximize recovered individuals by reducing the cost of vaccination. In addition, the
existence of the optimal control and solution of the state system is proven. The characterization of the control is given in terms of
state function and adjoint. Numerical results are provided to illustrate the effectiveness of our adopted approach.

1. Introduction

In the literature, there are numerous books and articles [1-7]
that deal with epidemic mathematical models. It is well
established that human mobility plays an important role in
the spread of an epidemic [8-13]. Mathematical modelling of
the spread of infectious diseases has an important influence
on disease management and control [14-16]. In general,
after the initial infection, a host remains in a latency period
before becoming infectious, so the population can be divided
into four categories: susceptible (S), exposed (E), infected (I),
and recovered (R). In this contribution, we treat a model of
epidemic type SEIR in which the model takes into account
the total population size as a refrain for the transmission of
the disease, and it is assumed that it is constant over time.
The approach used is based on the work of El Alami
Laaroussi et al. [17, 18], which was applied on a SIR model.
So, our goal is to characterize optimal control in the form of
a vaccination program, maximizing the number of people
reestablished and minimizing the number of susceptible,
infected people and the cost associated with vaccination over
an infinite space and in a time domain. The theory of

semigroups and optimal control makes it possible to show
the existence of state system solutions and optimal control
and to obtain the optimal characterization of this control in
terms of state functions and adjoint functions. To illustrate
the solutions, based on the numerical results, we find that the
use of the vaccine control strategy in the spatial region helps
to fight the spread of the epidemic in this region over a
period of 60 days. The structure of this article is as follows.
Section 2 is devoted to the basic mathematical model and the
associated optimal control problem. In Section 3, we prove
the existence of a strong global solution for our system. The
existence of the optimal solution is proved in Section 4. The
necessary optimality conditions are defined in Section 5. As
an application, the numerical results associated with our
control problem are given in Section 6. Finally, we conclude
the paper in Section 7.

2. The Basic Mathematical Model

2.1. The Model. In this paper, we consider the following SEIR
epidemic model (susceptible (S), exposed (E), infected (I),
and recovered (R)):
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' g:dSAS—yS+wR—ﬁsﬁI+ﬂN(1 —v(x,1)),
%—f = dEAE+ﬂ%—(/J+0)E,
] %zdIAI—([J+Y)I+C’E’ v
2_1: = dgAR - (4 + w)R + yI + uNv(x,t),

(t,x) e Q=[0,T] xQ,

where B(SI/N) is the total number of infection per unit of
time, N is the total population (N(t)=S(¢)+ E(t)+
I(t) + R(t) =N(0) =N), u is the rate of deaths from causes
unrelated to the infection, incidence rate, w is the rate of
losing immunity, f3 is the transmission constant, and ¢~" and
y~ ! are, respectively, the average duration of latent and
infective periods. The positive constants ds, dg, d;, and dy
denote the corresponding diffusion rate for susceptible,
exposed, infectious, and recovered individuals. We denote
by Q a fixed and bounded domain in IR* with smooth
boundary 0Q) and # is the outward unit normal vector on the
boundary. The initial conditions and no-flux boundary
conditions are given by

39S OE 3l 3R

a—a—a—a—ﬂ—o, (t,X)EZZ[O,T]XaQ, (2)

S(0,x) = Sy >0,
E(0,x) = Ey >0,
(0,x) = E, (3)
1(0,x) =1, >0,
R(0,x) = Ry >0.

2.2. The Optimal Vaccination. Eligible controls are con-
tained in the ensemble

veL*(Q) } @)

ad_{Osvsvmaxsl

where v(x,t) represents the vaccination rate at time and
position x. We seek to minimize the functional objective

J(v) = J: JQ (K, S(t,x) + K, I (t, x) — K3R (¢, x))dx dt

& 2
+ E”V”Lz Q)
(5)

for some positive constant v™**,
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Kj, K5, and Kj; are constant weights. The cost of vacci-
nation is a nonlinear function of v, and we choose a qua-
dratic function indicating the additional costs associated
with high vaccination rates.

