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This paper presents a numerical method to solve singularly perturbed differential-difference equations. The solution of this
problem exhibits layer or oscillatory behavior depending on the sign of the sum of the coefficients in reaction terms. A fourth-
order exponentially fitted numerical scheme on uniform mesh is developed. The stability and convergence of the proposed
method have been established. The effect of delay parameter (small shift) on the boundary layer(s) has also been analyzed and
depicted in graphs. The applicability of the proposed scheme is validated by implementing it on four model examples. Maximum
absolute errors in comparison with the other numerical experiments are tabulated to illustrate the proposed method.

1. Introduction

Differential equations with a small parameter e(0<e<1)
multiplying the highest order derivative are called singularly
perturbed differential equations. Mathematically, any or-
dinary differential equation in which the highest derivative is
multiplied by a small positive parameter and containing at
least one delay/advance parameter is known as a singularly
perturbed differential-difference equation [1]. Such type of
equations arises frequently from the mathematical modeling
of various practical phenomena, for example, in the mod-
eling of the human pupil-light reflex [2], the study of bistable
devices [3], and vibrational problems in control theory [4].
When perturbation parameter ¢ is very small, most nu-
merical methods for solving such problems may be unstable
and give inaccurate results. So, it is important to develop
suitable numerical methods to solve singularly perturbed
delay differential equations.

Hence, in the recent times, many researchers have
been trying to develop numerical methods for solving
singularly perturbed delay differential equations. For
example, the authors in [5] proposed a computational
method of first order for singularly perturbed delay re-
action-diffusion equations with layer or oscillatory

behavior. The authors in [6] presented a fourth-order
finite difference scheme for second-order singularly
perturbed differential-difference equations with negative
shift. The authors in [7] presented exponentially fitted a
second-order finite difference scheme for a class of sin-
gularly perturbed delay differential equations with large
delay. In [8], the numerical solution of singularly per-
turbed differential-difference equations with dual layer
was presented. Recently, the authors in [9] presented a
computational method for solving a singularly perturbed
delay differential equation with twin layers or oscillatory
behavior. But, still there is a lack of accuracy because the
treatment of singularly perturbed problems is not trivial
and the solution depends on perturbation parameter € and
mesh size h [10-12]. Due to this, numerical treatment of
singularly perturbed delay differential equations needs
improvement. Therefore, it is important to develop a more
accurate and convergent numerical method for solving
singularly perturbed delay differential equations.

Consider the following singularly perturbed delay dif-
ferential equation of the form:

ey" +a(x)y(x-8)+b(x)y(x) = f(x), 0<x<1l, (1)

subject to the interval and boundary conditions
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(2)

where ¢ is the perturbation parameter, 0<e< 1, and § is a
small delay parameter of O(e),0<d<1. Also,
a(x),b(x), f (x), and ¢ (x) are bounded smooth functions
and ¢ is a given constant. The layer or oscillatory behavior of
the problem under consideration is maintained for § # 0 but
sufficiently small, depending on the sign of a (x) + b(x), for
all x € (0,1). If a(x) + b(x) <0, the solution of the problem
in equations (1) and (2) exhibits layer behavior, and ifa (x) +
b(x) <0, it exhibits oscillatory behavior. Therefore, if the
solution exhibits layer behavior, there will be two boundary
layers which will occur at both end points x =0 and
x = 1[12].

Thus, the purpose of this study is to develop stable,
convergent, and more accurate numerical method for
solving singularly perturbed delay differential equations.

y(x) =¢(x), for—d<x<0and y(1) = ¢,

2. Description of the Method

By using Taylor series expansion in the neighborhood of x,
we have

y(x=08) = y(x) - 8y’ (x) + O(%). (3)

€ : h?
2 (Piv1 = 29i+ yiy) + f_h (Vi1 = Yi1) = gPiJ’i -

where 7, = h* ((p;/120)y® (&,) + (/360)y© (&,)) + O (h°)
is the local truncation error and p(x;) = p;q(x;) =q;

f(x)=f;and y; = y(x)).
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Substituting equation (3) into equation (1), we obtain an
asymptotically equivalent singularly perturbed two-point
boundary value problem:

ey" (x) + p(x)y" (x) +q(x)y (x) = f(x), (4)
where  p(x) = -da(x)andq(x) = a(x) +b(x) under
boundary conditions

y(0) = ¢p, y(1) = 9. (5)

Discretizing the given interval [0, 1] in to N equal parts
with constant mesh size h, we have
x; =x,+1ih,i=0,1,2,...,N.

