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In this paper, we consider a class of singularly perturbed differential equations of convection diffusion type with integral boundary
condition. An accelerated uniformly convergent numerical method is constructed via exponentially fitted operator method using
Richardson extrapolation techniques and numerical integration methods to solve the problem. +e integral boundary condition is
treated using numerical integration techniques.Maximum absolute errors and rates of convergence for different values of perturbation
parameter and mesh sizes are tabulated for the numerical example considered. +e method is shown to be ε-uniformly convergent.

1. Introduction

Boundary value problems involving integral boundary condi-
tions have received considerable attention in recent years [1, 2].
For a discussion of existence and uniqueness results and for
applications of problems with integral boundary conditions,
one can refer [3–5] and the references therein. In [2, 6, 7], some
approximating or numerical treatment aspects of this kind of
problems have been considered. However, the methods or
algorithms developed so far mainly concerned with the regular
cases (i.e., when the boundary layers are absent). Boundary
value problems with integral boundary conditions in which the
leading derivative term is multiplied by a small parameter are
called singularly perturbed problems with integral boundary
conditions. +e solutions of such types of problems manifest
boundary layer phenomena where the solution changed
abruptly. As a result, numerical analysis of singular perturbation
cases has been far from trivial because of the boundary layer
behavior of the solution. +e solutions of the problems with
boundary layer undergo rapid changes within very thin layers
near the boundary or inside the problem domain [2, 8–10], and
hence classical numerical methods for solving such problems
are unstable and fail to give good results when the perturbation
parameter is small (i.e., for h≥ ε) [10].+erefore, it is important
to develop a numerical method that gives good results for small

values of the perturbation parameter where others fails to give
good result and convergent independent of the values of the
perturbation parameter. In recent years, the authors [11–15]
have developed various numerical schemes on uniform meshes
for singularly perturbed first and second order differential
equations with integral boundary conditions.

As far as the researchers’ knowledge is concerned numerical
solution of the singularly perturbed boundary value problem
containing integral boundary condition via the accelerated
exponential fitted operator method is first being considered.
Hence, this paper proposed a uniformly convergent numerical
method based on exponential fitted operator and numerical
integration methods to solve the problem under consideration.

2. Statement of the Problem

Consider the following singularly perturbed problem with
integral boundary condition:

Ly ≡ ε2y″(x) + εa(x)y′(x) − b(x)y(x) � f(x), 0<x< l,

(1)
y(0) � μ0, (2)

L1y � y(l) − 􏽚
l1

l0

g(x)y(x)dx � μ1, 0≤ l0 < l1 ≤ l, (3)
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where ε, 0< ε≪ 1 is a perturbation parameter, μ0 and μ1 are
given constants, and the functions
a(x)≥ α> 0, b(x)≥ β> 0, g(x), and f(x) are sufficiently
smooth functions in the [0, l].+e solution y(x) of problems
(1)–(3) has in general boundary layers at x � 0 and x � l for ε
near 0.

In this paper, we analyze the exponential fitted oper-
ator scheme with numerical integration techniques on a
uniform mesh for the numerical solution of equations
(1)–(3). Uniform convergence is proved in the discrete
maximum norm. Finally, we formulate the algorithm for
solving the discrete problem and give the illustrative
numerical results.

3. Properties of Continuous Solution

+e differential operator for equation (1) is given by

Lε ≡ ε
2 d

2

dx2 + εa
d
dx

− b, (4)

and it satisfies the following minimum principle for
boundary value problems (BVPs). +e following lemmas [9]
are necessary for the existence and uniqueness of the so-
lution and for the problem to be well posed.

Lemma 1 (continuous minimum principle). Assume that
v(x) is any sufficiently smooth function satisfying v(0)≥ 0
and v(l)≥ 0. %en, Lv(x)≤ 0 for all x ∈ Ω � (0, l) implies
that v(x)> 0 for all x∈Ω � [0, l].