The parameter («/2), with the units (Population/kmz)/
vaccin?, balances the cost squared of the vaccine with the
cost associated with the infected population. Our objective is
to find control functions such that

J(v") = min{J (v),v € U4} (6)

(i) We put H(Q)= (I*(Q)% we denote by
W2 ([0,T], H(Q)) the space of all absolutely con-
tinuous functions y: [0,T] — H(Q) having the
property that (3y/at) € L*([0,T], H (Q)).

(i) Z(T,Q) = L*([0,T], H*(Q)) N L*® ([0, T], H' (Q)).

3. Existence of Solution

We study in this section the existence of a global strong
solution, positivity, and boundedness of solutions of
problem for (1)-(3). Let y = (y1, ¥5, ¥3» ¥4) = (S, E, I, R) the
solution of system (1)-(3) with »° = (39,993,199 =
(8% E%I%R%). A denotes the linear operator defined as
follows:

A:D(A) c H(Q) — H(Q),
Ay = (dsAy,,dgAy,,diAys,drAy,) € D(A),

Vy = (¥1>¥2 V3 ¥a) € D(A),
(7)

where the domain of A is defined by

_ 2000 V1 _9y2 _Oys _Oys _
D(A)—{ye(H ‘9))’@7 = T on "oy 0 @exedqr.
(8)

Theorem 1. Let Q be a bounded domain from R*; with the
boundary smooth enough, y? >00n Q(withi=1,2,3,4), the
problem (1)-(3) has a unique (global) strong solution
y € WE2([0,T]: H(Q))such  thaty; € Z(T,Q)NL*®(Q)
with i=1, 2, 3, 4. In addition y;, y, y; and y, are non-
negative. Furthermore, there exists C > 0 (independent of (v))
for all t € [0,T]:

[

<C,
ot

v Iyillee o on H17ilen oy + il

fori=1,2,3,4.
9

Proof. To prove the existence of a (global) strong solution
for system (1)-(3), now we write system (1)-(3) as shown in
(7) (see Appendix). Let



International Journal of Differential Equations

, 91 (y (1) = —uy, + wy, —E%WN(I -v(x,1)),

9 (y() = BR2 - (u+ )y, te[0.T),

g3 (y(@) =—(p+y)ys + 0y,

L 9. (¥ (1) = (U + )y, + yy; + uNv(x,t).
(10)

System (10) represents the nonlinear term of (1) and we
consider the function g(y(t)) = (g,(y(t)),g,(y (1)),
g5 (y (1)), g4 (¥ (1))); then, we can be rewrite system (1)-(3)
in the space H(Q) as follows:

Y ays gy, teloT,

ot (11)

y(0) = »°.

It is clear that function g is Lipschitz continuous in y =
(¥1> ¥2» ¥3» ¥4) uniformly with respect to t € [0,T7].

As the operator A defined in (7) and (8) is dissipating,
self-adjoint and generates a Cy-semi-group of contractions
on H(Q) [19]. Therefore, Theorem A.l (see Appendix)
assures problem (1)-(3) which admits a unique strong so-
lution y € W2 ([0, T], H (Q)) with

Vi ¥ ¥3 ya € (10, T], H* (). (12)

In order to show that y; € L*(Q) for i=1, 2, 3, 4, we
denote M = max{l|g, Il @ 1%l (0} and {S(t), £20} is
the  Cp-semigroup  generated by the  operator
B:D(B) c L*(Q) — L*(Q), where By, =d;Ay, and
D(B) = {y, € H*(Q), (0y,/0n) = 0, a.e 0Q}. It is clear that

the function U, (t,x) = y, — Mt — IIy?IILm(Q) satisfies the
system:

% (t,x) =dsAU, +g,(t,y())-M, te][0,T],

Uy (0,%) = 37 =[] 1o
(13)

Note that this system has a solution given by

UL (t) = SOy |5

@) * [ SE=9(, (5. - My
(14)

As ¥) = 199ll100 () <0 and g, (s, y(s)) - M <0, we have
U, (t,x) <0, V(t,x) € Q. Similarly, the function U, (¢, x) =
y1+ Mt + ()0l () satisfies U, (£,x) 20, V(t,x) € Q.

