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,is paper deals with an approach to obtaining the numerical solution of the Lotka–Volterra predator-prey models with discrete
delay using Euler polynomials connected with Bernoulli ones. By using the Euler polynomials connected with Bernoulli ones and
collocation points, this method transforms the predator-prey model into a matrix equation. ,e main characteristic of this
approach is that it reduces the predator-prey model to a system of algebraic equations, which greatly simplifies the problem. For
these models, the explicit formula determining the stability and the direction is given. Numerical examples illustrate the reliability
and efficiency of the proposed scheme.

1. Introduction

In recent years, population models in various fields of
mathematical biology have been proposed and studied ex-
tensively. Predator-prey interaction is the fundamental
structure in population dynamics. Understanding the dy-
namics of predator-prey models will be very helpful for

investigating multiple species interactions [1–6]. ,e first
predator-prey model with delay was proposed by Volterra
and Brelot [7]. Let p1(t) and p2(t) denote the population
density of prey and predator at time t. In this work, we first,
consider the modified version of the predator-prey model
with delay [8]:

p1′(t) � p1(t) r1 − a11p1(t) − a12 
t

−∞
F(t − s)p2(s)ds ,

p2′(t) � p2(t) −r2 + a21 
t

∞
G(t − s)p1(s)ds − a22p2(t) ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where r1 > 0 is the growth rate of the prey in the absence of
predators, a11 > 0 denotes the self-regulation constant of the
prey, a12 > 0 describes the predation of the prey by predators,
r2 > 0 is the death rate of predators in the absence of the prey,
a21 > 0 is the conversion rate for the predators, and a22 ≥ 0
describes the transpacific competition among predators.
F(s) and G(s) are nonnegative continuous delay kernels

defined and integrable on [0,∞), which weigh the contri-
bution of the predation occurred in the past to the change
rate of the prey and predators, respectively. Detailed study
on stability and bifurcation of system (1) can be found in
Cushing [9]. When F(t − s) � δ(t − s − τ1) andG(t − s)

� δ(t − s − τ2)—where δ is the delta function and τ1 ≥ 0 and
τ2 ≥ 0 are the hunting delay and the maturation time of the
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prey species, respectively—system (1) reduces to the fol-
lowing Lotka–Volterra predator-prey model with two dis-
crete delays:

p1′(t) � p1(t) r1 − a11p1(t) − a12p2 t − τ1(  ,

p2′(t) � p2(t) −r2 + a21p1 t − τ2(  − a22p2(t) .

⎧⎨

⎩ (2)

We will find the approximate solutions of the system (2)
with initial conditions:

p1(0) � α1,

p2(0) � α2,
(3)

where α1 and α2 are positive numbers.
,e exact solution for the predator-prey models in the

general form does not exist; therefore, numerical methods
are needed to computing the population densities of the prey
and predator. Somemethods [10–12] are proposed to handle
an approximate solution of the predator–prey system, such
as finite-difference, finite element, and spectral methods.

,e organization of this paper is as follows. In Section 2,
we study the stability of the predator-prey model. In Section
3, matrix relations for Euler polynomials connected with
Bernoulli ones will be discussed. In Section 4, we shall

present our method in detail. Finally, we give a few nu-
merical examples in Section 5.

2. Stability

In this section, we review some results on the stability of the
predator-prey model. To begin with, we first consider system
(2) appearing in the interspecific interaction terms of both
equations:

p1′(t) � p1(t)f p1(t), p2 t − τ1( ( ,

p2′(t) � p2(t)g p1 t − τ2( , p2(t)( ,

⎧⎨

⎩ (4)

where τi ≥ 0, i � 1, 2, is a constant. Denote C � C([−τ,

0] × R), where τ � max τ1, τ2 . Assume that f: R × C⟶ R

and g: R × C⟶ R satisfy the following assumptions:

(S1): there exists a point (p∗1 , p∗2 ) with p∗1 , p∗2 > 0 for
which f(p∗1 , p∗2 ) � g(p∗1 , p∗2 ) � 0,
(S2): f and g are continuously differentiable such that
zf/zp1 < 0, zf/zp2 < 0, zg/zp1 > 0, and zg/zp2 > 0.