Proof. Let x∗ be such that v(x∗) � minx∈[0,l]v(x) and as-
sume that v(x∗)< 0. Clearly x∗ ∉ 0, l{ }; therefore,
v′(x∗) � 0 and v″(x∗)≥ 0. Moreover,
Lv(x∗) � ε2v″(x∗) + εa(x∗)v′(x∗) − b(x∗)v(x∗)≥ 0, which
is a contradiction. It follows that v(x∗)≥ 0 and thus
v(x)≥ 0, ∀x ∈ [0, l].

+e uniqueness of the solution is implied by this min-
imum principle. Its existence follows trivially (as for linear
problems, the uniqueness of the solution implies its
existence).

+e following lemma shows the bound derivatives of the
solution for k � 0, 1, 2, 3, 4. □

Lemma 2. Let yε be the solution of (Pε). %en, for
k � 0, 1, 2, 3, 4,

y
(k)
ε (x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C 1 + ε− k exp
− c0x

ε
􏼒 􏼓 + exp

− c1(l − x)

ε
􏼠 􏼡􏼠 􏼡􏼨 􏼩,

for allx ∈ Ω,

(5)

where c0 � (1/2)[
������������
a2(0) + 4b(0)

􏽰
+ a(0)] and c1 � (1/2)

[
�����������
a2(l) + 4b(l)

􏽰
− a(l)].

Proof. For the proof refer [2]. □

4. Formulation of the Method

For small values of ε, the solution y(x) of problems (1)–(3)
has in general boundary layers at x � 0 and x � l (see [2]).

+e linear ordinary differential equation (1) cannot, in
general, be solved analytically because of the dependence of
a(x) and b(x) on the spatial coordinate x. We divide the
interval [0, 1] into N equal parts with constant mesh length
h. Let 0 � x0, x1, . . . , xN � 1 be the mesh points. +en, we
have xi � ih, i � 0, 1, 2, . . . , N. If we consider the interval
x ∈ (0, 1) and the coefficients of equation (1) are evaluated at
the midpoint of each interval, then we will obtain the dif-
ferential equation:

ε2y″(x) + εa(x)y′(x) − b(x)y(x) � f(x), x ∈ Ω � (0, 1),

y0 � y(0) � μ0.

⎧⎨

⎩

(6)

In order to evaluate the fitting factor, divide both side of
equation (6) by ε, and we obtain

εy″(x) + a(x)y′(x) + p(x)y(x) � r(x), (7)

where p(x) � (− b(x)/ε) and r(x) � (f(x)/ε).
To find the numerical solution of equation (7), we use the

theory applied in the asymptotic method for solving sin-
gularly perturbed BVPs. In the considered case, the
boundary layer is in the left side of the domain, i.e., near
x � 0. From the theory of singular perturbations given by
O’Malley [16] and using Taylor’s series expansion for a(x)

about x � 0 and restriction to their first terms, we get the
asymptotic solution as

y(x) � y0(x) + μ0 − y0(0)( 􏼁exp −
a(0)

ε
x􏼠 􏼡 + O(ε), (8)

where y0(x) is the solution of the reduced problem (ob-
tained by setting ε � 0) of equation (7) which is given by

a(x)y0′ (x) + p(x)y0(x) � r(x), withy0(1) � θ1, (9)

where θ1 � μ1 + 􏽒
l1

l0
g(x)y(x)dx.

Considering h small enough, the discretized form of
equation (8) becomes

y(ih) � y0(0) + μ0 − y0(0)( 􏼁exp −
a(0)

ε
ih􏼠 􏼡, (10)

which simplifies to

y(ih) � y0(0) + μ0 − y0(0)( 􏼁exp(− iρa(0)), (11)

where ρ � (h/ε) and h � (1/N).
To handle the effect of the perturbation parameter ar-

tificial viscosity, exponentially fitting factor σ(ρ) is multi-
plied on the term containing the perturbation parameter as

εσ(ρ)y″(x) + a(x)y′(x) + p(x)y(x) � r(x), (12)

with boundary conditions y0(0) � μ0 andy(N) � θ1.
Next, we consider the difference approximation of

equation (7) on a uniform grid ΩN
� xi􏼈 􏼉

N

i�0 and denote
h � xi+1 − xi.
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For any mesh function zi, define the following difference
operators:

D
+
zi �

zi+1 − zi

h
,

D
−

zi �
zi − zi− 1

h
,

D
0
zi �

zi+1 − zi− 1

2h
,

D
+
D

−
zi �

zi+1 − 2zi + zi− 1

h2 .