3
Then,
1 (60| <ME+ W]y V(EX) €Q (15)
and analogously, we have
|yi(t, x)l <Mt +||y?||Lm(Q), V(t,x) € Q, fori=2,3,4.

(16)

Thus, we have proved that
v, € L (QWV(t,x) €Q, fori=1,2,3,4. (17)

By the first equation of (1), we obtain

0JQO

2 t
2 2
% dsdx + dj .[0 JQ|Ay1| dsdx
" o
-2 ——A
dSJOJQ s y,dsdx

= J:) J-Q<_.“y1 +wy, _ﬁy;\/‘;% +uN(1- V(X>t))>2dsdx.
(18)

Using the regularity of y; and Green’s formula, we can
write

t ayl t 8 k 2 2
2 Jo JogAyldx = —Jog<JQ|Vyl| dx)ds = —JQlVy1| dx

+JQ|Vy‘1)|2dx.
(19)

Then,
24

¢ 2 t
J J 9 dsdx+d§J J |Ay1|2dsdx+dsj vy, [dx
0Jal os 0Ja Q

—dsJQ|Vy?|2dx

t Yy 2
= J J (—yyl +wy, - A+ uN(1 - v(x,t))) dsdx.
0Ja N
(20)
Since [ y;llw(q) for i=1, 2, 3, 4 are bounded indepen-
dently of v and ! € H?(Q) , we deduce that
y, € L2([0,T], H' (). (21)

We make use of (12), (13), and (21) in order to get
y1 € Z(T,Q)NL*(Q), (22)

and conclude that the inequality in (9) holds for i=1
similarly for y,, y; and y,.

In order to show the positiveness of y; for i=1, 2, 3, 4, we
write system (1) in the form:



oy
== ddy+ Hy (7 v 75 3)

9y
a—t2 = dszl + H2 ()/1,)’z> y3’ y4)’

19y

?stA)’s + H3 (Y15 Y2 Y30 Ya)s (23)

5]
% =d,Ay; + Hy (Y1 Y2 V3 Va)s

[ (t,x) € Q.

It is easy to see that the functions H,(y,, ¥,
Y3 ¥a)s Hy (Y1 ¥20 3, ¥a)s Hy (Y1 Y25 35 y4), and Hy (yy,

¥, V3 ¥s) are continuously differentiable satisfying
H, (0, 55 73 y4) = 0y, + uN (1 = v(x,1)) 20, H,(y,,0,
Y3 ¥a) = B(1y3/N) 20, Hy (1, 5,0, y4) = 0y,20, Hy

(V1> Y2, ¥3,0) = yys3 + uNv(x,£) 20, for all yy, y5, y3, y4=0
O
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4. The Existence of the Optimal Solution

In this section, we will prove the existence of an optimal
control for problem (5) subject to reaction diffusion system
(1)-(3) and (v) € U,4. The main result of this section is the
following theorem.

Theorem 2. Under the hypotheses of Theorem 1, the optimal
control problem (1)-(5) admits an optimal solution

(y*, (v)).