Assumption (S1) ensures that (p∗1 , p∗2 ) is a positive
equilibrium point of system (4). Let ϕ(t) � p1(t) − p∗1 and
ψ(t) � p2(t) − p∗2 . ,en, the linearized system at (p∗1 , p∗2 ) is

ϕ′(t) �
zf

zp1
p
∗
1 , p
∗
2(   p∗1( ϕ(t) +

zf

zp2
p
∗
1 , p
∗
2(   p∗1( ψ t − τ1( ,

ψ′(t) �
zg

zp1
p
∗
1 , p
∗
2(   p∗2( ϕ t − τ2(  +

zg

zp2
p
∗
1 , p
∗
2(   p∗2( ψ(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

,erefore, we have the following theorem.

Theorem 1. Suppose that f and g satisfy the assumptions
(S1) and (S2). Define

a �
zf

zp1
p
∗
1 , p
∗
2( ,

b �
zf

zp2
p
∗
1 , p
∗
2( ,

c �
zg

zp1
p
∗
1 , p
∗
2( ,

d �
zg

zp2
p
∗
1 , p
∗
2( .

(6)

,en, the positive equilibrium (p∗1 , p∗2 ) of the delayed
predator-prey system (4) is absolutely stable if and only if
a d + bc> 0.

For proof, see [13].
By ,eorem 1, we have the following condition. If

r1a21 − r2a11 > 0, (7)

then system (2) has a positive equilibrium E∗ � (p∗1 , p∗2 ),
where

p
∗
1 �

r1a22 + r2a12

a11a22 + a12a21
,

p
∗
2 �

r1a21 − r2a11

a11a22 + a12a21
.

(8)

,e condition a d + bc> 0 becomes a11a22 − a12a21 > 0.
,us, by ,eorem 1, we have the following result on the
stability of E∗ � (p∗1 , p∗2 ).

Corollary 1. If condition (7) is satisfied, i.e., if the positive
equilibrium E∗ � (p∗1 , p∗2 ) of system (2) exists, then it is
absolutely stable if and only if a11a22 − a12a21 > 0.

2 International Journal of Differential Equations



He [14] and Lu and Wang [15] showed that the positive
equilibrium E∗ � (p∗1 , p∗2 ) of system (2) is globally stable.
,e above stability result depends on the assumption that
a11a22 − a12a21 > 0. If a11a22 − a12a21 < 0, then Faria [16]
proved the following result.

Corollary 2. If a11a22 − a12a21 < 0 and a11a22 ≠ 0, then there
is a critical value τ2,0 > 0, such that E∗ of system (2) is as-
ymptotically stable when τ2 < τ2,0 and unstable when τ2 > τ2,0.

3. Matrix Relations for Euler Polynomials

Bernoulli polynomials Bn(x) are usually defined from the
generating function for |t|< 2π:

G(x, t) ≔
text

et − 1
� 
∞

n�0
Bn(x)

tn

n!
, (9)

and Bernoulli numbers βn: � Bn(0) are contained in many
mathematical formulas such as the Taylor expansion in a
neighborhood of the origin of trigonometric and hyperbolic
tangent and cotangent functions, and they can be obtained
by the generating function [17]:

t

et − 1
� 
∞

n�0
βn

tn

n!
. (10)

Euler studied Bernoulli polynomials, and these poly-
nomials are employed in the integral representation of
differentiable periodic functions and play an important role
in the approximation of such functions using polynomials.
Many early Euler and Bernoulli polynomial implementa-
tions can be contained in [18–20]. Euler polynomials are
strictly related to Bernoulli and are used in Taylor’s ex-
pansion in the trigonometric and hyperbolic secant function
districts. Recursive computation of Bernoulli and Euler
polynomials can be obtained by using the following
formulas:


n−1

k�0

n

k
 Bk(t) � nt

n− 1
, n � 2, 3, . . . ,

En(t) + 
n

k�0

n

k
 Ek(t) � 2t

n
, n � 1, 2, . . . .

(11)

Euler polynomials En(t) can also be defined as poly-
nomials of degree n≥ 0 satisfying the conditions:

(1) Em
′ (t) � mEm−1(t), m≥ 1

(2) Em(t + 1) + Em(t) � 2tm, m≥ 1

,e above conditions express a recurrence relation to
Euler polynomials. An explicit formula for En(t) is repre-
sented as

En(t) �
1

n + 1


n+1

k�1
2 − 2k+1

 

n + 1

k

⎛⎝ ⎞⎠βkt
n+1− k

, (12)

where βk � Bk(0) is the first Bernoulli numbers for each k �

0, 1, . . . , n [21].

