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In this paper, a method was proposed based on RBF for numerical solution of first-order differential equations with initial values
that are valued by Z-numbers.,e proposed method consists of two parts. ,e first part has stated the amount of limitation of the
fragmentation solution, while the second part has described the assurance of the first part. ,e limitation section also has two
parts. ,e first part has included the initial condition of the problem, while the second part has included the RBF network. ,e
confidence interval was also considered as a function based on the probability function, which has calculated the confidence level
of the first part (limitation).,e RBF network or the radial-base grid network has three distinct layers: the input layer that is the set
of elementary nodes (sensory units); the second layer is the hidden layers with high dimensions, in which the output layer that has
responded to the network response and the activation patterns used in the input layer. ,e advantage of using RBF is that the use
of this technique does not require sufficient information. It only relies on the domain and the boundary. In an example, we have
showed that our proposed approach could approximate the problem with acceptable confidence.

1. Introduction

,e emergence of a new concept of mathematics called fuzzy
sets, the study of fuzzy differential equations, provides a
suitable basis for mathematical modeling of real-world is-
sues in which there is ambiguity or some uncertainty. For
example, in Science and Engineering, many problems are
limited to a set of fuzzy differential equations (FDE) through
the process of mathematical modeling. As it is not simple to
achieve an exact solution, numerical methods should be
utilized [1–8]. One of these methods is the radial basis
function (RBF) method.

Generally, radial basis functions are methods, which are
based on the location method for interpolation of discrete
data while have a high convergence rate [9]. ,is method is
one of the most widely used methods for approximating the
functions in the theory of modern approximation [10].

RBFs are first used by Broomhead and Lowe [11]. Much
of its use is in the theory, design, and applications of RBF
networks [12, 13]. In this paper [14], the use of regulation

theory for this group of neural networks is presented as a
way to enhance the generalization of the new data. In RBF
methods, data are interpolated by linear combinations of
functions of a function. ,is method has been very much
considered due to high precision and flexibility versus
problem geometry, dimensional independence, and ease of
implementation. Today, RBFs are used in some cases such as
estimation, modeling, prediction, and classification in var-
ious fields, including geosciences [15–19]. Besides, these
methods are utilized to solve the numerical differential
equations with partial derivatives [20]. ,e main advantage
of numerical methods that use RBF is their nonnetwork
characteristic. In nonnetworked methods, it is not necessary
to produce a regular network in the domain of the problem,
which, due to the high computational cost of network
production, is the main advantage of these methods to finite
difference methods and finite elements, and so on. ,e
geometric feature used in the RBF approximation is the
distance between points. ,e distance in each space di-
mension is easily calculated, resulting in higher
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dimensioning and does not increase the complexity of RBF
methods. As stated above, a grid-independent grid function
does not require a grid and in spite of our data connections
between points; only spatial points are used. ,us, several
studies have been used based on RBF to solve various
equations. For instance, in [21], the radial function of RBF
along with the time-dimensional discretization by the BKM
boundary node method and the AEM analogue equation
method to solve the time-dependent hyperbolic equations in
[22] of RBF to solve time-dependent elliptic equations in
[23] of RBF along with the MOL lines in the time dimension
to solve the time-dependent nonlinear equations in [24] of
RBF using the Kansa idea based on Hermitian interpolation
for Fokker–Planck equation. In [25], RBF and quasi-spatial
methods to solve the sin-Gordon equation are also used in
[26] to use the RBF time-independent functions.