Proof. From Theorem 1, we know that, for every v € U,g,
there exists a unique solution y to system (1)-(3). Assume
that

infveUad]((v)) > —00. (24)

Let {(v*)} c U4 be a minimizing sequence such that
lim, . .J(v") = inf oy J(v), (25)

where (¥, ¥, ¥%, y}) is the solution of system (1)-(3)

(see [20]). This completes the proof. corresponding to the control (v") for n=1, 2, .... That is,
0y n o " Y15 n.oon o on "
5T A —uyi ey - B o +ygl+3y§, oy +u(y+ Yy + sy (1),
0yh =d, Ay, + f—— i/ﬁ‘y?n o~ (u+ o)y,
ot (Vr+yi+yi+y4)
) (26)
a " n n n
% =d;Ays —(u+y)ys+0y;  (6x)€Q
ayz n n n n n n n n
[ 5 = AbYi - v @it yys+u(+yy+ 55+ YV,
oyi _0yy oy; 9y
- =23=_"Z4_0 (4 > (t, %, 2
o " on = an "o (t,x) € Z(t,x) € (27)
y1(0,x) = y) fori=1,2,3,4x € Q. (28)

By Theorem 1, using the estimate (9) of the solution y?,
there exists a constant C > 0 such that foralln>1,t € [0,T],

ot

H'(Q) is compactly embedded in L?(Q), so we deduce
that y¥ (t) is compact in L*(Q).

Let us show that {y/(t),n>1} is equicontinuous in
C([0,T] : L*(Q)). As (0y%/0t) is bounded in L*(Q), this
implies that for all s,t € [0,T],

<

< <C,
(Q

G Ny?NLZ (0.T:H2(Q)) |y?||H‘(Q) <C i=1234

(29)

Hg(y'f)z(f,x)dx—Ig(yi‘)z(s,x)dx <Klt-s|. (30)

The Ascoli-Arzela theorem (see [21]) implies that y7 is
compact in C([0,T] : L?(Q)). Hence, selecting further se-
quences, if necessary, we have y¥ — y} in L?(Q), uni-
formly with respect to t and analogously, we have for
¥y — yi in L*(Q) for i=2, 3 4, uniformly in relation to t.

From the boundedness of Ay” in L? (Q), which implies it
is weakly convergent in L?(Q) on a subsequence denoted
again by Ay?, for all distribution ¢,

J ¢Ay?=J y?A¢—>j yTA<p=J ¢Ay;, (31
Q Q Q Q

which  implies  that Ay — Ay;  weakly in
L?(Q),i =1,2,3,4. In addition, the estimates (29) lead to
(0yt/ot) —> (0y;/ot) weakly in L?(Q),
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i=1,2,34,y! — y; weakly  in L2(0,T; H*(Q)),
i=1,2,3,4,y" — y: weakly in L* (0, T; H' (Q)), i=1, 2,
3, 4.

We put N(y) = (B/(y, + ¥, + ¥3 + ¥4)); we now show
that  yYysr—yiy; and  N(y")yiyse— N(y")yiy;
strongly in L? (Q), and we write

s =yiys =0 = yD)ys + (05 -y

p

N+ +y5+Yy

B
VY yi+ Y

N(y") =

N(y") =

N W= NG yiys =N s - yiy3)
+y1 s (N ) -N())

B

Y+ Yi+Y5+yi

p

T s * * %
Yityat)ysty,

N(")-N() =

(32)

T

T
J(y*,v") =K, J Jﬂyf (t,x)dxdt+K2J

0 0

T T

slimn_w(inf(KlJ j y';(t,x)dxdtugj
Q

0 0

T T
:nm,,_W(Klj J y’;(t,x)ddeKzJ
Q

0 0

=inf e J (3, V).

This shows that ] attains its minimum at (y*,v*), and
we deduce that (y*,v*) verifies problem (1)-(3) and
minimizes the objective functional (5). The proof is
complete. O

T
J y;(t,x)dxdt—Ksj J it x)dxde + 2
Q 0Ja 2

and we make use of the convergences y? — y7 strongly in
I*(Q), i=1, 3, and of the boundedness of y7, y% in L (Q),
and then yiy; — y{y3 and N(y")y{y5V— N (y")yiy;
strongly in L? (Q).