Using Taylor’s expansions of y;,; and y,_; up to O (h°),
we get the finite difference approximations for y; and y! as

2

n

{_yi+1_yi—1_h_ 6
Yi = h 6 Vit 7T (6)
where 7, = — (h*/20)y® (£), for &, € [x;_,,x;], and
_ Vi —2yit+ Y )
y’i' —ztl =7t Ji7l 2 - Eyl + Ty, (7)
where 7, = — (h*/360)y© (&,), for &, € [x;_;, x;].

Substituting equations (6) and (7) into equation (4) and
simplifying, we obtain

2
81_2)’1'(4) +qy;=fit7 (8)

By successively differentiating both sides of equation (4)
and evaluating at x; and using into equation (8), we obtain

£ pi h 12 h ' Pz’z " /
2 (Pier = 29 + yi1) +ﬁ (Vi1 = Yio1) T € ?‘*E 2pi+q; T Vi + Ay +(Bi+b)y; = fi +C, 9)
where
( h2 i hz pi / U i
A= gpi (pi+a;) - 12 (? (pi+a)-pi - 251:‘)»
w1 (pd
1 Bi :6_$Piq;_5<p7q_q,il>’ (10)
a;h* , h*
| Ci=fi+ lzefi+ﬁﬂ + 7

Now introducing a fitting parameter ¢ and using central
difference approximation for y/ and y; in equation (9), we
have
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oe W p? 1
21 e +_ ( Pi+a) f (Vi =20+ yis1) h (Pi + A) Wiv1 = yid) + (Bi+qi)y; = fi + Ci. (11)
Multiplying both sides of equation (11) by 4 and taking
the limit as h — 0, we obtain
Pi .
2 2 (124 p%p; P) i (i =2y 4y} + 50 im - yin} =0, (12)

where p = hl/e.
From the theory of singular perturbations and [13], we
have two cases for p(x)>0 and p(x)<0:

2y + yi) = (¢o

Yie1) = (@0 = ¥ (0))e™?

hm (y1+1

hm (yl+1

Thus, from equation (12), we get

_ 6pp(0) p(0)p
g(0) = 12+ p2p2(0)) coth< 5 ) (14)

hlii»no (i1 = 20+ yi1) = (90 =

hli_n}o ()’i+1 - )’i—l) = (% -

Thus, from equation (12), we get
__ 6pp(1) p(Dp
o(1) = (12 +P2P2(1)) coth( 5 ) (16)

In general, for discretization, we take a variable fitting
parameter as

_ 6p; p; Pipi
% (12 + (Pipi)z) COth( 2 ) (12

where p; = h/e.
Simplifying equation (11), we get the tridiagonal system
of the equation as follows:
LN =Ey,, - fori=1,2,...,N -1,

(18)

Fiyi+ Gy = Hj,

where

= ¥,(0))e”?

p(0)((— 1/e)+ip) (e pO)p _ eP 0)p)

)’0(1))6

1))e—p(l)(— 1/e+ip) (e—

Case 1. For p(x) <0 (right-end boundary layer), we have

p(0)((— 1/e)+ip) (e p(0)p +ep(0)P _2),
(13)

Case 2. For p(x)>0 (left-end boundary layer), we have

p(D(- 1/£+zp)( p(p 4 eP(l)P _ 2),
PWp _ ep(Dp), =
ap 1
E. ! - i A )
(=T L 2 2p+a) - 5 (i + A)
20;¢ op,
Fiz 2 T _(2p1+qz) pi— i’
) (19)
_Jif UP, A
i h2 12 12 ( p1+q1)+ ( 1+A1)’
| H; = fi+C,.

The tridiagonal system in equation (18) can be easily
solved by the Thomas algorithm with help of Matlab 2013.
3. Stability and Convergence Analysis

Case 1: Layer behavior (i.e., a(x) + b(x) <0, for x € (0, 1);
thus, q(x) <0, since ¢>0).