(13)

By applying the central finite difference scheme on
equation (12) takes the form

εσ(ρ) D
+
D

−
y xi( 􏼁( 􏼁 + a xi( 􏼁 D

0
y xi( 􏼁􏼐 􏼑 + p xi( 􏼁y xi( 􏼁 � r xi( 􏼁,

(14)

with the boundary conditions y0(0) � μ0 andy(N) � θ1.
Using operator, equation (7) is rewritten as

L
h
yi � ri, (15)

with the boundary conditions y0 � μ0 andyN � θ1, where

L
h
yi � εσ(ρ)

yi+1 − 2yi + yi− 1

h2􏼒 􏼓 + a xi( 􏼁
yi+1 − yi− 1

2h
􏼒 􏼓

+ p xi( 􏼁yi � ri.

(16)

Multiplying equation (16) by h and considering h small
and truncating the term h(ri − p(xi)y(xi)), results

εσ(ρ)

ρ
yi+1 − 2yi + yi− 1( 􏼁 +

a xi( 􏼁

2
yi+1 − yi− 1( 􏼁 � 0. (17)

Now using Taylor’s series for yi and yi+1 up to first term
and substituting the results in equation (17) into equation
(14) and simplifying, the exponential fitting factor is ob-
tained as

σ(ρ) �
ρa(0)

2
coth

ρa(0)

2
􏼠 􏼡. (18)

Similarly, by following the above mentioned procedure,
the fitting factor for the right layer becomes

σ(ρ) �
ρa(1)

2
coth

ρa(1)

2
􏼠 􏼡. (19)

Assume that ΩN denote partition of [0, 1] into N sub-
intervals such that 0 � x0 <x1 < · · · < xN � 1 with
xi � ih, h � (1/N), i � 0, 1, 2, . . . , N.

Case 1. For the left layer, consider equation (6) on the
domain Ω � (0, 1) which is given by

ε2y″(x) + εa(x)y′(x) − b(x)y(x) � f(x). (20)

Hence, the required finite difference scheme becomes

ε2σ(ρ)

h2􏼠 􏼡yi− 1 +
− 2ε2σ(ρ)

h2 −
εa xi( 􏼁

h
− b xi( 􏼁􏼠 􏼡yi +

ε2σ(ρ)

h2 +
εa xi( 􏼁

2h
􏼠 􏼡yi+1 � fi, (21)

for i � 0, 1, 2, . . . , N.
+e numerical scheme in equation (21) can be written in

three-term recurrence relation as

Eiyi− 1 + Fiyi + Giyi+1 � Hi, i � 1, 2, . . . , N, (22)

where Ei � (ε2σ/ h2), Fi � (− 2ε2σ/h2) − (εai/h) − bi, Gi �

(ε2σ/h2) + (εai/2h), and Hi � fi.

Case 2. For the right layer, consider equation (6) on the
domain Ω � (0, 1) which is given by

ε2y″(x) + εa(x)y′(x) − b(x)y(x) � f(x). (23)

Hence, the required finite difference scheme becomes

ε2σ(ρ)

h2 −
εa xi( 􏼁

h
􏼠 􏼡yi− 1 +

− 2ε2σ(ρ)

h2 +
εa xi( 􏼁

h
− b xi( 􏼁􏼠 􏼡yi +

ε2σ(ρ)

h2􏼠 􏼡yi+1 � fi, (24)

for i � 0, 1, 2, . . . , N.