Since v" is bounded, we can assume that v* — v*
weakly in L (Q) on a subsequence denoted again by +". Since
U,qis a closed and convex set in L (Q), it is weakly closed, so
v e Uad'

We now show that

VY + s — v (0] + )+ 5+ y)) weakly in I (Q).
(33)
Writing with i=1, 2, 3, 4,

Vi =viy = =y VY (0 =)0 (39)
and making use of the convergences y!' — y; strongly in
L*(Q) and v" — v* weakly in L?(Q), for i=1, 2, 3, 4, one
obtains that v'(y] + ¥+ y5+y1) — v (y] +y5 + y5 +
y3) weakly in L*(Q).

By taking n — 00 in (26)-(28), we obtain that y* is a
solution of (1)-(3) corresponding to (v*) € U,y. Therefore,

w12
Vi

n ! n L
JQ% (£, x)dx dt — K; Jo JQ)’4 (t, x)dx dt + 5"" "iz (Q))

(35)

T
0

n n @ it
JQ Vit x)dxdt — Ky j JQ Yt wdede+ S|, (Q)>

5. Necessary Optimality Conditions

Let v € U,y and v* =v* + ev e U,g; in this section, we show
the optimality conditions to problem (1)-(3), and we find the



characterization of optimal control. First, we need the
Gateaux differentiability of the mapping v — y (v). For this

reason, denoting by = (1,755 )= (y1.y2 s
Bys (75 +y5 + 1) . .
el A e
(Vi +y5 +y5+ 1)
Briatyi+ys)
— * * * *\2
H= (Vi +y5+ 5+ 1)
0 o
pv* uv*
“u(yy +y3+ ¥+ 1)
0
L:
0
u(yi+ys +y3+yi)
Proposition 1. The mapping y: Uy —

WY2([0,T] ; H(Q)) with y; € Z(T,Q) for i=1,2, 3, 4 is
Gateaux differentiable with respect to v*. For all direction
veU,py (V)v=Y is the unique solution in
W2 ([0, T]; H(Q)) with Y, € Z(T,Q) of the following
equation:

‘—;_1: =AY +HY +Lv, tel0,T],
(37)
Y (0) = 0.
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yo) (V) and y* = (y1, ¥, ¥5, ¥1) = (Y1 Y2, ¥3> ¥4) (v7) the
solution of (1)-(3) corresponding to v* and v* respectively.

Byi (v +y5 +yi)

tu—w' p-wt t+w
Girystyieyyy ©HETE

Prii+y;+yi) 0
* * * * 2
(Vi +y5+y5+ 1) ’
—H-y 0
(36)
uvt +y —U—w+uv

Proof. Put Yi=y;—yile for i=1,2,3,4F(y,¥2 Y3 Vs =
(Byrys! (1 +y2+y3+y4), M= (F(35,55. 55 yi) - F(5,
V¥ y))yi-yi, and M3=(F(y1. 53,55 y)-FOn,
Y3 Y5 Y5 = y3.

We denote S° system (1) corresponding to v* and S~
system (1) corresponding to v*, subtracting system S° from
S*; so, we have:

i aYa £ £ £ € £ € £ £ £ £ € * * * *
atl = dAY] + (M = )Y+ (U= )Y5 + (M5 +p— )Y+ (- + )Yy —pv(y) + vy + 95 + yy),
aY; 3 ExrE £ ExrE
== gAY + MY —(u+ )Y + MY5, (1) €Q,
1 (38)
aYe
at3 =d;AYS +0Y5 - (u+y)Y5,
aYi € ExrE€ Ex7E€ £ € £ £ * * * *
5, = RAY Y+ Yo+ (@ )Y+ (w0 )Y v (v 4y 495+ ),
with the homogeneous Neumann boundary conditions: YE(0,x) =0, xeQ, fori=1,234 (40)

ovs _ays _ovi _av; _ 0. (6f)ex.
o oy on oy

(39)