Lemma 1. If y(0) >0 and Ly (x) <0, for all x € (0,1), then
the solution y(x) >0 for all x € (0, 1) for equations (4) and
(5).

Proof. Suppose t € (0,1), such that y(t) = min, )y (x)
and y(t) <0. Since t ¢ {0, 1} and is a point of minima, then
y(t) =0 and y" (t)>0.

Therefore, we have Ly(t)=ey" (t)+p(t)y' ()+
q(t)y(t) >0, since y(t)<0 (by assumption) and gq(t)<O0.
But this is a contradiction. Then, it follows that y (x) >0 for
x € (0,1). O

Theorem 1. If the solution of the problem in equations (4)
and (5) satisfies

Ly ()] SKmaX{Iy(O)I, max ILy(x)I}, (20)
x€(0,1)
for some constant K > 1, then the solution is stable.

Proof. We define two functions: y*(x) = K max{|y(0)],
max, . |Ly (x)|} £ y (x). Then, we get y*(0)>0 and

N
L wy = Eywy - Fywy + Grwyy,y

2
0. opil o
_ ]9k | OkPil | OkE

h? 12 12

12
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Ly* (x) = Kq(x)max{ly(O)l,xI?(%)lc) ILy(x)I} + Ly(x)<0,
(21)

since q(x) <0 and for suitable choice of K. Therefore, by
Lemma 1, we get y*(x)>0, for all xe€ (0,1). So,
|y (x)] < K max{|y (0)|, max, 5,y |Ly (x)]}.

Hence, the stability of the solutions of the problem in
equations (4) and (5) is proved for the case of the layer
behavior. O

Lemma 2. The finite difference operator LN in equation (13)
satisfies the discrete minimum principle; i.e., if w; is any mesh
function such that wy>0 and LNw,;<0, for all x; € (0,1),
then w; >0 for all x; € (0, 1).

Proof. Suppose there exists a positive integer k such that
wy < 0and w; = min_;_yw;. Then, from equation (13), we
have

, 1
(2pg + ‘Jk)]’ (W — 2wy + wyy) + B (Pr + Ag) (Wi — wiy) + (Pr + By )wy

o o pl o, o o pil o,
:‘[;2+ P +1k2(2pk+CIk)]’(wi+l_wk)+{hkz+ klpzk +1k2(2pk+qk)}(wk1_wk) (22)

1 hz ! hz ! n !
+ h (Pk + (68Pk (Pr+ax) - B (% (Pr+ax) — P — 261k>>> (i) — w;y)

h2 ! h2 qu; n
+<Pk +<apif1i 12 <T —dx )))wk'

For sufficiently small h and for suitable value of p;, we
obtain LNw, > 0. However, w <0 (by the assumption) and
B, — p,<0. But, this is a contradiction. Hence,
w; >0forallx; € (0,1). O

Theorem 2. The finite difference operator LN in equation
(13) is stable for a(x) + b(x) <0, if w; is any mesh function,
then |w;| SKmax{lwol,maxxie(o)l)ILwiI}, for some constant
K>1.

Proof. We define two functions:

v = Kmax{|w(0)|, max |Lw,-|]» + w, (23)
x€(0,1)

Then, similar to Theorem 1, we get y*(0) >0 and

L1//J‘r = Kg; max{|wo|, max |Lw,~|} + Lw,; <0, (24)
x€(0,1)

since a; + b; <0=¢q(x) <0 and K > 1, therefore, by Lemma 2,
we get v >0, for all x; € (0,1).
=y = Cmax{|w0|,maxxie(0,1)|Lwi|} + w; >0.

Thus, |w;| < C max{|wl, maxxie(oyl)ILwiI}.

This proves the stability of the scheme for the case of
layer behavior.

Case 2: oscillatory behavior (i.e., a(x)+ b(x)>0, for
x € (0, 1); thus, g(x) >0, since £>0).

