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In this paper, a mathematical model for diabetic or hypertensive patients exposed to COVID-19 is formulated along with a set of
first-order nonlinear differential equations.%e system is said to exhibit two equilibria, namely, exposure-free and endemic points.
%e reproduction number is obtained for each equilibrium point. Local stability conditions are derived for both equilibria, and
global stability is studied for the endemic equilibrium point. %is model is investigated along with Z-control in order to eliminate
chaos and oscillation epidemiologically showing the importance of quarantine in the COVID-19 environment.

1. Introduction

COVID-19, an infectious disease with the first case reported
in Wuhan city of China, has spread throughout the world.
On 30 January 2020, the WHO declared its outbreak as
a “public health emergency of international concern.” As on
2 April 2020, 08:02 GMT, it has caused 47,249 deaths
worldwide and a total of 936,237 cases have been confirmed
[1]. COVID-19 spreads through the contact of individuals
with infected persons when they cough or sneeze. It is
a respiratory disease with mild to moderate symptoms like
dry cough, fever, and tiredness, and in more severe cases
difficulty breathing [2]. Also, few individuals showing mild
symptoms of the disease may recover themselves if they
avoid contacting infected cases and maintain good hygiene.
COVID-19 is a major health threat to those with a past
medical history and also to those who are older than 60 years
(elderly population). %is was reported by Li et al. [3], who
calculated the median age of 425 patients infected with
COVID-19 in Wuhan, China, as 59 years and almost half of
the patients were 60 years old.

Governments throughout the world are taking several
preventive measures to control the spread of the epidemic.
Preventing the spread is the only way since no vaccine has
been developed till date to fight the virus. Preventive
measures include maintaining at least 1 meter distance from
a person sneezing or coughing, washing hands regularly, and
maintaining social distance.

Various mathematical models have been developed so
far to address various challenges in predicting the spread of
COVID-19 disease. Batista [4] has used the basic SIR-model
to find the actual size of the epidemic. Peng et al. [5] analysed
the scenario of COVID-19 in China by formulating the SEIR
dynamical system and have predicted that the situation will
be under control at the beginning of April.

Sun et al. [6] discussed various aspects of COVID-19
situation in China which helps understand the fatality rate
and transmission rate of COVID-19 and control the epi-
demic spread. In the case of COVID-19 epidemic, exposure
to disease plays a vital role in the spread of the disease.
Rabajante [7] studied various models and concluded that
with the basic reproduction number being 2 and considering
the 14-day infectious period, if an infected person stays for
more than 9 hours with others, he could infect others. If the
exposure time is 18 hours, the model recommends full
protection with more than 70% effectiveness to the attendees
of the social gathering. In order to control the disease, the
importance of travel quarantine or travel restriction, which
delayed the progression of disease, in Wuhan was studied by
Chinazzi et al. [8]. A similar result was also shown by
Kucharski et al. [9]. %ey showed that with the air travel
restriction in Wuhan, the daily reproduction number de-
clined from 2.35 to 1.05. %ere is also a model evaluated by
Tang et al. [10] and Tang et al. [11] in which they divided the
subpopulation into quarantined and unquarantined classes
to understand the transmission risk of the epidemic.
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From the studies so far, we have observed that quar-
antine or isolation plays a huge role in controlling the disease
spread. Here, we have developed a model with Z-control
applied to the quarantine class to obtain the required ex-
posure state in order to make the system free of chaos. Few
basic models of Z-control include prey-predator model by
Alzahrani et al. [12] and epidemic model by Samanta [13].

%e construction of the paper is as follows: formulation
and description of the mathematical model are given in
Section 2. In Section 3, the reproduction number is calcu-
lated for the state when there is no exposure to COVID-19
and for the endemic state. In Section 4, local stability and
global stability are discussed. In Section 5, the model is
constructed with Z-controller and u(t) is calculated. In
Section 6, a numerical simulation is performed. Finally, the
paper concludes with Section 7.

2. Mathematical Model

Mathematically, the compartmental model for the in-
dividuals already suffering from diabetes or hypertension
who are at a higher risk of getting infected with COVID-19 is
formulated in this section with three mutually exclusive
disjoint classes.%e classes are as follows: S: susceptible class,
diagnosed with diabetes or hypertension; E: exposed class;
and Q: quarantine class.