We prove that Y¢ are bounded in L? (Q) uniformly with
respect to ¢. For this end, denoting by Y* = (Y{,Y35,Y5, YY),
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-M§ - uv u—u M5+ u—uw u—-uwto

- M; -U-0 M 0
0 o —-U-y 0
v v uve+y —u—w+ s
—u (¥ +y3+ ¥+ i)
0
L =
0
u(yi + 3+ 5 +yi)
(41)
Then, (38) is rewritten as
aYS £ Exs€
5 =AY +HY +Lv, te]0,T],
(42)
Y¢(0) =0.

Let (S(t),t>0) be the semigroup generated by A; then,
the solution of (42) can be expressed as

YE(t) = J; S(t — S)HE (s)Y* (s)ds + I; S(t - )Ly (s)ds.
(43)

On the other hand, the coefficients of the matrix H® are
bounded uniformly with respect to ¢ using Gronwall’s in-
equality, we have

1Yl @=sh (44)
where I'>0(i = 1,2, 3,4). Then,
Q= Eham Q) (45)

Hence, i — y; in L*(Q), i=1, 2, 3, 4. Denote

Iyi - v

M7 —uv* gt =M +p—pyt -t +w
M7 -u-o M; 0
H = ,
0 o —U-y 0
uv* uv* uvt +y —f = W+ puv*
(46)

where M7 = (0F (y7, 3, y3, yi))/0y1, M3 = (OF (y7, 3,
Vi Yaloys, and Y = (Y,Y,,Y5,Y,).
Hence, system (38)-(40) can be written in the form
oY

=AY + HY + Lv,
ot

t e [0,T],
(47)

Y (0) =0,
and its solution can be expressed as
Y(t) = J.; S(t—s)H (s)Y (s)ds + J-; S(t —s)Lv(s)ds.
(48)
By (43) and (48), we deduce that

t
Y -Y(t) = JO S(t—s)[H*(s)(YS = Y) +Y (s) (H (s)

— H(s))]ds.
(49)

Thus, all the coefficients of the matrix H® tend to the
corresponding coefficients of the matrix H in L?(Q). An
application of Gronwall’s inequality yields to Y; — Y; in
L*(Q) as e—0, for i=1, 2, 3, 4.

Let v* be an optimal control of (1)-(4),
y* = (¥}, 5, ¥5>yi) be the optimal state, Z be the matrix

100 0

010 0
defined by Z = 000 0 I

000 -1
the adjoint matrix associated to Z, H* be the adjoint matrix

K = (K,,K,,0,K;), Z* be

associated to H, and p = (py, p,, p3,ps) be the adjoint
variable; we can write the dual system associated to system

D)-(4):

—a—p—Ap—H*pzz*ZK,

t e [0,T1,
ot €[0T

(50)
p(T,x)=0.

Lemma 1. Under hypotheses of Theorem 1, if (y*, (v*)) is an
optimal pair, then there exists a unique strong solution
peWL([0,T] ; H(Q)) to system (50) with p, € £ (T, Q)
fori=1,2,3, 4.

Proof. Similar to Theorem 1, by making the change of
variable s=T-t and the change of functions
q;(s,x) = p; (T —s,x) = p;(t,x), (t,x) € Q,i=1, 2, 3, 4, we
can easily prove the existence of the solution to this lemma.

To obtain the necessary conditions for the optimal
control problem, applying standard optimality techniques,
analyzing the objective functional and utilizing relationships
between the state and adjoint equations, we obtain a
characterization of the control optimal. O

Theorem 3. Let a>0, v* be an optimal control of (1)-(4)
and let y*andp € WY2([0,T]; H(Q)) with y;andp; €
ZL(T,Q) fori=1,2,3,4.pis the adjoint variable, and y” is the
optimal state.

y* is the solution to (1)-(4) with the control v*. Then,

V= min<vm“, max(O,#(yl +y3+yi+y) (P - P4)>>.