As mentioned, the theory of fuzzy sets is a powerful
method to model the uncertainties and processing am-
biguity and information dependent on mathematical
models. But, they need to be trusted to make this infor-
mation useful. Human beings have a clear capacity to make
rational decisions based on obscure, inaccurate, or in-
complete information. Formalization of this capacity is at
least somewhat difficult to predict. ,e author proposed a
theorem, called a Z-number, which is a regular pair of
fuzzy numbers (A, B) [27]. ,e first component, A is a
limitation for values that have an uncertain variable X that
has a value or a real value.,e second component, B is a
measure of reliability for the first component. Typically, A

and B are described with natural disadvantages. For ex-
ample, about 45 minutes, very sure. Yager used Z-number
to calculate the waiting time for a bus [28]. Kang Wang
used Z-number to make decisions in an ambiguous en-
vironment in 2012 [29]. Ezadi and Allahviranloo initially
introduced the Z-based generalized neural network and
then estimated the Z-based regression [30]. ,ey also
presented methods to rank the Z-numbers in 2017 and
2018 [31, 32]. Also, they, in 2019, introduced the Z-Ad-
vanced number process [1]. Further investigations have
been carried out on Z-numbers by researchers [33–36].
However, a few studies have been conducted in the field of
Z-differential equations [37].

In this paper, we try to provide a numerical method to
solve the differential equations with an initial value based on
Z-numbers. In Section 2, basic concepts and theorems are
presented as well. In Section 3, the network of generalized
RBF, radial base functions, is introduced. In Section 4, a
method for approximating first-order differential equations
with a Z value based on the generalized RBF network is
presented. In Section 5, numerical examples are presented
and ultimately referenced.

2. Preliminaries

,is section provides the necessary definitions and required
theorems, which are used to propose the model.

Definition 1 (definition of Z-number).
,is valuation for Z according to proposal of Zadeh is

observed as a restriction in x and is interpreted as follows
[27]:

P(y isA) isB. (1)

Indeed, it means that R(y): y is A⟶
Poss(y � u) � μA(u).

P(y i sA) � 􏽚
R
μA(u)Py(u)du isB, (2)

where μA is the membership function of fuzzy set A and u is
a part of y. Py(u) is the probability density function of y,
and P(y � u) is the probability function of y, where as we do
not know the basic probability distribution. It is clear from
this information that probability distribution function is
itself a fuzzy number.

Definition 2 (parametric form of Z-numbers).
Assuming that Z∗ is set of Z − numbers, an arbitrary

Z-number, Z � (A, B) ∈Z∗, in the parametric form is
represented by an ordered pair of functions:

Z � A(r), A(r)( 􏼁, B( 􏼁, r ϵ [0, 1], (3)

and its components satisfy the following requirements:

1. A(r)≤A(r) for rϵ[0, 1],

2. A(r)is bounded left − continuous non − decreasing functions over[0, 1],

3.A(r)is bounded left − continuous non − increasing functions over[0, 1],

4.B � f A(r), A(r)( 􏼁.

(4)

Definition 3 (normal Z − numbers).
Let us consider Z to be a Z − numbers, where

Z � (A, B). We say that Z is a normal Z-number if
h(B) � 1, where h(B) is the height of B [37].

Definition 4 (Z-number initial value problem (ZIVP)).

In real world, most of the phenomena are based on doubt
and the information, which we have from various subjects
such as economic, political, and physics , which have been
evaluated according to verbal valuables. Here, we try to
formulate and investigate the mentioned information to the
initial value problem, while our initial data are Z-numbers.
For instance, evaluate the population growth issue with the
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Z-number data (population growth, very high, usually) in
the starting moment t0 and consider how is the information
in the next time like in t1. For this purpose, first, we consider
a ZIVP as (5), and then we study the existence and uniqueness
condition of solution of this problem [37]. Assuming that Z∗ is
set of Z-numbers, so, the general form of differential equation
initial value based on Z − numbers is defined as follows:

x′(t) � f(t, x(t)),

x t0( 􏼁 � x0 ∈ Z∗,

⎧⎨

⎩ (5)

where t ∈ [t0, T]⊆R+, f is a continuous mapping from
[t0; T] × Z∗ in to Z∗, x0 is a Z-number in Z∗, and
x(t) � (Ax, Bx).