3.1. Function Approximation. Let H � L2[0, 1], and assume
that E0(t), E1(t), . . . , EN(t)  be the set of Euler polyno-
mials, and PH � span E0(t), E1(t), . . . , EN(t) , and h(t) be
an arbitrary element in H. Since PH is a finite dimensional
vector space, h(t) has the unique best approximation out of
PH such as p(t), that is,

‖h(t) − p(t)‖≤ ‖h(t) − p(t)‖, ∀p(t) ∈ PH. (13)

Since p(t) ∈ PH, there exist unique coefficients
p0, p1, . . . , pN, such that

h(t)≃ p(t) � 
N

n�0
pnEn(t) � PE(t),

h′(t)≃ p′(t) � 
N

n�0
pnEn
′(t) � PE′(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where

P � p0, p1, . . . , pN ,

E(t) � E0(t), E1(t), . . . , EN(t) 
T
,

E′(t) � DE(t),

(15)

such that

D �

0 0 · · · 0 0

1 0 · · · 0 0

0 2 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · N 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Note that, from property (12) of Euler polynomials, we
can represent E(t) in a matrix form as follows:

E(t) � MT(t), (17)

where
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M �

1 0 0 · · · 0

2 − 23( 
2

2
⎛⎝ ⎞⎠

2
β2 1 0 · · · 0

2 − 24( 
3

3
⎛⎝ ⎞⎠

3
β3

2 − 23( 
3

2
⎛⎝ ⎞⎠

3
β2 1 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

2 − 2N+2( 
N + 1

N + 1
⎛⎝ ⎞⎠

N + 1
βN+1

2 − 2N+1( 
N + 1

N

⎛⎝ ⎞⎠

N + 1
βN

2 − 2N( 
N + 1

N − 1
⎛⎝ ⎞⎠

N + 1
βN−1 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

is an (N + 1) × (N + 1) matrix, and T(t) �

[1, t, t2, . . . , tN]T.

4. Numerical Solution of the Lotka–Voltra
Predator-Prey Models with Discreet Delay
Using Euler Operational Matrices

Consider the Lotka–Voltra predator-prey models with
discreet delay (2). For implementing the Euler operational
matrix on the predator-prey model, we first approximate
pi(t) and pi

′(t), for i � 1, 2, by equations (14)–(17), as
follows:

pi(t)≃PiE(t) � PiMT(t),

pi
′(t)≃PiE′(t) � PiDE(t) � PiDMT(t),

 (19)

where Pi is the unknown (N + 1) vector of coefficients.

Remark 1. Recall that the Hadamard product of two ma-
trices, say A and B, of the same dimension m × n, is denoted
by A ∘B, defined to be an m × n-matrix, in which the (i, j)th

entry is equal to the product of (i, j)th entries of A and B, i.e.,
(A ∘B)i,j � Ai,jBi,j.

Bearing in mind the previous remark, we can simplify
the delay part of system (2) to the matrix form as

E(t − τ) � MT(t − τ) � MBτT(t), (20)

where B0 � I and for any τ ≠ 0, Bτ is the Hadamard product
C ∘ G (i.e., the product of entry by entry. . ..) such that for

1≤ j≤ i≤N + 1, Ci,j �
i − 1
j − 1  and Gi,j � (−τ)i− j, and for

i< j, Ci,j � Gi,j � 0. In other words, we may evaluate entries
of Bτ as follows:

Bτ(i, j) �

i − 1

j − 1
 (−τ)i− j, i≥ j,

0, i< j.