«
(51)

Proof. We suppose v* is an optimal control and
y'= 05y 95 90 = (V1 Y293, 74) (v7) are the corre-
sponding state variables. Consider v*=v*+¢ehe U,y and
corresponding state solution y® = (¥, ¥5, ¥5 ¥3) = (V1> ¥a»
3> ¥4) (v°); we have



I () = lim = (1(4) -1 ()

International Journal of Differential Equations

T T
- lim 1(J J Kl(yj—y;‘)(t,x)dxduj J Ky (5% - y2) (6 x)dx dr
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We use (37) and (50), and we have

T
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T/ 9y

)
T

j (LR oyt

T
= JO <L*p, l’l>L2 (Q)dt

(53)
Since ] is Gateaux differentiable at v* and U,q is convex,
as the minimum of the objective functional is attained at v*,
it is seen that J' (v*) (u —v*)>0 for all u € U,q.
We take h=u-v*and we use (52) and (53); then,
J' (v (u—-v*) = IoT (L*p+av™, (u—v"))2qdt. We con-
clude that T (") (u—-v*)=0
IOT (L*p+av™, (u=v"))2()dt 20 for all u € Uyq. By stan-
dard arguments varying u, we obtain

vi=-L"p. (54)

equivalent to

Then,

s _ BTy s y)p
(04

) U1 +ys+y5 +yi)pa

(55)

As v* € U,g, we have

o min<vmax) max( wOi+ys +ys+ i) (- P4)>>.

o
(56)

O

6. Numerical Results

In this section, we give the results obtained by the numerical
resolution of the optimality system ((1)-(3), (50), (51)) using
forward-backward sweep method (FBSM) [22]. We adopt
two situations for the resolution: the first is that the disease
starts with the middle of domain Q(1), and in the second
situation, the disease begins with the lower corner Q(2). A
rectangular area of 30 km x40km is considered, and the
parameter values and the initial values are given in Table 1.
The upper limits of the optimality condition are considered
to be v™™ =1 [23]. The constant weighting values in the
objective function are K; =1, K; =1, K3=-1, a=2.

Figures 1-4 show the results without vaccination, and we
can see clearly the spread of the disease throughout the
domain, for both situations of the onset of the disease.

In Figure 3, in the absence of control and for the two
situations at the beginning of the epidemic, it can be seen
that the number of infected individuals increases by Iy(x, y)
=0 for (x, ¥)/¢ Q;, i=1; 2, to about 9 people infected. To
validate our vaccination strategy, we consider two ways to do
it.

The first is to inject vaccination after 30 days of the onset of
the disease, while for the second, vaccination begins on the first
day of the epidemic. In Figures 5 and 6, when injecting the
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TaBLE 1: Initial conditions and parameter values.

Notations Value Description (units)
So (%, ¥) i é(}:)r()(c;cy ;)e gﬂé =12 Initial susceptible population (people/km?)
Ey(x,y) 3?2; Ei’ i; Z gi =12 Initial exposed population (people/km?)
, i
Iy (x, ) (3;2; Efc’ i; Z gi e Initial infected population (people/km?)
» i
Ry (x,y) 1for (x,y) € Q Initial recovered population (people/kmz)
o' (1/0.09) Average duration of latent
7 0.01 Rate of deaths (day ™)
B 1 Transmission constant
y! (1/0.04) Infective periods
w 0.2 The rate of losing immunity (day™")
ds 0.2 Diffusion rate for susceptible
dg 0.3 Diffusion rate for exposed
d; 0.5 Diffusion rate for infected
dr 0.5 Diffusion rate for recovered
t [1,60] Time period (day)
Sat=1 Sat=20 Sat=40 Sat=60
40 40 40
35 35 35
30 30 30
25 25 25
M 20 20 20
15 15 15
10 10 10
5 5 5
10 20 30 10 20 30 10 20 30
Sat=1 Sat=20 Sat=60
40 40 40
35 35 35
30 30 30
25 25 25
@) 29 20 20
15 15 15
10 10 10
5 5 5
10 20 30 10 20 30 10 20 30 10 20 30