Notations and parametric values used in the formulation
of dynamical system are given in Table 1.

%emodel considers the susceptible class as a population
diagnosed with diabetes or suffering from hypertension.
Here, recruitment of new individuals occurs at the rate B,
and all the individuals in their respective compartments
suffer death at the constant rate μ. We have considered the
saturated incidence as β2SE/(a + S), where a is the satura-
tion constant and β2 is the force of infection as shown in
Figure 1.

Figure 1 gives rise to the following system of nonlinear
differential equations:

dS

dt
� BS − β1SE −

β2SE

a + S
−
β4SQ

b + S
− μS

2
,

dE

dt
� β1SE +

β2SE

a + S
−
β3EQ

d + E
− μE,

dQ

dt
�

c1β3EQ

d + E
+

c2β4SQ

b + S
− μQ,

(1)

with S> 0, E> 0, Q> 0.
Equating dS/dt � 0, dE/dt � 0, dQ/dt � 0 and solving,

we get the following equilibrium points:

(i) Exposure-free equilibrium point E1(bμ/(β4c2 − μ),

0, bc2(Bβ4c2 − bμ2 − Bμ)/(β4c2 − μ)2).
(ii) Endemic equilibrium point E∗d (S∗, E∗, Q∗)

S∗ � r1,

E∗ � − ((d(r1(β4c2 − μ) − bμ))/(r1(β3c1 + β4c2 − μ)

+bβ3c1 − bμ)),

Table 1: Parametric definitions and their values.

Notations Description Parametric values
B Birth rate 1 Assumed
β1 Transmission rate of individuals from susceptible class to exposed class 0.9 Calculated
β2 Force of infection 0.01 Assumed
β3 Rate at which exposed individuals quarantine themselves 0.80 Calculated
β4 Rate at which susceptible individuals quarantine themselves 0.60 Calculated
a, b, d Half-saturation constants 2, 10, 0.4 Assumed
c1, c2 Conversion efficiency 1, 2 Assumed

B
S E Q

β1

μS μ μ

β3
d + E

β4
b + S

β2
a + S

Figure 1: Compartmental diagram of flow of individuals from one compartment to another compartment.
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Q
∗
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2
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1􏼐 μ c1 − c2( 􏼁(b − a) − ac

2
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2β1c1μ 2bμ − β1d( 􏼁􏼐
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where

r1 � Root of β3c1 + β4c2 − μ( 􏼁Z
3

􏼐

+ (aμ − B) β3c1 + β4c2 − μ( 􏼁 + bμ β3c1 + μ( 􏼁 + β1d β4 c1 − c2􏼁 + μ( 􏼁( 􏼁Z
2

􏼐

+ β3c1 − μ( 􏼁(abμ − Bb) − Ba β3c1 + β4c2 − μ( 􏼁 + aβ1d + β2d( 􏼁 β4 c1 − c2( 􏼁 + μ( 􏼁 + dμ bβ1 − β4c1( 􏼁( 􏼁Z

+ abB β3c1 + β4c1 − μ( 􏼁 + b dμ aβ1 + β2( 􏼁􏼁.

(3)

3. Reproduction Number

n this paper, the reproduction number is defined as the
number of secondary individuals who are asked to go for
quarantine or social distancing due to a single quarantined
susceptible individual exposed to COVID-19.

For this model, the reproduction number for exposure-
free equilibrium and that for endemic stage equilibrium are
calculated. Using the next-generation matrix method by
Diekmann et al. [14], we get the following Jacobian matrices:

F �

β2S
a + S

+ β1S 0 β1E +
β2E
a + S

−
β2SE

(a + S)2

c1β3Q
d + E

−
c1β3EQ

(d + E)2
c1β3E
d + E

+
c2β4S
b + S

c2β4Q
b + S

−
c2β4SQ

(b + S)2

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

β3E
d + E

−
β3EQ

(d + E)2
+ μ

β3E
d + E

0

0 μ 0

β2S
a + S

+ β1S
β4S

b + S
− B + 2μS +

β2E
a + S

−
β2ES

(a + S)2
+
β4Q
b + S

−
β4QS

(b + S)2
+ β1E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

Reproduction numbers R0E1 and R0E∗
d
are defined as the

spectral radius of FV− 1 at E1 and E∗d , respectively, which are
numerically computed as 2.66 and 5.35.