The continuous maximum principle and stability of the
solution of equations (4) and (5) are presented as follows for
the case of oscillatory behavior. O

Lemma 3. If y(0)>0 and Ly (x) >0, for all x € (0,1), then
the solution y(x) >0 for all x € (0, 1) for equations (4) and
(5).
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Proof. Suppose t € (0,1), such that y(t) = max, )y (x)
and y(t)<0. Since f ¢ {0,1} and is a point of maxima,
therefore, y1(t) =0 and y"(t)<0. Therefore, we have
Ly(®) =¢ey" () + p(®)yr(t) +q(t)y(t) <0, since y(t)<0
(by assumption) and q(t) <0. But this is a contradiction.
Hence, y(x)>0 for x € (0,1). O

Theorem 3. If the solution of the problem in equations (4)
and (5) satisfies

ly ()] SKmaX{Iy(O)I,xrgl(%% ILy(x)I}, (25)

for some constant, k> 1.

N
L wy = Eywy ) = Frwy + Gpwyy,

_ 0k8+akpi1
R 12

12 12

o o pil o o oppil  ope
{8 PR ) - ) {0 TR0 o) )

2

Proof. The proof is analogous to Theorem 1. Hence, the
stability of the solutions of the problem in equations (4) and
(5) is proved for the case of oscillatory behavior. Now, we
present the stability of the discrete problem in equation (13)
for the case of oscillatory behavior. O

Lemma 4. The finite difference operator LN in equation (13)
satisfies the discrete maximum principle, if w; is any mesh
function such that wy>0 and LNw;>0, for all x; € (0,1),
then w; >0 for all x; € (0, 1).

Proof. Suppose there exists a positive integer k such that
wy < 0and w; = maxy ;. yw;. Then, from equation (13), we
have

0r€ , 1
+ ﬁ (2pg + Qk)]’ (Weyy = 2w + Wy y) + b (Px + Ag) (Wi — wyy) + (pr + B )wy

(26)

1 h2 ! h ! n !
+ h (Pk + (&Pk (Px+4x) — B (% (Px+4x) — Px — 2‘1k>)> (Wi —w;_y)

h2 l h2 piq; "
+<pk+<§piqk_ﬁ< e _qk>)>wk'

For sufficiently small h and for suitable value of p, we
obtain LNwj < 0. However, w; < 0(by the assumption) and
B, — p,>0. But, this is a contradiction. Hence,
w; >20forall x; € (0,1). O

Theorem 4. The finite difference operator LN in equation
(13) is stable for a(x) +b(x) >0, (i.e.q(x)>0), if w; is any
mesh function, then |w;| sKmax{|w0|,maxxie(o,l)ILw,-I},for
some constant K > 1.

Proof. The proof is similar to Theorem 2. This proves the
scheme for the case of oscillatory behavior. O

|y(k) (x)| < C(l +ek exp<_0;xj)>,

—al1-x.
|y(k)(x)|gc<l+skexp<“(xj)>>, 0<k<4,j=12,...

Definition 1. (uniform convergence). Let y be a solution of
equations (1) and (2). Consider a difference scheme for
solving equations (1) and (2). If the scheme has a numerical
solution yV that satisfies |y — || < Ch?, where C >0 and
p > 0are independent of ¢ and of mesh size h, then we say the
scheme uniformly convergent to y with respect to the norm

[I-1l [14].

Lemma 5. The bound for derivative of the solution y(x) of
the problem (1)-(3) when x € Q, = (0,1) is given by

(27)



Proof. For the proof, refer [15]
For any mesh function z;, define the following difference
operators:
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Theorem 5. Let y(x;) and y; be, respectively, the analytical
solution of equations (4) and (5) and numerical solutions of
equation (13). Then, for sufficiently large N, the following
parameter uniform error estimate holds:

+ Ziv1 ~ %
D Zi = h 5 * A 7—4
Osug“}’(xi) -yl <C'N (29)
Dz, % _hzi_l, _
(28) : .
DYy, = Zitl ~ %l Proof. Let us consider the local truncation error defined as
' 2h
D'D 2. = Zitl 2z; + 2,
i n2
O
d? W od* d n
Ly )-y) = — -D'D” +— — . N —-D"+— 30
05070 =) gz =D 4 5 2 Pt (-0 o) G0
where
6pp(0) (p(O)p)) N~! ( ‘1>
eo(p) = oth =~ p(0 coth 0)— 31
(p ((12+pp(0)) > p(0)—— p(0) (31)

since p = N~ !/e. In our assumption, e<h = N1,
By considering N is fixed and taking the limit for
& — 0, we obtain the following:

N—l 1
limo eo(p) = limop(O)Tcoth< (0) —) =CN!
(32)

From Taylor series expansion, the bound for the dif-
ference becomes

(33)
(& peofeer )
1Y (5 (x) - 9] = ea<p>(_2_DD
5"(P)<dZ—D D ))’(xi) +

<CN

|10 o

B2 d
)y(xf) +e0(p) Eyf‘” - p(xi)(a -

w“ +CN?

where

d*(y (xz))”

sup

d*y (x;
o )(%) k=34 (34)

Now using the bounds and the assumption e< N1,
equation (30) reduces to

0 o)
D J’(xi)+gyi

h2

7)/1 (35)

80’([)) —y (4)

o g0t s+

2|4 (o ( ))”

dx?
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Here, the target is to show the scheme convergence
independent on the number of mesh points.

“LN (y(x;) - J’i)” <CN”’

dx*

WH +CN™? WH +CN?

By using the bounds for the derivatives of the right layer
solution in Lemma 5, we obtain

0

dx?

dx3

o (1) e (et ()

+CN2<1 +ezexp<

—a(l - x;
SCN4<1 +e4exp<M>>, sincee ‘e e

Lemma 6. For a fixed mesh and for ¢ — 0, it holds

i exp(—oc(l - xj)/s) _o,
e—0 1<j<N-1 em

m=1,2,3,....

(37)

Proof. Refer from [16].
By using Lemma 6 into equation (36), it results in

"Lh (r(x;) - )’i)” <CN"
Hence, by discrete maximum principle, we obtain
Iy () = yi sCNT".

Thus, result of equation (39) shows equation (29). Hence
proved. O

(38)

(39)

Remark 1. A similar analysis for convergence may be carried
out for the left layer case.

4. Numerical Examples and Results

To demonstrate the applicability of the method, we
implemented the method on four numerical examples, two
with twin boundary layers and two with oscillatory behavior.
Since those examples have no exact solution, the numerical
solutions are computed using the double mesh principle. The
maximum absolute errors are computed using the double
mesh principle given by

2, = masy} -
1

| i=12..,N-1, (40)
where y! is the numerical solution on the mesh {xl-}llV at the
nodal point x; and x; = x, + ih,i = 1,2,..., N — 1and y/"? is
the numerical solution on a mesh, obtained by bisecting the
original mesh with N number of intervals [9].

Example 1. Consider the singularly perturbed delay reac-
tion-diffusion equation with layer behavior

(36)
—oc(l - xj)
€
O
ey (x) +0.25y(x - 8) — y(x) =1, (41)
under the interval and boundary conditions
y(x) =1,
-0<x<0, (42)
y(1)=0.

The maximum absolute errors are presented in Tables 1
and 2 for different values of ¢ and 6.

The graph of the computed solution for ¢ = 0.01 and
different values of ¢ is also given in Figure 1.

Example 2. Consider the singularly perturbed delay reac-
tion-diffusion equation with layer behavior

ey" (x) =2y(x=8) - y(x) =1 (43)
under the interval and boundary conditions
y(x) =1,
-0<x<0, (44)
y(1)=0.

The maximum absolute errors are presented in Tables 3
and 4 for different values of ¢ and .

The graph of the computed solution for &€ =0.01 and
different values of § is also given in Figure 2.

Example 3. Consider the singularly perturbed delay reac-
tion-diffusion equation with oscillatory behavior

ey (x) +0.25y(x - 8) + y(x) = 1, (45)
under the interval and boundary conditions
y(x) =1,
-8<x<0, (46)
y(1)=0.

The maximum absolute errors are presented in Table 5
for different values of 4.
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TaBLE 1: The maximum absolute errors of Example 1 for different values of § with ¢ = 0.1.

él N =100 N =200 N =300 N =400 N =500
Present method

0.03 1.1784e—09 7.3658e—11 1.4572e—11 4.9336e—12 1.9272e—12
0.05 1.1796e—-09 7.3727e—11 1.4279¢e—11 4.8657e—12 2.3070e—12
0.09 1.1790e—09 7.3690e—11 1.4548e—11 4.5787e—12 2.5597e—12
Method in [17]

0.03 2.1999¢—-03 1.1041e—03 7.3705e—04 5.5315e—04 4.4269¢—04
0.05 2.2012e—03 1.1049¢—-03 7.3749¢—04 5.5345e—04 4.4293e—04
0.09 2.1999¢—-03 1.1038¢—03 7.3676e—04 7.3676e—04 4.4247e—04

TaBLE 2: The maximum absolute errors of Example 1 for different values of ¢ with § = 0.5¢.