Suppose x’ is a Z-valuation; then, according to [28],

x′(t) � Ax′ , Bx′( 􏼁, (6)

where Ax′ is a limitation for values and Bx′ is a measure of
reliability for the first component, Ax′ . For (Ax′ , Bx′), as-
suming there is a Hukuhara difference between Ax(t + h)

and Ax(t), we define

Ax′ � lim
h⟶0

Ax(t + h)− hAx(t)

h
,

Bx′ � p x′(t) is Ax′( 􏼁,

(7)

where p(x′(t) is Ax′) is the probability distribution
function.

2.1. Gaussian Function Definition. ,e Gaussian function is
a function of the form defined as

f(x) � λe
− (x− c)2/2σ2( ), (8)

where λ, c, and σ are real constant coefficients and e is the
Euler number. ,e shape of this function is symmetric that
quickly drops to zero. ,e constant λ defines the height of
the peak of the curve, c determines the location of the center
of the peak, and σ is the standard deviation.

3. RBF Networks

,e RBF networks , as shown in Figure 1, are of the type of
leading networks with an intermediate layer, first introduced
by Broomhead and Low [11] (Figure 1). In this method, the
transfer function in the intermediate layer of the Gaussian
function and in the output layer of the transfer function is
linear [38, 39]. Generally, the RBF network training is di-
vided into two parts. ,e first part is primarily non-
monitoring-type learning. Using clustering methods, the
parameters of the basic functions (centers and latitudes) are
determined using input information, and in the second part,
learning from type is monitored. ,e weights between the
middle and the output layer are determined using slope
reduction and linear regression methods. ,e intermediate
neuron of RBF is connected to each of the input neurons
with the weight parameters. ,ese parameters are centers of
neurons. ,e output of each intermediate neural is a

function of the distance between the input vector
X � [x1, x2, . . . , xn] and the radial center vector
rj � [r1j, r2j, . . . , rnj], which is calculated as follows:

δ �

����������

􏽘

n

i�1
xi − rij􏼐 􏼑

􏽶
􏽴

. (9)

,e average neuron output can be calculated in different
ways.,emain transfer function for this aim is the Gaussian
function given as follows [39]:

ϕ δi( 􏼁 � e
− λδi

2
. (10)

In this case, λ is a constant coefficient. Finally, outputs of
the output layer are calculated from the following equation:

yk � 􏽘
n

j�1
vjkϕj. (11)

In this regard, wjk is the weight coefficient between j
middle neurons and the k neuron of the output layer and ϕj,
the output of j is the middle layer neuron. ,e results of the
outcomes were evaluated using root mean square error
statistics, RMSE, and determination coefficient R2. One of
the important points in the RBF network is the choice of the
type of transfer function, which is the responsibility of the
modeling person. One of the important issues is the at-
tention to the characteristics and statistical variables of the
data. For example, if the RBF type is Gaussian, the width of
the function is important, which should be chosen so that
the distance between the data points is larger, and the di-
mension of the data is smaller. One of the other issues in
designing RBF networks is the number of centers used in the
middle layer. As the selection of these centers is directly
related to the accuracy and complexity of the network, these
centers should be chosen to balance the desired accuracy and
complexity.

4. Solving First-Order Differential Equations of
Z-Numbers’ Initial Value Using Radial Basic
Function (RBF)

Assuming Z∗ is the set of Z-numbers, the first-order dif-
ferential equations of Z-numbers’ initial value are defined as
follows:

x′(t)􏼂 􏼃
Z

� f t, [x(t)]Z􏼐 􏼑,

x t0( 􏼁􏼂 􏼃
Z

� x0 ∈ Z∗.