4. Stability Analysis

In this section, local stability and global stability for the
equilibrium points are studied.

4.1. Local Stability. Local stability is obtained for all of its
equilibrium points by using the Routh-Hurwitz criterion
[15].

Theorem 1. Exposure-free equilibrium point E1 is said to be
locally asymptotically stable if it satisfies (β4c2 − μ)(β1μd +

c2β3B)< [μ + (bβ2μ/(a(β4c2 − μ) + bμ))]((d(β4c2 − μ)2)/b)

+c2β3bμ2 and μ(bμ + B)< c2Bβ4.

Proof. %e elements of the Jacobian matrix of system (1) at E1

are

a11 � B −
Bc2β4 − bμ2 − Bμ( 􏼁

β4c2
−

2μ2b
β4c2 − μ

,

a12 � −
β2bμ

a β4c2 − μ( 􏼁 + bμ( 􏼁
−

β1bμ
β4c2 − μ

,

a13 � −
μ
c2

,

a21 � 0,

a22 �
bβ1μ

β4c2 − μ
−

bβ2μ
a β4c2 − μ( 􏼁 + bμ( 􏼁

+
bc2β3 Bβ4c2 − bμ2 − Bμ( 􏼁

d β4c2 − μ( 􏼁
2 − μ,

a23 � 0,

a31 �
Bc2β4 − bμ2 − Bμ( 􏼁

β4
,

a32 �
c1c2bβ3 Bβ4c2 − bμ2 − Bμ( 􏼁

d β4c2 − μ( 􏼁
,

a33 � 0.

(5)
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%e eigenvalues of this Jacobian matrix are

λ1 � a22,

λ2,3 �
1
2

− a11 ±
�����������

a2
11 − 4a13a31

􏽱

􏼒 􏼓.

(6)

%ese eigenvalues are negative if a22 < 0 and a13a31 < 0,
i.e., (β4c2 − μ)(β1μd + c2β3B)< [μ + (bβ2μ/(a(β4c2 − μ) + b

μ))]((d(β4c2 − μ)2)/b) + c2β3bμ2 and μ(bμ + B)< c2Bβ4.
Hence, satisfying the Routh–Hurwitz criterion, the system is
locally asymptotically stable. □

Theorem 2. Endemic point is said to be locally asymptot-
ically stable if it satisfies

(1) B< af3E
∗

+ bf5Q
∗

+ β1E
∗

+ 2μS
∗

(2) β1S
∗

+ df6Q
∗ < μ + f1S

∗

(3) c1f4E
∗

+ c2f2S
∗ < μ

(4) β1S
∗

− f1S
∗

+ df6Q
∗

− μ( 􏼁 c1f4E
∗

+ c2f2S
∗

− μ( 􏼁

> c1df4f6E
∗
Q
∗
.

(7)

Proof. Let us consider the following Jacobian matrix of
system (1) at E∗d :

J
∗

�

− b11 − f1 + β1( 􏼁S∗ − S∗f2

β1 + af3( 􏼁E∗ − b22 f4E
∗

c2f5bQ∗ c1f6dQ∗ − b33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where b11 � − B + af3E
∗ + bf5Q

∗ + β1E∗ + 2μS∗, b22 �

− β1S∗ + f1S
∗ − df6Q

∗ + μ, b33 � − c1f4E
∗ − c2f2S

∗ + μ,
f1 � β2/(a + S), f2 � β4/(b + S), f3 � β2/(a + S)2, f4 �

β3/(d + E), f5 � β4/(b + S)2, and f6 � β3/(d + E)2.
%e characteristic polynomial of (8) is given by

α3 + ε2α
2

+ ε1α + ε0, (9)

where ε0 � c1df2 f6(af3 + β1)E∗Q∗S∗+ (β1 + f1)(c2f4
f5 + b33af3 + b33) E∗S∗ + bc2b22f2f5Q