⎧⎪⎪⎨

⎪⎪⎩
(21)

Remark 2. Note that If A � [aij]m×n and Bp×q are two
matrices, then the Kronecker product A⊗B is defined to be
the following mp × nq block matrix:

A⊗B �

a11B · · · a1nB

⋮ ⋱ ⋮

am1B · · · amnB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

By the mixed-product property of a Kronecker product,
we know that for matrices A, B, C, and D, which are of the
size that matrix products AC and B D are well-defined, the
following relation holds true:

(AC)⊗ (BD) � (A⊗B)(C⊗D). (23)

Now, we have to estimate all expressions consisting the
products of p1(t − τ2) and p2(t − τ1), existing in system (2)
(note that, for τk � 0, the products pi(t − τk)pj(t),
pi(t)pj(t − τk), and pi(t)pj(t) can be approximated in
matrix form, where i, j ∈ 1, 2{ }). In order to do this, let
i, j ⊆ 1, 2{ }, i′ � 3 − i, and j′ � 3 − j. ,en, by using
equations (19) and (20), we have

pi t − τi′( pj t − τj′ ≃ PiE t − τi′( (  PjE t − τj′  

� PiMBτ
i′
T(t) ⊗ PjMBτ

j′
T(t) 

� Pi ⊗Pj (M⊗M) Bτ
i′
⊗Bτ

j′
 (T(t)⊗T(t))

� Pi,jMB τi′ , τj′ T(t),

(24)

where

Pi,j � Pi ⊗Pj,

M � M⊗M,

B τi′ , τj′  � Bτ
i′
⊗Bτ

j′
,

T(t) � T(t)⊗T(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)
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With the above notations, we can rewrite system (2) as

P1DMT(t) � r1P1MT(t) − a11P1,1MT(t) − a12P1,2MB 0, τ1( T(t),

P2DMT(t) � −r2P2MT(t) + a21P2,1MB 0, τ2( T(t) − a22P2,2MT(t).

⎧⎨

⎩ (26)

Suppose that

M1(t) � DMT(t) − r1MT(t),

M2(t) � DMT(t) + r2MT(t),

A1(t) � a12MB 0, τ1( T(t),

A2(t) � −a21MB 0, τ2( T(t),

C1(t) � a11MT(t),

C2(t) � a22MT(t).

(27)

,en, the fundamental matrix equations of system (2)
can be written in the following form:

PM(t) + PA(t) + PC(t) � f(t), (28)

where

P � P1, P2 ,

M(t) �
M1(t) 0

0 M2(t)
 ,

P � P1,2,P2,1 ,

A(t) �
A1(t) 0

0 A2(t)
 ,

P � P1,1,P2,2 ,

C(t) �
C1(t) 0

0 C2(t)
 ,

f(t) � [0, 0]1×2.

(29)

4.1. Implementing the Collocation Method. Equation (28)
gives us 2 nonlinear equations. Since the number of un-
knowns for each vector P1 and P2 in (15) is (N + 1) and our
system has 4 equations, the total number of unknowns is
2(N + 1); then, we collocate equation (28) at
NNewton–Cotes points given as

ts �
b

N
s, s � 1, 2, . . . , N, (30)

and hence we have equation (28) and initial conditions:

PM ts(  + PA ts(  + PC ts(  � f ts( ; s � 1, 2, . . . , N,

P1MT(0) � α1,

P2MT(0) � α2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

After solving linear system (31), we get P1 and P2. For
collocating equation (31), we have used the Newton–Cotes
points because of their simplicity and their good utility in
our implementation regarding the speed and accuracy of
answers. However, we could use other points such as the
Gauss points, Clenshaw–Curtis points, and Lobatto points.

5. Numerical Examples

To test the method in terms of its precision and efficacy, we
turn our attention to show three numerical performance
results. Analytic approximate solutions of high-order ac-
curacy are presented in most of the cases. ,roughout the
calculations, the absolute error is defined by

Error(t) � pi(t) − y1(t)


, (32)

and maximum absolute error is defined by

Error � Max pi ti(  − y1 ti( 


; ti �
i

1000
, i � 1, 2, .., 1000 .

(33)

,e computations associated with these examples were
performed using MATLAB.

Since the truncated series (17) is approximate solutions
of system (31), when the function p1,N(t), p2,N(t) and its
derivatives are substituted in system (2), the resulting
equation must be satisfied approximately; that is, for
ts, s � 1, 2, . . . , N,

R1,N ts(  � p1,N
′ ts(  − p1,N ts(  1 − p2,N ts(  



 � 0,

R2,N ts(  � p2,N
′ ts(  − p2,N ts(  −1 + p1,N ts(  



 � 0,

⎧⎪⎨

⎪⎩

(34)

and Max |R1,N(ts) − R2,N(ts)|≤ 10− rs , (rs positive integer).
If max10− rs � 10− r (r positive integer) is prescribed, then the
truncation limitN is increased until the difference Ri,N(ts) at
each of the points becomes smaller than the prescribed 10− r.
All computations were carried out using MATLAB.