I3 N =16 N =32 N =64 N =128 N =256
Present method
274 4.5775e—06 2.8651e—07 1.7913e—08 1.1197e—-09 6.9995e—11
275 1.6246e—05 1.0190e—06 6.3830e—08 3.9901e—09 2.4940e—10
276 5.9281e—05 3.7757e—06 2.3632e—07 1.4791e—08 9.2453e—10
277 2.2949¢—04 1.4731e—05 9.2549¢—07 5.7989¢—-08 3.6250e—09
278 9.1215e—04 5.8144e—05 3.6824e—06 2.3104e—-07 1.4448e—08
27 3.5308e—03 2.2815e—04 1.4669¢—05 9.2088e—07 5.7724e—08
2710 1.1709¢—02 9.1043e—04 5.8034e—05 3.6736e—06 2.3055e—07
Method in [17]
274 1.8632¢—02 9.6189¢—03 4.8865¢—03 2.4643e—03 1.2376e—03
275 2.8161e—02 1.4818e—02 7.6255e—03 3.8713e—03 1.9509¢—03
276 3.7958e—02 2.0967e—02 1.0977e—02 5.6273e—03 2.8498e—03
277 5.0640e—02 2.8316e—02 1.5267e—02 7.9105e—03 4.0287e¢—03
28 6.3580e—02 3.7706e—02 2.0984e—02 1.1012e—-02 5.6555e—03
27 8.3843e—02 5.0477¢—02 2.8297e—02 1.5261e—02 79111e—03
2710 9.9137e—02 6.3529¢—02 3.7660e—02 2.0974e—02 1.1011e—02
1
0.5 E

=

g

5 05| |

=

Z

1k ]
-1.5 L L L L L L L L L

0 01 02 03 04 05 06 07 08 09 1

— §=0.03
—— §=0.05
—— §=0.09

FiGure 1: The numerical solution of Example 1 with & = 0.01 and N=100.
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TaBLE 3: The maximum absolute errors of Example 2 for different values of § with ¢ = 0.1.

él N =100 N =200 N =300 N =400 N =500
Present method

0.03 8.2805e—09 5.1758e—10 1.0224e—10 3.2348e—11 1.3243e—11
0.05 7.7093e—09 4.8202e—10 9.5110e—11 3.0120e—11 1.2325e—11
0.09 6.0459¢—09 3.7806e—10 7.4682e—11 2.3630e—11 9.6788e—12
Method in [17]

0.03 3.1674e—03 1.6058¢—03 1.0754e—03 8.0837e—04 6.4760e— 04
0.05 3.1437e—03 1.5949¢—03 1.0685e—03 8.0338e—04 6.4367e—04
0.09 3.0784e—03 1.5660e—03 1.0502e—03 7.9000e — 04 6.3310e—04

TaBLE 4: The maximum absolute errors of Example 2 for different values of € with § = 0.5¢.

€ N =16 N =32 N =64 N =128 N =256
Present method
274 3.0267e—05 1.9031e—06 1.1950e—07 7.4728e—09 4.6725e—10
273 1.1987¢—04 7.8382¢—06 4.9134e—07 3.0732¢—08 1.9223¢—09
276 4.9863e—04 3.1795e—05 1.9986e—06 1.2579e—07 7.8649¢—09
277 1.9386e—03 1.2530e—04 8.1293e—06 5.0955¢e—07 3.1919¢—08
278 6.4424e—03 5.1006e— 04 3.2516e—05 2.0492¢—06 1.2889¢—07
277 1.7543e—02 1.9764e—03 1.2772e—04 8.2523e—06 5.1725e—07
2710 3.8002e—02 6.5572e—03 5.1492¢—04 3.2824e—05 2.0727e—06
Method in [17]
274 2.1118¢—02 1.1692e—02 6.1941e—03 3.1887¢—03 1.6178¢—03
273 2.7872e—02 1.6023e—02 8.6367e—03 4.4957¢—03 2.2948¢—03
276 3.5711e—02 2.1293e—02 1.1869¢ — 02 6.2731e—03 3.2240e—03
277 4.6679¢—02 2.8350e—02 1.6107e—02 8.6728e—03 4.5120e—03
278 5.4895¢—02 3.6018e—02 2.1373e—02 1.1929¢—02 6.2847e—03
277 5.7371e—02 4.7254e—02 2.8581e—02 1.6140e—02 8.6961e—03
2710 5.7878e—02 5.5695¢ — 02 3.6153e—02 2.1406e—02 1.1956e—02
1
0.8 .
0.6 .