∗S∗ + b11(b22b33− c1
df4f6E

∗Q∗), ε1 � bc2f2f5Q
∗S∗ + (β1 + f1)(af3+ β1)E∗S∗

+ b11b22 + b11b33 + b22b33 − c1df4f6E
∗Q∗, and ε2 � b11+

b22 + b33.
%e system has the real part of eigenvalues as negative, if

it satisfies b11 > 0, b22 > 0, b33 > 0 and b22b33 > c1df4f6E
∗Q∗

i.e., B< af3E
∗ + bf5Q

∗ + β1E∗ + 2μS∗, β1S∗ + df6Q
∗ < μ+

f1S
∗, c1f4E

∗ + c2f2S
∗ < μ, (β1S∗ − f1S

∗ + df6Q
∗ − μ)

(c1f4E
∗ + c2f2S

∗ − μ)> c1df4f6E
∗Q∗.

Hence, satisfying the Routh–Hurwitz criterion, the en-
demic is said to be locally asymptotically stable. □

4.2. Global Stability. In this section, global stability for the
endemic equilibrium point is studied using the Lyapunov
function.

Theorem 3. Endemic point E∗d is asymptotically globally
stable.

Proof. Let us assume the Lyapunov function L∗ as

L
∗
(t) �

1
2

S − S
∗

( 􏼁
2

+ k1
1
2

E − E
∗

( 􏼁
2

+ k2
1
2

Q − Q
∗

( 􏼁
2
,

dL∗

dt
� S − S

∗
( 􏼁 BS − β1SE −

β2SE

a + S
−
β4SQ

b + S
− μS

2
􏼠 􏼡

+ k1 E − E
∗

( 􏼁 β1SE +
β2SE

a + S
−
β3EQ

d + E
− μE􏼠 􏼡

+ k2 Q − Q
∗

( 􏼁
c1β3EQ

d + E
+

c2β4SQ

b + S
− μQ􏼠 􏼡

� S − S
∗

( 􏼁
2

B − β1E −
β2E

a + S
−
β4Q
b + S

− μ S + S
∗

( 􏼁􏼠 􏼡

+ k1 E − E
∗

( 􏼁
2 β1S +

β2S
a + S

−
β3Q

d + E
− μ􏼠 􏼡

+ k2 Q − Q
∗

( 􏼁
2 c1β3E

d + E
+

c2β4S
b + S

− μ􏼠 􏼡

+ S
∗

S − S
∗

( 􏼁 B − μS
∗

( 􏼁 −
β2

a + S

· S
∗
E S − S

∗
( 􏼁 − SE

∗
E − E

∗
( 􏼁􏼠

−
β4

b + S
| S
∗
Q S − S

∗
( 􏼁 − k2c2SQ

∗
Q − Q

∗
( 􏼁􏼡

− β1 S
∗
E S − S

∗
( 􏼁 − k1SE

∗
E − E

∗
( 􏼁( 􏼁

−
β3

d + E
k1QE
∗

E − E
∗

( 􏼁 − k2c1Q
∗
E Q − Q

∗
( 􏼁( 􏼁

− μ k1E
∗

E − E
∗

( 􏼁 + k2Q
∗

Q − Q
∗

( 􏼁( 􏼁.

(10)

where (dL∗/dt)< 0 when β1S + (β2S/(a + S))< (β3Q/
(d + E)) + μ and (c1β3E/(d + E)) + (c2β4S/(b + S))< μ,

B< μS∗. Hence, by LaSalle’s invariance principle [16], the
endemic equilibrium point is globally stable. □

5. Z-Control

In this section, Z-control is applied on the abovementioned
model. %e basic idea of Z-control approach is adopted from
[17–20]. Z-control plays a vital role in reducing chaos and/or
oscillation and thus in achieving the stability of the model.
%e Z-control approach is used to derive an expression for
the system input say u(t), so that the actual system output
y(t) will be forced to achieve the desired output yd(t).
Moreover, Z-control is more useful if the difference between
the actual output of the system and its desired output is
negligible, namely, if e(t) � y(t) − yd(t)⟶ 0 as t⟶∞.
%is objective is achieved by forcing error function e(t) to
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converge exponentially to zero when it satisfies the following
equation:

_e(t) � − λe(t), for λ> 0. (11)

%is equation is also known as the design formula and λ
is the design parameter which is strictly positive indicating
the convergence rate.%e Z-control approach is based on the
following steps. Firstly, define the error function and, sec-
ondly, use the design formula whenever required to obtain
the explicit expression of u(t).