+e numerical scheme in equation (24) can be written in
three-term recurrence relation as

Eiyi− 1 + Fiyi + Giyi+1 � Hi, i � 1, 2, . . . , N, (25)

where Ei � (ε2σ/h2) − (εai/h), Fi � (− 2ε2σ/h2) + (εai/h)−

bi, Gi � (ε2σ/h2), and Hi � fi,

For i � N, we considered Simpson’s rule, i.e., treating
the integral boundary condition using Simpson’s rules.
Suppose g(x)y(x) is a function defined on the interval
[0, l], and let xi􏼈 􏼉

2N

i�0 be a uniform partition of [0, l] with step
length h.

+e composite Simpson’s rule approximates the integral
of g(x)y(x) is given by
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􏽚
l1

l0

g(x)y(x)dx �
h

3
g l0( 􏼁y l0( 􏼁 + g l1( 􏼁y l1( 􏼁 + 2 􏽘

2N− 1

i�1
g x2i( 􏼁y x2i( 􏼁 + 4􏽘

2N

i�1
g x2i− 1( 􏼁y x2i− 1( 􏼁⎛⎝ ⎞⎠. (26)

Substituting equation (26) into equation (3) gives

y(l) −
h

3
g l0( 􏼁y l0( 􏼁 + g l1( 􏼁y l1( 􏼁 + 2 􏽘

2N− 1

i�1
g x2i( 􏼁y x2i( 􏼁 + 4􏽘

2N

i�1
g x2i− 1( 􏼁y x2i− 1( 􏼁⎛⎝ ⎞⎠ � μ1. (27)

Since y(0) � μ0, from equations (2) and (27), we obtain:

−
4h

3
􏽘

2N

i�1
g x2i− 1( 􏼁y x2i− 1( 􏼁 −

2h

3
􏽘

2N− 1

i�1
g x2i( 􏼁y x2i( 􏼁 + y(l) −

h

3
g l1( 􏼁y l1( 􏼁 � μ1 +

h

3
g l0( 􏼁y l0( 􏼁. (28)

+erefore, the problem in equation (1) with given
boundary condition in equations (2) and (3) can be solved
using the scheme equations (22), (25), and (28) which forms
N × N system of algebraic equations.

5. Uniform Convergence Analysis

In this section, we need to show the discrete scheme in
equations (22), (25), and (28) satisfy the discrete minimum
principle and uniform convergence.

Lemma 3 (discrete minimum principle). Let vi be any mesh
function that satisfies v0 ≥ 0, vN ≥ 0, and
Lhvi ≤ 0, i � 1, 2, . . . , N − 1, then vi ≥ 0, i � 0, 1, 2, . . . , N.

Proof. +e proof is obtained by contradiction. Let j be such
that vj � minivi and suppose that vj < 0. Clearly,
j ∉ 0, N{ }, vj+1 − vj ≥ 0 and vj − vj− 1 ≤ 0.

+erefore,

L
h
vj �

ε
h2 vj+1 − 2vj + vj− 1􏼐 􏼑 +

aj

h
vj+1 − vj􏼐 􏼑 + pjvj

�
ε

h2 vj+1 − vj􏼐 􏼑 − vj − vj− 1􏼐 􏼑􏽨 􏽩 +
aj

h
vj+1 − vj􏼐 􏼑 + pjvj

≥ 0,

(29)

where the strict inequality holds if vj+1 − vj > 0. +is is a
contradiction, and therefore vj ≥ 0. Since j is arbitrary, we
have vi ≥ 0, i � 0, 1, 2, . . . , N.

We proved above the discrete operator Lh satisfy the
minimum principle. Next, we analyze the uniform con-
vergence analysis. Let us define the forward, backward, and
second order finite difference operators as follows:

D
+
vj �

vj+1 − vj

h
,

D
−

vj �
vj − vj− 1

h
,

δ2vj � D
+
D

−
vj �

D+vj − D− vj

h
.