o

S

2 04 f |

g

g

£

=

Z

— §=0.03
—— 0=0.05
—— §=0.09

FIGURE 2: The numerical solution of Example 2 with & = 0.01 and N=100.
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TaBLE 5: The maximum absolute errors of Example 3 for different values of § with ¢ = 0.1.
él N =100 N =200 N =300 N =400 N =500
Present method
0.03 4.0323e—08 2.5200e—09 4.9716e—10 1.5799e—10 6.3758¢—11
0.05 3.9610e—08 2.4762e—09 4.8871e—10 1.5567e—10 7.2701e—11
0.09 3.8377e—08 2.3991e—09 4.7227e—10 1.5806e—10 6.1942¢—11
Method in [17]
0.03 2.5991e—03 1.2872e—03 8.5528e—04 6.4039¢—04 5.1179e—04
0.05 2.6270e—03 1.3013e—03 8.6474e—04 6.4750e—04 5.1749¢—04
0.09 2.6813e—03 1.3289¢—03 8.8320e—04 6.6139¢—04 5.2863e—04
1.8

g

2

E

2

g

o}

g

=

Z

~0.2 L L L L L L L L
0 0.1 02 03 05 06 07 08 09 1
X
—o— §=0.003
FIGURE 3: The numerical solution of Example 3 with ¢ = 0.001 and N=100.
TaBLE 6: The maximum absolute errors of Example 4 for different values of § with € = 0.1.
8l N =100 N =200 N =300 N =400 N =500
Present method
0.03 1.5160e—07 9.4743e—09 1.8715e—09 5.9186e—10 2.4306e—10
0.05 1.5697e—07 9.8097e—09 1.9379e—-09 6.1294e—10 2.5132e—10
0.09 1.7120e—-07 1.0702¢—08 2.1140e—09 6.6867¢—10 2.7376e—10
Method in [17]
0.03 1.5929e—-02 7.4850e—03 4.8816e—03 3.6202¢—03 2.8764e—03
0.05 1.5470e—02 7.2782e—03 4.7473e—03 3.5209¢—-03 2.7975e—03
0.09 2.1396e—02 1.0097e—02 6.5922e—03 4.8916e—03 3.8879¢—03
The g¥aph of tthe cgmputed solution for & = 0.001 and y(x) =1,
0=0.003 is also given in Figure 3.
-0<x<0, (48)
y(1)=0.

Example 4. Consider the singularly perturbed delay reac-

tion-diffusion equation with oscillatory behavior

ey" (xX)+y(x=8)+2y(x) =1,

under the interval and boundary conditions

(47)

The maximum absolute errors are presented in Table 6
for different values of .
The graph of the computed solution for & = 0.001 and
§=0.003 is also given in Figure 4.
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Numerical solution
[=}

-3 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

—— 0=0.003

FIGURE 4: The numerical solution of Example 4 with &€ = 0.001 and
N=100.