FIGURE 1: Susceptible behavior within Q without control.

vaccine after 30 days, it is easy to see the effectiveness of our
control strategy in slowing the spread of the epidemic, since in
Figure 6, after 60 days, the number of infected individuals has
decreased to about 6 infected individuals, which is a gain by
comparing it with the uncontrolled case. Another benefit of our
control strategy is illustrated in Figure 7 for recovered indi-
viduals, as the number of individuals has increased to reach 4
recovered individuals. In the second case, when the vaccination

against the disease starts from the first day (t=1), the effec-
tiveness of our vaccination strategy to control the spread of the
epidemic is clear, since the disease disappears quickly
(Figures 8-10).

The comparison of these results with those obtained
when vaccination is introduced at 30 days allows to conclude
the influence of the vaccination from the first days for the
elimination of the epidemic.
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FiGgure 3: Infected behavior within Q without control.
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FIGURE 6: Infected behavior within Q without control (vaccine strategy after 30 days).
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FIGURE 7: Recovered behavior within Q with control (vaccine strategy after 30 days).



International Journal of Differential Equations

&

@

Sat=1 Sat=20 Sat=40 Sat=60
40 4

0 10
8
6
4
2
0
10 20 30
Sat=60
40 10
35
8
30
25 6
20
4
15
10 2
0
10 20 30

40

35

30

25

15

10

10 20 30

Sat=1 Sat=40
40

35
30
25
20
15

10

v

10 20 30 10 20 30 10 20 30

FIGURE 8: Susceptible behavior within Q with control (vaccine strategy starts from the first day).
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FIGURE 9: Infected behavior within Q without control (vaccine strategy starts from the first day).
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7. Conclusion

In this work, we proposed an effective vaccination strategy
for a two-dimensional spatiotemporal SEIR model, in order
to minimize the number of susceptible and infected indi-
viduals and to maximize the number of individuals recov-
ered. To achieve this goal, we have based our mathematical
work on the use of semigroup theory and optimal control to
show the existence of solutions for our state system, and
these solutions are positive and related. In addition, we have
proven the existence and characterization of optimal control
that achieves both our goal and reduce the cost of vacci-
nation. The characterization of the control was made in
terms of state functions and adjoint functions. A numerical
simulation was given to validate our control strategy.

Appendix

First, recall a general existence result which we use in the
sequel (Proposition 1.2, p. 175, [24]; see also [19, 25]).
Consider the initial value problem

0z

N, >T>
o t e [0,T]

=Az(t) + g(t,z(t)),
(A.1)

z(0) = z,,

where A is a linear operator defined on a Banach space X,
with the domain D(A) and g:[0, T]xX— X is a given
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control (vaccine strategy starts from the first day).

function. If X is a Hilbert space endowed with the scalar
product (-, -), then the linear operator A is called dissipative if
(Az,2) <0, (Vz € D(A)).

Theorem A.1l. Let X be a real Banach space, A:D(A)C

X — X be the infinitesimal generator of a Cy—semigroup of
linear contractions S(t), t>0on X, and g: [0, T] x X — X be
a function measurable in t and Lipschitz continuous in x € X,
uniformly with respect to te [0, T].

(i) If zye X, then problem (A.1) admits a unique mild
solution, i.e., a function z € C([0, T]; X) which verifies
the equality z(t) = S(t)z, + Jg S(t—-s)g(s,z(s))ds,
(Vt € [0,T]).

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on
X, and zy € D(A), then the mild solution is in fact a strong
solution and z € W2 ([0, T]; XN L?(0,T; D(A)))
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