Now, by applying indirect Z-controller to the quarantine
population, system (1) is rewritten as

dS

dt
� BS − β1SE −

β2SE

a + S
−
β4SQ

b + S
− μS

2
,

dE

dt
� β1SE +

β2SE

a + S
−
β3EQ

d + E
− μE,

dQ

dt
�

c1β3EQ

d + E
+

c2β4SQ

b + S
− μQ − u(t)Q,

(12)

where u(t) is the indirect control variable for quarantine
population in measuring the dynamics of the model. %e
purpose is to adjust the effectiveness of quarantine due to
exposure to COVID-19, i.e., E(t)⟶ Ed(t).

Let us consider Ed � Ed(t) be the desired stage for the
population exposed to COVID-19 and defining the first
error function as e1 � E(t) − Ed(t).

Now using the design formula of the Z-control method,
we have

_E(t) − _Ed(t) � − λ E(t) − Ed(t)( 􏼁, (13)

where _Q(t) is not explicitly included in equation (13);
therefore, in the view of equation (12), u(t) cannot be de-
rived explicitly from (13). Hence, the second error function
is considered while applying Z-controller for the second
time.

%e second error function is defined as

e2 � _e1 + λe1 � _E(t) − _Ed(t) + λ E(t) − Ed(t)( 􏼁. (14)

But,

_e2(t) � − λe2(t),

⟹ €E(t) − €Ed(t)􏼐 􏼑 + λ _E(t)t − n _Edq(t)􏼐 􏼑 � − λ _E(t) − _Ed(t)􏼐 􏼑 + λ E(t) − Ed(t)( 􏼁􏼐 􏼑.

⟹ β1 _SE + β1S _E +
β2S _E

a + S
+
β2 _SE

a + S
−

β2 _SS _E

(a + S)2
−
β3E _Q

d + E
−
β3 _EQ

d + E
+

β3E _EQ

(d + E)2
− μ _E − €Ed(t)

+ λ _E(t) − _Ed(t)􏼐 􏼑 � − λ _E(t) − _Ed(t)􏼐 􏼑 + λ E(t) − Ed(t)( 􏼁􏼐 􏼑.

⟹ _Q �
(d + E)

β3E
β1 _SE + β1S _E +

β2S _E

a + S
+
β2 _SE

a + S
−

β2 _SS _E

(a + S)2
−
β3 _EQ

d + E
+

β3E _EQ

(d + E)2
− μ _E − €Ed(t)􏼢

+λ _E(t) − _Ed(t)􏼐 􏼑 + λ _E(t) − _Ed(t)􏼐 􏼑 + λ E(t) − Ed(t)( 􏼁􏼐 􏼑􏽩.

(15)

We finally obtain the expression for Z-controller as

⇒u(t) �
c1β3E
d + E

+
c2β4S
b + S

− μ −
(d + E)

β3EQ
β1 _SE + β1S _E +

β2S _E

a + S
+
β2 _SE

a + S
−

β2 _SS _E

(a + S)2
−
β3 _EQ

d + E
+􏼢

β3E _EQ

(d + E)2
− μ _E − €Ed(t) + λ _E(t) − _Ed(t)􏼐 􏼑 + λ _E(t) − _Ed(t)􏼐 􏼑 + λ E(t) − Ed(t)( 􏼁􏼐 􏼑􏼣.

(16)

Theorem 4. Starting from the positive initial state
[S(0), E(0), Q(0)]T, the error function e1 of model (12)
equipped with Z-controller (16) converges to zero exponen-
tially for a continuously differentiable and bounded desired
state Ed(t).