⎧⎪⎨

⎪⎩
(12)

Equation (12) can be rewritten in the form of the pa-
rameter defined in [37]:

x′(t)􏼂 􏼃
Z

� Ax′ , Bx′( 􏼁,

x t0( 􏼁􏼂 􏼃
Z

� Ax0
, Bx0

􏼐 􏼑,

⎧⎪⎨

⎪⎩
(13)

in which in (13), Ax′ is a fuzzy function and Bx′ is a real
function. Ax0

and Bx0
, respectively, have a certain fuzzy and a

real amount, Ax′ and Ax0
have the role of limitation, and Bx′
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and Bx0
have the role of reliability for [x′(t)] and [x(t0)]

Z.
Ax′ is introduced as follows:

Ax′ � f(t, 􏽥x(t)). (14)

With the following parametric form,

Ax′􏼂 􏼃
r

�
Ax′(t) � f(t, x) � G t, x, x( 􏼁, x t0( 􏼁 � x0,

A′ x′(t) � f(t, x) � F t, x, x( 􏼁, x t0( 􏼁 � x0,

⎧⎨

⎩

(15)

where [.]r is the symbol of r-cut, and

G t, x, x( 􏼁 � max f(t, u) u ∈ x, x􏼂 􏼃
􏼌􏼌􏼌􏼌􏽮 􏽯,

F t, x, x( 􏼁 � min f(t, u) u ∈ x, x􏼂 􏼃
􏼌􏼌􏼌􏼌􏽮 􏽯.

⎧⎪⎨

⎪⎩
(16)

Theorem 1. ZIVP (12) has a unique Z-process solution.

Proof. Based on [27], relation (12) and relation (13) are
equivalent. In (13), Ax′ is a fuzzy function, and it is intro-
duced on relation (14). For each α-cut, relation (14) and
relation (15) are equivalent. On the other hand, the fuzzy
initial value problem in (15) has a unique solution (based on
,eorem (3.2) in [40]). Similarly B

x
′ . ,erefore, it is obvious

that ZIVP (12) has a unique solution.
In the general process for obtaining the solution of

equation (12) with nonnetworked physical domain methods,
we present the problem as a set of scattered points in the
domain. ,ese points can be regular or irregular, but they
must cover the entire domain in any case. We then ap-
proximate the unknown function at any point in the domain.
In this way, we consider a base for the solution space and a
solution as a linear combination of the base members. In this
process, this solution is expanded in terms of base functions.
,erefore, the coefficients of the basic sentences are un-
known to us. ,ese coefficients must hold in the equations.
In the cases where basic radial functions for inwardness are
used, the number of centers with the dimension of input data
is considered equal in order to achieve high precision. In this
paper, we propose amethod using the RBF of the generalized
RBF-based Z-based numbers in such a way that the initial
condition of the main problem is to be established as follows:

xT(t)􏼂 􏼃
Z

� AxT
(t), BxT

(t)􏼐 􏼑, (17)

in which, AxT
(x) is a function with a fuzzy value and BxT

(x)

can depend on the type of the problem of function with the
real or fuzzy value, in which we consider the function with
the real value. ,e values of AxT

(x) and BxT
(x), respectively,

represent the limiting function and the confidence scale for
[xT(t)]Z. With regard to the definition of the Z-number, the
interpretation of (17) is described as follows.

If xT is AxT, then possibility (xT is AxT) is BxT.
Here, we define AxT

(x) as follows (AxT
(x) is a derivative

function):

AxT
(t) � AxT

t0( 􏼁 + t 􏽘

n

j�1
wjϕj(‖t − r‖), (18)

which is a method that computes the approximate solution
of the equation constraint section, taking into account the
initial condition of the problem and is based on the gen-
eralized RBF network with fuzzy coefficients. Here, r is the
same cut–r that is considered as the center of the RBF
network, and ϕj(‖t − rj‖) is defined as follows:

ϕj t − rj

�����

�����􏼒 􏼓 � e
− εt− rj

����
����􏼐 􏼑

2

, (19)

where φ is a nonlinear function in the space R+⟶ R, which
refers to the transfer function. Some radial base transmission
functions φ, in addition to the dependence of the distance
function, depend on the factor (ε), which depends on the
elongation and extension of the function, whose relation to
the standard deviation of the normal distribution (σ) is as
follows:

ε2 �
1
2σ2

, (20)

in which the value of σ2 can be determined according to the
type of problem. We also utilize the Gaussian radial base
transfer function introduced in (15). Some other RBFs with
their mathematical relations can be seen in Table 1; rj are
neural network centers, and W is the matrix of the weight
coefficients of the output from the intermediate layer to the
output layer (wj). ,ere is a value with fuzzy-value. In fact,
when the centers (points) r1, r2, . . . , rn are constant, the
network is trained using the data to find the weight matrix.
,is process can be done in one form and by data, or by
increasing the number of RBF cores, the weight function can
be updated in several steps. Training operations begin by
dividing the data into training and testing sets. After doing
so, the number and position of the RBF centers and the
transfer function φ are decided. Training with the imple-
mentation of the linear algebra in a system of equations is
formed by weights and bias using a pair of input x and each
output y. □

Moreover, BxT
(x) is a function that specifies the con-

fidence level of the constraint section and is based on the
exponential function that we define in terms of the initial
condition of the problem in the form as follows:

BxT
(t) � 1 − te

− λAxT . (21)

Now, with respect to relations (17) and (21), we will have

xT(t)􏼂 􏼃
Z

� AxT
(x), 1 − te

− λy
|AxT

􏼒 􏼓. (22)

As AxT
has a fuzzy value according to the Z value

definition, it can be rewritten in the following form:

AxT
(t) � x t0( 􏼁 + t 􏽘

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓,

AxT
(t) � x t0( 􏼁 + t 􏽘

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

In this case, equation (22) can be rewritten in the fol-
lowing form:
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BxT
(t) � 1 − t e

− λAxT
(t)

− e
− λAxT

(t)
􏼒 􏼓. (24)

,e value of BxT
(t) is also a fuzzy number, whichmust be

computed.
We now want to derive the derivative of the function

[xT(t)]Z i.e. [xT
′(t)]Z for this purpose. We derive from the

functions of (23), so we have

A′ xT
(t) � 􏽐

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓 + t 􏽐
n

j�1
wj

zϕj

zt
t − rj

�����

�����􏼒 􏼓,

A′xT
(t) � 􏽐

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓 + t 􏽐
n

j�1
wj

zϕj

zt
t − rj

�����

�����􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(25)

In this case, BxT
′ (t) is calculated as follows:

BxT
′ (t) � 1 − te− λ′y′ |

A′xT

A′ xT

� 1 − t e− λ′
A′ xT

(t)

− e− λ′
A′xT⎛⎝ ⎞⎠.

(26)

To optimize the weights wj and wj, we use the mini-
mization of the sum-squared error function:

e � min􏽘
n

i�1
xT
′ ti( 􏼁􏼂 􏼃

Z
− x′ ti( 􏼁􏼂 􏼃

Z
􏼐 􏼑

2
⟶ 0. (27)

So, we define it as follows:

Ae � min􏽘
n

i�1
A′ xT

(t) − F􏽨 􏽩
2⟶ 0,

Ae � min􏽘
n

i�1
A′xT

(t) − G􏼔 􏼕
2
⟶ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Be(t) � 1 − te
− λ′y′

|
Ae

Ae
⟶ 1.

(28)

It means that

min􏽘
n

i�1
e

− λ′A′ xT
(t)

− e
− λF

􏼔 􏼕
2

+ e
− λ′A′xT

(t)
− e

− λG
􏼔 􏼕

2
⟶ 0.

(29)

4.1.=eNumericalModeling of theGridRadial Base Function.
,e RBF algorithm is a function of the distance between the
input and some fixed point called center; the function φ is
called a radial base function if φ (x) =φ (‖x‖). ,erefore, this
function φ can be applied to the vector in space Rn but is
expressed only in the form of distance.,is means that φ can
be considered as a numerical function. In these discussions,
the application of the Euclidean distance matrix is expressed
using the function φ [41]:

EDM �

x1 − x1
����

���� x1 − x2
����

���� . . . x1 − xn

����
����

x2 − x1
����

���� x2 − x2
����

���� . . . x2 − xn

����
����

⋮ ⋮ ⋮ ⋮

xn − x1
����

���� xn − x2
����

���� . . . xn − xn

����
����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f(x) � a1ϕ x − x1
����

����􏼐 􏼑 + · · · anϕ x − xn

����
����􏼐 􏼑,

(30)

where f (x) is the estimator function, [a1, . . . , an] are the
constant coefficients of the function, and ri, (i � 1, 2, . . . , n)

are the same r-slices. To convert the numerical function φ to
the φ matrix, we can use the formulas in the form
ϕ(A)ij � ϕ(Aij). ,e function φ is applied to the Euclidean
distance matrix and is called the transfer matrix. When the
type of transfer function is determined, by using the number
n equation, on the input data x(x1, x2, . . . , xn), we can
obtain the coefficients a1, . . . , an:

a1ϕ x1 − x1( 􏼁 + · · · anϕ x1 − xn( 􏼁 � y1,

a1ϕ x2 − x1( 􏼁 + · · · anϕ x2 − xn( 􏼁 � y2,

⋮

a1ϕ xn − x1( 􏼁 + · · · anϕ xn − xn( 􏼁 � ym.

(31)

,is set holds until vectors xi ≠xj, for i≠ j and the
matrix n× n derived from the set of equations, are inverse. In
order to balance the complexity accuracy, we can use all the
n data points in this model or that the number of k points,
c1, . . . , ck, is considered for the RBF center, which is k≪ n:

fn(x) � 􏽘
n

j�1
ajϕ x − xj

�����

�����􏼒 􏼓,

fk(x) � 􏽘

k

j�1
ajϕ x − xj

�����

�����􏼒 􏼓,

(32)

Table 1: Transition functions used in the radial base function
(r � ‖x − rj‖‖).

Function name Mathematical relation
Linear ϕ(r) � r

Cubic ϕ(r) � |r|3

Narrow page ϕ(r) � r2ln|r|

Making ϕ(r, ε) � (1/1 + εr)

Robey inversion ϕ(r, ε) � (1/1 + (εr)2)

A few rebates ϕ(r, ε) �

��������

1 + (εr)2
􏽱

Multiple reverses ϕ(r, ε) � (1/
��������

1 + (εr)2
􏽱

)

RBF network

Inputs RBF neurons Outputs

x1

y1

y2

x2

x3

Figure 1: RBF network diagram.
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with assuming the output multiplicity, the generalization
function will be given, where α is the vector of coefficients
and v is the coefficient matrix. ,e RBF network, slightly

different from the display mode, is a layer of two mappings:
first, the mapping space dimensions from Rnn to Rk and then
mapped to the output layer Rm [42, 43]:

x⟶

x − r1
����

����

x − r2
����

����

⋮

x − rk

����
����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶ ϕ

x − r1
����

����

x − r2
����

����

⋮

x − rk

����
����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶ w

ϕ x − r1
����

����􏼐 􏼑

ϕ x − r2
����

����􏼐 􏼑

⋮

ϕ x − rk

����
����􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

y1

y2

⋮

ym

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

yh(x) � 􏽘
k

j�1
wjhϕj x − rj

�����

�����􏼒 􏼓,

(33)

where rj is considered for the RBF center, and in this paper,
rj are cut-rj and wjh are output layer weights. In the design
of RBF networks, in most cases, the number of central layer
units is significantly less than the number of input data, but
in the case of interpolation using a radial base function, the
number of middle layer centers with dimensions is equiv-
alent to the input data, and its inputs correspond to input
data. In the cases where the transfer function is dependent
on the variable, for example, the Gaussian function (also
depends on the variable σ), and because in manymodels, it is
assumed to be Gaussian (normal), the determination of the
width of the function is important. Here, the width factor of
the function controls the softness and elongation of the
transfer function. When the width of the function is small,
the related space and representation of the function are small
as well. As a result, a large number of centers are needed for
training. In contrast, the estimation accuracy decreases if the
space is relevant and represents the broad function. In in-
terpolation methods, it is common practice to use the radial
base function to consider the width of all centers.