(30)

□

Theorem 1. Let y(xi) and yi be, respectively, the exact
solution of (1)–(3) and numerical solutions of equation (15).
%en, for sufficiently large N,the following parameter uniform
error estimate holds:

sup
0<ε≤1

y xi( 􏼁 − yi

����
����≤CN

− 2
. (31)

Proof. Let us consider the local truncation error defined as

L
h

y xi( 􏼁 − yi( 􏼁 � εσ(ρ)
d2

dx2 − D
+
D

−
􏼠 􏼡y xi( 􏼁

+ a xi( 􏼁
d
dx

− D
+

􏼠 􏼡y xi( 􏼁,

(32)

where εσ(ρ) � a(0)(N− 1/2)coth(a(0)(N− 1/2ε)) since
ρ � (N− 1/ε). In our assumption ε≤ h � N− 1.

By considering N is fixed and taking the limit for
ε⟶ 0, we obtain the following:

lim
ε⟶0

εσ(ρ) � lim
ε⟶0

a(0)
N− 1

2
coth a(0)

N− 1

2ε
􏼠 􏼡 � CN

− 1
.

(33)

From Taylor series expansion, the bound for the dif-
ference becomes
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d2

dx2 − D
+
D

−
􏼠 􏼡y xi( 􏼁

��������

��������
≤CN− 3 d4 y xi( 􏼁( 􏼁

dx4

��������

��������
,

d
dx

− D
+

􏼠 􏼡y xi( 􏼁

��������

��������
≤CN− 2 d3 y xi( 􏼁( 􏼁

dx3

��������

��������
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

where ‖(dk(y(xi)))/(dxk)‖ � supxi∈(x0 ,xN)((d
ky(xi))/(dxk)),

k � 3, 4.
Now using the bounds and the assumption ε≤N− 1,

equation (32) reduces to

L
h

y xi( 􏼁 − yi( 􏼁
�����

����� � εσ(ρ)
d2

dx2 − D
+
D

−
􏼠 􏼡y xi( 􏼁 + a xi( 􏼁

d
dx

− D
+

􏼠 􏼡y xi( 􏼁

��������

��������

≤ εσ(ρ)
d2

dx2 − D
+
D

−
􏼠 􏼡y xi( 􏼁

��������

��������
+ a xi( 􏼁

d
dx

− D
+

􏼠 􏼡y xi( 􏼁

��������

��������

≤CN
− 3 d4 y xi( 􏼁( 􏼁

dx4

��������

��������
+ CN

− 2 d3 y xi( 􏼁( 􏼁

dx3

��������

��������
.

(35)

Here, the target is to show the scheme convergence
independent on the number of mesh points.

By using the bounds for the derivatives of the solution in
Lemma 2, we obtain

L
h

y xi( 􏼁 − yi( 􏼁
�����

�����≤CN
− 3 d4 y xi( 􏼁( 􏼁

dx4

��������

��������
+ CN

− 2 d3 y xi( 􏼁( 􏼁

dx3

��������

��������

≤CN
− 3 1 + ε− 4 exp

− c0x

ε
􏼒 􏼓 + exp

− c1(l − x)

ε
􏼠 􏼡􏼠 􏼡􏼨 􏼩

+ CN
− 2 1 + ε− 3 exp

− c0x

ε
􏼒 􏼓 + exp

− c1(l − x)

ε
􏼠 􏼡􏼠 􏼡􏼨 􏼩

≤CN
− 2 1 + ε− 4 exp

− c0x

ε
􏼒 􏼓 + exp

− c1(l − x)

ε
􏼠 􏼡􏼠 􏼡􏼨 􏼩, since ε− 4 ≥ ε− 3

.