Example 1. We consider the following Lotka–Volterra
predator-prey model with delays:

p1′(t) � p1(t) 1 − p1(t) − p2(t − 1.7) ,

p2′(t) � p2(t) −1 + 2p1(t − 1.8) − p2(t) ,

⎧⎨

⎩ (35)

which has also a positive equilibrium E∗ � (p∗1 �

(2/3), p∗2 � (1/3))[22]. ,e numerical simulations for Ex-
ample 1 are shown in Figures 1 and 2.
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Table 1: Errors for Example 2.

t
R1,N(t) R2,N(t)

Present method Method in [23] Present method Method in [23]
N � 5 N � 12 N � 5 N � 5 N � 12 N � 5

0.0 5.88378e − 8 3.56178e − 15 ≃[10− 5, 10− 10] 3.415153e − 8 8.881278e − 15 ≃[10− 5, 10− 10]

0.1 5.76570e − 7 1.76292e − 14 ≃[10− 5, 10− 10] 1.45283e − 7 8.743266e − 14 ≃[10− 5, 10− 10]

0.2 1.36470e − 6 2.87548e − 14 ≃[10− 5, 10− 10] 2.87360e − 8 1.65978e − 14 ≃[10− 5, 10− 10]

0.3 3.65207e − 8 4.27880e − 12 ≃[10− 5, 10− 10] 3.61146e − 8 2.37310e − 13 ≃[10− 5, 10− 10]

0.4 6.42077e − 6 3.62315e − 12 ≃[10− 5, 10− 10] 1.54657e − 7 2.02147e − 13 ≃[10− 5, 10− 10]

0.5 4.04666e − 6 5.97320e − 12 ≃[10− 5, 10− 10] 5.76562e − 7 4.63123e − 13 ≃[10− 5, 10− 10]

0.6 2.37656e − 6 7.28578e − 12 ≃[10− 5, 10− 10] 4.63832e − 7 5.21534e − 13 ≃[10− 5, 10− 10]

0.7 3.34357e − 6 7.51433e − 12 ≃[10− 5, 10− 10] 5.66931e − 7 5.75760e − 13 ≃[10− 5, 10− 10]

0.8 2.21441e − 5 1.99510e − 12 ≃[10− 5, 10− 10] 3.65471e − 6 7.44423e − 12 ≃[10− 5, 10− 10]

0.9 3.27256e − 4 5.44983e − 12 ≃[10− 5, 10− 10] 2.44449e − 5 4.42886e − 12 ≃[10− 5, 10− 10]

1.0 2.27723e − 5 4.08768e − 12 ≃[10− 5, 10− 10] 4.33326e − 5 2.75555e − 10 ≃[10− 5, 10− 10]
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Figure 1: ,e stable behavior of the prey and predator populations for Example 1 to the equilibrium population points. (a) ,e graph on
p1 − t plane of Example 1. (b) ,e graph on p2 − t plane of Example 1.
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Figure 2: ,e phase graph of Example 1 in t � 500 with the equilibrium points p∗1 � (2/3) and p∗2 � (1/3).
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Example 2. Consider the Lotka–Volterra predator-prey
models with discrete delay given in [23] by

p1′(t) � p1(t) 1 − p2(t) ,

p2′(t) � p2(t) −1 + p1(t) ,

⎧⎨

⎩ (36)

with initial conditions

p1(0) � 1.3,

p2(0) � 0.6.
(37)

We selected our second example from [23], which
solved this predator-prey interaction by the Bessel col-
location approach. We compared our results with the
Bessel collocation results, and the outcomes are tabulated
in Table 1. For this example too, the improved Collo-
cation approach of Euler polynomials connected with
Bernoulli ones is incisive. ,is is because for the same
number of basis functions, it obtains better results.
Table 1 shows the present method results for Example 2 in
comparison with method of [23]. ,e superiority of Euler
polynomials operational matrices method compared with
Bessel collocation approach is clear here, which is because
with the same number of basis functions, we get very
better results.