5. Numerical Examples

In this section, to show the behavior and properties of this
new method, we discuss the simulation results of one ex-
ample. ,e simulation is conducted on Matlab12, and the
objective function in (12) minimizer engaged is fminunc.
,e initial weights were randomly selected.

Example 1. Consider the following first-order FDE:

y′ � y(t), t ∈ [0, 1],

y(0) � (0.75 + 0.25r, 1.125 − 0.125r).

⎧⎨

⎩ (34)

,e exact solution of the FDE is

y(1) � ((0.75 + 0.25r)e, (1.125 − 0.125r)e) r ∈ [0, 1].

(35)

Assume that the initial value based on Z-numbers is as
follows:

y(0) � ((0.75 + 0.25r, 1.125 − 0.125r), (1)). (36)

In this case, differential equation (34) can be rewritten as
follows:

y′ � y(t), t ∈ [0, 1],

y(0) � ((0.75 + 0.25r, 1.125 − 0.125r), (1)).

⎧⎨

⎩ (37)

And assume that the exact solution of the ZDE is

y(1, r) � ((0.75 + 0.25r)e, (1.125 − 0.125r)e),(

1 − e
− 0.216((0.75+0.25r)e)

− e
− 0.216((1.125− 0.125r)e)

􏼐 􏼑􏼑

r ∈ [0, 1].

(38)

Our proposed method is as follows:

yT(t) � AT(t), AT(t)( 􏼁, BT(t)( 􏼁, (39)

where

AT(t) � 0.75 + 0.25r + t 􏽐
n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓,

AT(t) � 1.125 − 0.125r + t 􏽐
n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BT(t) � 1 − t e
− λ AT(t)( ) − e

− λ AT( )􏼒 􏼓.

(40)

Comparison of the approximate solution with the RBF
network training for 50 points and with a choice of λ� 1 is
shown in Table 2. ,e convergence of the neural network
weights for each r-cut is shown in Figure 2. Comparison of
the approximate method with the exact method is shown in
Figure 3. ,e comparison of the confidence level of the
actual answer and the approximate solution is shown in
Figure 4.

Example 2. Consider the following first-order ZDE:

y′ � 3t2y(t), t ∈ [0, 1],

y(0) � ((0.5
�
r

√
, 0.2

����
1 − r

√
+ 0.5), (1).)

⎧⎨

⎩ (41)

,e exact solution of the FDE is

y(1) � (0.5
�
r

√
e, (0.2

����
1 − r

√
+ 0.5)e), r ∈ [0, 1]. (42)
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Table 2: Comparison of the exact Z and ZT approximated solutions for λ � 1.

r AT(t) A (t) AT(t) A (t) BT(t) B (t)

0 2.00 2.03 3.04 3.05 0.874 0.872
0.1 2.07 2.10 3.02 3.02 0.885 0.885
0.2 2.14 2.17 2.99 2.99 0.899 0.898
0.3 2.21 2.24 2.95 2.95 0.911 0.912
0.4 2.28 2.31 2.92 2.92 0.925 0.925
0.5 2.35 2.37 2.88 2.88 0.937 0.937
0.6 2.42 2.44 2.84 2.85 0.950 0.949
0.7 2.50 2.51 2.81 2.82 0.962 0.962
0.8 2.57 2.58 2.78 2.78 0.975 0.975
0.9 2.64 2.65 2.75 2.75 0.987 0.987
1 2.71 2.71 2.71 2.71 1 1
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Figure 2: ,e convergence of the neural network weights for each r-cut.
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Figure 3: ,e exact and computed solution for Example 1. Yellow chart indicates real data and black chart indicates approximate data.
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Figure 4: Comparison of the confidence level of the actual answer and the approximate solution for Example 1. Red color indicates
confidence level in exact solution, and green color indicates confidence level in approximate solution.