(36)

Most of the time during analysis, one encounters with
exponential terms involving ε divided by the power function
in ε which are always the main cause of worry. For their

careful consideration while proving the ε-uniform conver-
gence, we prove for the right layer case as follows. □

Lemma 4. For a fixed mesh and for ε⟶ 0, it holds:

lim
ε⟶0

max
1≤j≤N− 1

exp − c0x( 􏼁/ε( 􏼁

ε3
+
exp − c1(l − x)( 􏼁/ε( 􏼁

ε3
􏼠 􏼡 � 0, m � 1, 2, 3, . . . , (37)

where xj � jh, h � (1/N), ∀j � 1, 2, . . . , N − 1. Proof. Consider the partition [0, 1]:� {0 � x0 < x1 < · · · <
xN− 1 < xN � 1} for the interior grid points, we have

max
1≤j≤N− 1

exp − c0xj􏼐 􏼑/ε􏼐 􏼑

εm
≤
exp − c0x1( 􏼁/ε( 􏼁

εm
�
exp − c0h( 􏼁/ε( 􏼁

εm
,

max
1≤j≤N− 1

exp − c1 1 − xj􏼐 􏼑􏼐 􏼑/ε􏼐 􏼑

εm
≤
exp − c1 1 − xN− 1( 􏼁( 􏼁/ε( 􏼁

εm
�
exp − c1h( 􏼁/ε( 􏼁

εm
,

· asx1 � h, 1 − xN− 1 � 1 − (N − 1)h � h( 􏼁.

(38)
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+e repeated application of L’Hospital’s rule gives

lim
ε⟶0

exp((− ch)/ε)
εm

� lim
σ�(1/ε)⟶∞

σm

exp(chσ)

� lim
σ�(1/ε)⟶∞

m!

(ch)m exp(chσ)
� 0.

(39)

+is complete the proof. □

Theorem 2. Under the hypothesis of boundness of discrete
solution (i.e., it satisfies the discrete minimum principle),
Lemma 4 and %eorem 1, the discrete solution satisfy the
following bound:

sup
0≤ε≤1

max
i

yi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤CN

− 1
. (40)

Proof. Results from boundness of solution, Lemma 4 and
+eorem 1, give the required estimates. □

5.1. RichardsonExtrapolation. +is technique is acceleration
technique which involves combination of two computed
approximations of a solution. +e combination goes out to
be an improved approximation. From the local truncation
term, we have

y xi( 􏼁 − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C(h), (41)

where y(xi) andyi are exact and approximate solutions,
respectively, and C is constant free from mesh size h.

Let Ω4N be the mesh found by dividing each mesh interval
inΩ2N and symbolize the calculation of the solution onΩ4N by
yi. Consider equation (41) works for any h≠ 0, which implies

y xi( 􏼁 − yi ≤C(h) + R
2N

, xi ∈ Ω
2N

. (42)

So that it works for any (h/2)≠ 0 yielding

y xi( 􏼁 − yi ≤C
h

2
􏼠 􏼡 + R

4N
, xi ∈ Ω

4N
, (43)

where the remainders R2N and R4N are O(h2). Combination
of inequalities in equations (42) and (43) leads to y(xi) −

(2yi − yi) ≈ O(h2) which proposes that

yi( 􏼁
ext

� 2yi − yi, (44)

is also a rough calculation of y(xi). By means of this ap-
proximation to estimate the truncation error, we obtain

y xi( 􏼁 − yi( 􏼁
ext􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C h
2

􏼐 􏼑, (45)

where C is free of mesh size h. +us, using Richardson ex-
trapolation first-order convergent method is accelerated into
second-order convergent as provided in (45).+us, we can say
that the proposed method is second-order convergent.

6. Numerical Example and Results

To validate the established theoretical results, we perform
numerical experiments using the model problem of the form
in equations (1)–(3).

Example 1. Consider the model singularly perturbed
boundary value problem:

ε2y″ + 2ε(x + 1)y′ − − x
2

− 2x + 4􏼐 􏼑y � − e
x

+ e
x2

􏼒 􏼓,

(46)

which subject to the conditions

y(0) � 1,

y(1) − 􏽚
1

0.5
cos(x)y(x)dx � 0.

(47)

Table 1: Maximum absolute errors and rates of convergence for our example.