Example 3. Suppose in a closed ecosystem there are only 2
types of animals: the predator and the prey. ,ey form a
simple food-chain where the predator species hunts the prey
species, while the prey grazes vegetation. ,e size of the 2
populations can be described by a simple system of 2
nonlinear first-order differential equations:

p1′(t) � p1(t) A − Bp2(t) ,

p2′(t) � p2(t) −C + Dp1(t) ,

⎧⎨

⎩ (38)

which a set of fixed positive constants. A: the growth rate of
the prey, B: the rate at which predators destroy the prey, C:
the death rate of predators, and D: the rate at which
predators increase by consuming the prey.

A prey population p1(t) increases at a rate (dp1(t)/dt) �

Ap1(t) (proportional to the number of prey) but is si-
multaneously destroyed by predators at a rate (dp1(t)/dt) �

−Bp1(t)p2(t) (proportional to the product of the number of
prey and predators). A predator population p2(t) decreases
at a rate (dp2(t)/dt) � −Cp2(t) (proportional to the number
of predators), but increases at a rate (dp2(t)/dt) �

Dp1(t)p2(t) (again proportional to the product of the
numbers of prey and predators). By ,eorem 1, we have the
the positive equilibrium E∗ � (p∗1 � (C/D), p∗2 � (A/B)).

For this example, the stability of each of the three steady
states can be assessed more formally using the approach
discussed. ,e absolute errors for N � 7, 9 are estimated by
R1,N and R2,N and are presented in Tables 2 and 3. We see
that if N increases, then the absolute errors decrease more
rapidly.

6. Conclusion

In this paper, we have proposed a numerical approach for
solving the Lotka–Volterra predator-prey models with
discrete delay by utilizing Euler polynomials connected with
Bernoulli ones. ,e cognate matrices and mixed-product
property of Kronecker products, besides the collocation
method, have been utilized for transforming a predator-prey
system to a linear system of algebraic equations that can be
solved facilely. To the best of our cognizance, this is the first
work coalescing the Euler polynomial connected with the
Bernoulli polynomial and collocation points for solving
Lotka–Volterra predator-prey models. Finally, numerical
examples reveal that the present method is very precise and
convenient for solving predator-prey models.

Table 2: Comparison of the absolute errors obtained by different rates for R1,N in Example 3.

t
A � 0.45, B � 0.15,
C � 0.45, D � 0.9

A � 0.8, B � 0.4,
C � 0.4, D � 0.6

A � 0.16, B � 0.48,
C � 0.3, D � 0.15

N � 7 N � 9 N � 7 N � 9 N � 7 N � 9
0.2 3.75745e − 12 1.30547e − 14 2.34442e − 11 2.12354e − 13 1.65098e − 11 2.77903e − 15
0.4 1.00987e − 12 3.22244e − 14 1.02348e − 11 6.77926e − 14 1.30007e − 11 5.99001e − 13
0.6 6.43322e − 13 9.91158e − 15 4.82091e − 13 4.66258e − 15 8.20989e − 13 5.56193e − 15
0.8 4.49987e − 11 9.00302e − 14 3.35303e − 11 6.39937e − 15 8.96511e − 11 4.09824e − 15
1.0 2.66561e − 10 9.21367e − 14 6.12546e − 11 9.09012e − 15 5.36768e − 11 2.09891e − 15

Table 3: Comparison of the absolute errors obtained by different rates for R2,N in Example 3.

t
A � 0.45, B � 0.15,
C � 0.45, D � 0.9

A � 0.8, B � 0.4,
C � 0.4, D � 0.6

A � 0.16, B � 0.48,
C � 0.3, D � 0.15

N � 7 N � 9 N � 7 N � 9 N � 7 N � 9
0.2 3.86301e − 11 4.21008e − 15 8.23171e − 11 7.9878e − 15 5.76173e − 11 2.21378e − 15
0.4 2.45611e − 12 9.59823e − 15 8.06578e − 11 3.28935e − 15 7.20981e − 12 4.98678e − 15
0.6 1.87501e − 12 2.00256e − 15 1.63809e − 12 4.99876e − 15 2.65410e − 12 1.57792e − 15
0.8 2.12409e − 10 1.55729e − 14 8.28909e − 11 1.37811e − 15 2.00256e − 11 3.32209e − 14
1.0 9.12781e − 10 2.81009e − 14 3.12927e − 10 8.44606e − 15 1.34690e − 10 5.67813e − 14
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