TaBLE 7: Rate of convergence p for € = 0.1 and & = 0.05.

h h/2 Z, h/4 Zun p
Example 1

1/100 1/200 1.1796e—09 1/400 7.3727e—11 4.0000
1/200 1/400 7.3727e—11 1/800 4.8657e—12 3.9215
1/300 1/600 1.4279e—11 1/1200 9.1621e—13 3.9621
Example 2

1/100 1/200 7.7093e—09 1/400 5.1758e—10 3.8967
1/200 1/400 5.1758e—10 1/800 3.0120e—11 4.1030
1/300 1/600 9.5110e—11 1/1200 6.0554e—12 3.9733

TaBLE 8: Rate of convergence p for € = 0.1 and & = 0.03.

h h/2 Z, h/4 Zu p
Example 3

1/100 1/200 4.0323e—08 1/400 2.5200e—09 4.0001
1/200 1/400 2.5200e—09 1/800 1.5799e—10 3.9955
1/300 1/600 4.9716e—10 1/1200 3.0522e—11 4.0258
Example 4

1/100 1/200 1.5160e—07 1/400 9.4743e—09 4.0001
1/200 1/400 9.4743e—09 1/800 5.9186e—10 4.0007
1/300 1/600 1.8715e—09 1/1200 1.1710e—10 3.9984

The rate of convergence (p): in the same way, in equation
(40), one can define z,,, by replacing h by h/2 and N — 1 by
2N -1, that is,

_ h2 4
Zhi2 = miax')’i —Ji

| fori=1,2,...,2N-1.  (49)
The computational rate of convergence p is also obtained
by using double mesh principle defined as follows [9]:
(log (25,) —log(22))

11

x1074

Error

— h=0.025
—— h=0.02
—— h=0.0125

F1GURre 5: The point-wise absolute errors of Example 2 for different
values of mesh size b, ¢ =27%, and & = 0.5¢.

x107°

Error

— h=0.025
—— h=0.02
—— h=0.0125

FIGURE 6: The point-wise absolute errors of Example 1 for different
values of mesh size b, ¢ =278, and & = 0.5¢.

The following tables (Tables 7 and 8) show the rate of
convergence p of the present method for different values of
the mesh size h.
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F1GURre 7: The point-wise absolute errors of Example 3 for different
values of mesh size h, ¢ =278, and & = 0.5¢.

0.025

0.02 1

0.015 1

Error

0.01 R

0.005

O 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

X

—— h=0.025
—— h=0.02
— h=0.0125

F1GURre 8: The point-wise absolute errors of Example 4 for different
values of mesh size h, ¢ =278, and & = 0.5¢.

4.1. The Effect of Delay Term on the Solution Profile. To an-
alyze the effect of the delay term on the solution profile of the
problem, the numerical solution of the problem for different
values of the delay parameters has been given by the fol-
lowing graphs.

5. Discussion and Conclusion

Fourth-order fitted operator numerical method for solving
singularly perturbed reaction-diffusion with delay has been
presented. To demonstrate the efficiency of the method, four
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model examples without exact solutions have been con-
sidered for different values of the perturbation parameter ¢
and delay parameter §, and also results are presented in the
tables and figures. It is observed that, from the tables, the
present method approximates the solution and the stability
and convergence of the method is established well. The effect
of the delay on the solution of singularly perturbed delay
reaction-diffusion equation is showed by plotting graphs of
four model examples. Two model examples of twin layers
behavior and two model examples with oscillatory layers
have been considered and solved for different values of
perturbation parameter ¢, delay parameter §, and mesh size
h. The numerical solutions are tabulated (Tables 1-6) in
terms of maximum absolute errors and observed that the
present method improves the findings in [17]. Also, it is
significant that all of the maximum absolute errors decrease
rapidly as N increases. The results presented in Tables 7 and 8
confirmed that computational rate of convergence as well as
the theoretical estimate indicates that the method is a fourth-
order convergent.

Furthermore, to investigate the effect of delay on the
solution of the problem, numerical solutions have been
presented using graphs. Accordingly, when the order of the
coeflicient of the delay term is of O (1), the delay affects the
boundary layer solution but maintains the layer behavior
(Figure 1). When the delay parameter is of O (¢), the solution
maintains layer behavior although the coefficient of the delay
term in the equation of O(1) and the delay increases, the
thickness of the left boundary layer decreases while that of
the right boundary layer increases (Figure 2). For the os-
cillatory behavior case, one can conclude that the solution
oscillates throughout the domain for different values of delay
parameter § (Figures 3 and 5). In a concise manner, the
present method gives more accurate solution and is uni-
formly convergent for solving singularly perturbed delay
reaction-diffusion equations with twin layer and oscillatory
behavior. Also it can see that, as mesh size h decreases, the
absolute errors also decrease from Figures 5-8.
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