ε N � 32 N � 64 N � 128 N � 256 N � 512
10− 4 6.2800e − 04 1.5350e − 04 3.7899e − 05 9.4122e − 06 2.3501e − 06

2.0325 2.0180 2.0096 2.0049
10− 8 6.3295e − 04 1.5487e − 04 3.8258e − 05 9.5046e − 06 2.3685e − 06

2.0310 2.0172 2.0091 2.0047
10− 12 6.3295e − 04 1.5487e − 04 3.8258e − 05 9.5046e − 06 2.3685e − 06

2.0310 2.0172 2.0091 2.0047
10− 16 6.3295e − 04 1.5487e − 04 3.8258e − 05 9.5046e − 06 2.3685e − 06

2.0310 2.0172 2.0091 2.0047
10− 20 6.3295e − 04 1.5487e − 04 3.8258e − 05 9.5046e − 06 2.3685e − 06

2.0310 2.0172 2.0091 2.0047
Eh 6.3295e − 04 1.5487e − 04 3.8258e − 05 9.5046e − 06 2.3685e − 06
Rh 2.0310 2.0172 2.0091 2.0047

Table 2: Comparison of maximum absolute errors and rates of
convergence of our example.

ε N � 16 N � 32 N � 16 N � 32
Present method Method in [2]

10− 3 2.4362e − 03 5.7378e − 04 1.5304e − 02 7.8100e − 03
2.0861 0.97

10− 5 2.6259e − 03 6.3247e − 04 1.5304e − 02 7.8810e − 03
2.0537 0.96

10− 7 2.6276e − 03 6.3295e − 04 1.5304e − 02 7.8810e − 03
2.0536 0.96

Eh 2.6276e − 03 6.3295e − 04 1.5304e − 02 7.8810e − 03
Rh 2.0536 0.96
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We have yj ≡ yh
j (the approx. solution obtained via the

present method) for different values of h and ε, since the
exact solution is not available; the maximum errors (denoted
by Eh

ε ) are evaluated using the formula given by the double
mesh principle [17]:

E
h
ε :� max

0≤j≤N
y

h
j − y

2h
2j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (48)

Furthermore, we will tabulate the errors:

E
h

� max
0<ε≤1

E
h
ε . (49)

+e numerical rates of convergence are computed using
the following formula [17]:

r
h
ε :� logEh

ε
2 − logEh/2

ε
2 , (50)

and the numerical rate of “ε-uniform convergence” is
computed using

R
h

� logEh

2 − logEh/2

2 . (51)
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Figure 1: ε-uniform convergence with fitted operator FDM in log-
log scale for our example.
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Figure 2: +e numerical solution for various values of N and
ε � 10− 3.
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Figure 3: +e numerical solution for various values of N and
ε � 10− 5.
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Figure 4: +e numerical solution for various values of N and
ε � 10− 7.
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7. Discussion and Conclusion

+is study introduces the uniformly convergent numerical
method based on the exponential fitted operator method for
solving singularly perturbed boundary value problems with
integral boundary conditions. +e behavior of the contin-
uous solution of the problem is studied and the derivatives of
the solution are also bounded. +e numerical scheme is
developed on a uniform mesh. +e integral boundary
condition is treated using numerical integration techniques,
namely, Simpson’s rule; the results are compared accord-
ingly. +e stability of the developed scheme is established
and its uniform convergence is proved. To validate the
applicability of the method, a model problem/example is
considered for numerical experimentation for different
values of the perturbation parameter and mesh points. +e
numerical results are tabulated in terms of maximum ab-
solute errors, numerical rate of convergence, and uniform
errors (see Tables 1 and 2) and compared with the results of
the previously developed numerical methods existing in the
literature (Table 2). Furthermore, the ε-uniform conver-
gence of the method is shown by the log-log plot of the
ε-uniform error (Figure 1) and the numerical solution for
various values of N and ε are given (see Figures 2–4). Unlike
other fitted operator finite differencemethods constructed in
standard ways, the method that we presented in this paper is
fairly simple to construct.
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