Proof. According to (16), we consider e2 � _e1 + λe1, and
substituting it in _e2(t) � − λe2(t), we get

€e1 + 2λ _e1 + λ2e1 � 0. (17)

%e solution of this second-order differential equation is
calculated as

e1 � a1 + a2t( 􏼁exp(− λt), ∀t≥ 0, (18)

where a1 and a2 are arbitrary constants. Using the initial
value condition, we obtain a1 � E(0)− Ed(0), a2 � _E

(0) − _Ed(0) + λ(E(0) − Ed(0)).

6 International Journal of Differential Equations



According to Lemma 1 in [21], ∃ c> 0 and λ> 0 such that
e1 ≤ c exp(− λt). %us, the tracking error exponentially
converges to zero for λ> 0, which implies that the pop-
ulation exposed to COVID-19 converges exponentially to its
desired state. □

6. Numerical Simulation

In this section, simulation is developed to study the im-
portance of quarantine for the population suffering from
diabetes or hypertension in the COVID-19 environment.
Data given in Table 1 have been used for the numerical
simulation.

Figure 2 shows the plotting of susceptible class, exposed
class, and quarantine class. It depicts the model completely
indicating the movement of individuals from one com-
partment to another compartment.

Figure 3 is plotted with respect to all the compartments,
namely, susceptible, exposed, and quarantine at the endemic
equilibrium. It shows the periodic nature of system (1).

Figure 4 shows that the individuals exposed to COVID-
19 are quarantining themselves or are maintaining social
distance to avoid the transmission of the disease.

Figure 5 shows the cycle’s oscillation for the endemic
equilibrium point at β3 � 1.8 without applying Z-controller.
With further increase in β3, the system becomes more
chaotic in nature showing its instability. For better un-
derstanding of the periodic oscillation and chaotic nature,
we draw a bifurcation diagram taking β3 as the bifurcating
parameter.

Figure 6 shows the periodicity along each compartment
with respect to β3. Here, the maximum and the minimum
values are plotted with blue and red, respectively. Here, it is
observed that if the population is exposed to COVID-19,
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more and more individuals undergo quarantine increasing
the periodicity, which further turns into chaos. In order to
make the system stable and free from chaos or periodicity,
we apply Z-control to system (1).

By implementing Z-control as explained in Section 5 to
system (1), one can observe from Figure 7 that the system has
beenmade free from chaos or periodicity, making the system
stable. Here, Ed � 0.001, i.e., the desired value of Ed. We can
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Figure 5: Oscillations at β3 � 1.8.
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see that Figure 5 gives us the uncontrolled system with
unstable dynamics and Figure 7 gives us the controlled
system with stable dynamics. Figure 7 is interpreted as the
susceptible individuals, before exposure to COVID-19,
quarantine or isolate themselves to avoid contact with the
disease.

Figure 8 shows the tracking errors which have been used
in the design formula. Figure 9 depicts the behaviour of the
control variable applied in the Z-control model. It shows
that initially 20% control is required and later on, as the
exposure to disease further increases, control to be applied
also increases, i.e., a greater number of individuals are to be
quarantined.

7. Conclusion

%is paper considers a mathematical model for the
population suffering from diabetes or hypertension ex-
posed to COVID-19. Here, we have calculated the re-
production number when there is no exposure to COVID-
19 which turns out to be 2.66, indicating that a single
individual asks atleast two individuals to go for quaran-
tine. In a similar manner, the reproduction number in the
endemic stage is calculated as 5.33, indicating that at least
5 individuals quarantine themselves when they are ex-
posed to the disease. Next, we have derived the conditions
for the system to be locally stable with the help of the
Routh–Hurwitz criterion. Global stability is also studied
for the endemic equilibrium point. In this paper, we have
investigated Z-control in order to control the disease
dynamics. Here, the control is applied to the quarantine
class in order to obtain the desired exposure in attaining
the stability of the system. At the end, the numerical
simulation is established indicating the importance of
quarantine which helps reduce the chaos of the system. If
individuals quarantine themselves at the onset of COVID-
19, it keeps them safe, which is the only way to protect
oneself as there is no vaccine till date.
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Figure 7: Implementation of Z-control.
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