Table 3: Comparison of the exact Z and ZT approximated solutions for λ � 1.

r AT(t) A (t) AT(t) A (t) BT(t) B (t)

0 − 0.000000002 0 1.87 1.90 0.687 0.663
0.1 0.41 0.42 1.85 1.87 0.769 0.754
0.2 0.58 0.60 1.82 1.84 0.804 0.793
0.3 0.72 074 1.79 1.81 0.833 0.824
0.4 0.83 0.85 1.76 1.78 0.856 0.848
0.5 0.93 0.96 1.72 1.74 0.878 0.873
0.6 1.02 1.05 1.68 1.90 0.899 0.866
0.7 1.11 1.13 1.64 1.65 0.919 0.916
0.8 1.19 1.21 1.58 1.60 0.940 0.937
0.9 1.27 1.28 1.51 1.53 0.963 0.960
1 1.34 1.35 1.34 1.35 1 1
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Figure 5: ,e convergence of the neural network weights for each r-cut for Example 2.
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Assume that the initial value based on Z-numbers is as
follows:

y(0) � ((0.5
�
r

√
e, 0.2

����
1 − r

√
+ 0.5), (1)). (43)

In this case, differential equation (34) can be rewritten as
follows:

y′ � 3t2y(t), t ∈ [0, 1],

y(0) � ((0.5
�
r

√
, 0.2

����
1 − r

√
+ 0.5), (1).)

⎧⎨

⎩ (44)

And assume that the exact solution of the ZDE is

y(1, r) � (0.5
�
r

√
e, (0.2

����
1 − r

√
+ 0.5)e),(

1 − e
− 0.216(0.5

�
r

√
e)

− e
− 0.216((0.2

���
1− r

√
+0.5)e)

􏼒 􏼓,

r ∈ [0, 1].

(45)
Our proposed method is as follows:

yT(t) � AT(t), AT(t)( 􏼁, BT(t)( 􏼁, (46)

where

AT(t) � 0.5
�
r

√
+ t 􏽐

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓,

0.2
����
1 − r

√
+ 0.5 + t 􏽐

n

j�1
wjϕj t − rj

�����

�����􏼒 􏼓,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BT(t) � 1 − t e
− λ AT(t)( ) − e

− λ AT( )􏼒 􏼓.

(47)

Comparison of the approximate solution with the RBF
network training for 50 points and with a choice of λ� 1 is
shown in Table 3. ,e convergence of the neural network
weights for each r-cut is shown in Figure 5. ,e comparison
of the approximate method with the exact method is shown
in Figure 6. ,e comparison of the confidence level of the
actual answer and the approximate solution is shown in
Figure 7.

6. Concluding Remarks

In this paper, we proposed a new approach for solving first-
order differential equations of Z-numbers’ initial value
under uncertainty using radial basic function under gen-
eralizedH-differentiability. At first, the problem was divided
into two parts: the first part of the limitation and the second
part of the reliability of the first part. We employed the RBF
method for finding upper and lower solutions of the
equation of the problem limitation section. ,e main ad-
vantage of this approach is that the fuzzy equation was
reduced to the problem of solving two systems of linear
equations. ,en, we use the information obtained of the
proposed method of the first part to calculate the confidence
level, and an exponential function was proposed to calculate
the reliability of a function. ,e numerical investigation
presented in this paper shows that excellent accuracy can be
obtained even when few nodes are used in analysis. In
contrast, many more nodes are needed to achieve relatively
good accuracy in other methods. Numerical example is
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Figure 6: ,e exact and computed solution for Example 2. Red chart indicates real data, and blue chart indicated approximate data.
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Figure 7: Comparison of the confidence level of the actual answer and the approximate solution for Example 2. Red color indicates
confidence level exact solution and yellow color indicates confidence level approximate solution.

International Journal of Differential Equations 9



included to demonstrate the validity and applicability of the
technique and is performed on a computer using a code
written in Matlab. ,e method can be implemented for
solving linear and nonlinear equations in higher dimensions.
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