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(e aim of this paper is to improve a sub-equation method to solve the space-time fractional Zeldovich equation with time-
dependent coefficients involving the conformable fractional derivative. As result, we obtain three families of solutions including
the hyperbolic, trigonometric, and rational solutions. (ese solutions may be helpful to explain several phenomena in chemistry,
including the combustion process. (e study shows that the used method is effective and reliable and can be utilized as a
substitution to construct new solutions of different types of nonlinear conformable fractional partial differential equations
(NFPDEs) with variable coefficients.

1. Introduction

(ough the concept of fractional derivative is more than
300 years old, in the last and present two centuries, the role
of fractional calculus has been increasing because of its
application area in various domains including the diffu-
sion of biological population, signal processing, plasma
physics, optical fiber, chemical kinematics, solid state
physics, electrical network, finance, fluid flow, and control
theory [1–6]. In particular, the noninteger order models
have proven to be very useful to describe numerous scales,
namely, nanoscale, microscale, and mesoscale. As a result
of interest, the fractional differential equations (FDEs)
have attracted the attention of many researchers. Several
mathematicians proposed various types of fractional de-
rivatives. (e most popular ones are Riemann–Liouville,
Caputo, Grunwald–Letnikov, Hadamard, Erdelyi, Kober,
Marchaud, and Riesz [7–10]. Most types of fractional
derivatives do not satisfy the classical formulas of deriv-
ative such as product rule, quotient rule, and chain rule
(see [11] for example).

Recently, a new fractional derivative based on a limit
form as in usual derivative has been introduced by Khalil
et al. [12] called conformable fractional derivative. One can
see that it is theoretically much easier to handle and

satisfies the classical properties mentioned above. Because
of the importance of the exact solutions of the nonlinear
fractional partial differential equations (NFPDEs) to un-
derstand the nonlinear physical or chemical phenomena,
many researchers solved NFPDEs with conformable de-
rivative, such as that given in Aminikhah et al. [13] who
used the sub-equation method to find the exact solutions
to the fractional (1 + 1) and (2 + 1) regularized long-wave
equations. Cenesiz and Kurt [14] obtained exact solutions
to the space fractional advection diffusion equation and
the space fractional telegraph equation by introducing
conformable fractional complex transform. (e Kudrya-
shov method and the modified extended tanh expansion
method with the Riccati differential equation were
employed to establish various types of analytical solutions
to the conformable space-time fractional Benney–Luke
equation by Khalid and Nuruddeen [15], Al-Shawbal et al.
[16] applied the two variables (G′/G, 1/G)-expansion
method to obtain solitary and periodic wave solutions of
higher-dimensional conformable time-fractional differ-
ential equations, such as (2 + 1)-dimensional time-frac-
tional biological population model and nonlinear (3 + 1)-
dimensional KdV–Zakharov–Kuznetsov equation. Exact
solutions of some conformable fractional equations in the
RLW-class, such as the conformable time-fractional RLW
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equation, the conformable time-fractional mRLW equa-
tion, and the conformable time-fractional sRLW equation,
are investigated by using Sine-Gordon expansion ap-
proach by Korkmaz et al. [17]. Koyunlu et al. [18] found
topological 1-soliton solutions to time-fractional modified
EW equation and time-fractional Klein–Gordon equation
by hyperbolic function ansatz method. Eslami and Tala-
ghani [19] used the differential transform method to solve
several conformable time-fractional partial differential
equations. (e exp-function method and perturbation-
iteration algorithm were used by Kurt et al. [20] to obtain
some analytical and approximate solutions to fractional
coupled Burgers’ equation. More recently, Tozar et al. [21]
utilized a new extended direct algebraic method to obtain a
wide set of solutions to the fractional Camassa–Holm
equation. Kurt [22] obtained new analytical and numerical
results for (2 + 1)-dimensional time-fractional Bogoyav-
lensky–Konopelchenko equation by using the sub-equa-
tion method and the residual power series method.

Latterly, the study of NFPDEs with time-dependent
coefficients has caught much more attention due to their
ability to describe many physical or chemical phenomena in
a realistic way than the constant coefficient ones. Zhang et al.
[23] introduced a method based on the homogeneous
balance principle using fractional Ricatti differential equa-
tion called fractional sub-equation method to find traveling
wave solutions to NFPDEs.

In this paper, we propose an improved sub-equation
method and use a traveling wave transformation in order to
reduce a NFPDE to an ODE.

(e advantages of the proposed method are its reliability
and the reduction in the size of computational domain, and
it needs less computation with respect to other analytical
methods such as exp-function method or (G′/G, 1/G)-ex-
pansion method that require many complicated computa-
tions, especially, if the coefficients in the predicted solution
are variable. Moreover, our method gives a wide set of
different types of solutions.

As an application, we will use this method to look for the
exact solutions of the space-time fractional Zeldovich
equation with time-dependent coefficients in sense of
conformable fractional derivative:

tTαu + p(t)xxT2αu + q(t)u
2

+ r(t)u
3

� 0, (1)

where α ∈ (0, 1), u � u(x, t) is an unknown function, and
p(t), q(t), and r(t) are real-valued functions. (e Zeldovich
equation with integer order describes the combustion
process, where u(x, t) represents the temperature [24].
tTαand xTα are the space and time conformable fractional
derivatives, respectively. For α � 1, p(t) � −1, q(t) � −1,
and r(t) � 1, equation (1) will be reduced to the standard
Zeldovich equation.

2. Preliminary

In this section, we present the definition of conformable
fractional derivative and its important properties. Also, we
describe the main steps of the proposed method.

2.1. Conformable Fractional Derivative

Definition 1 (see [12]). Given a function f: [0,∞)⟶ R,
then the conformable fractional derivative of f of order α is
defined by

Tα(f)(t) � lim
ε⟶∞

f t + εt1− α( 􏼁 − f(t)

ε
, (2)

for all t> 0 and α ∈ (0, 1). If f is α−differentiable in some
(0, a) for a> 0 and limt⟶0+ f(α)(t) exists, then define
f(α)(0) � limt⟶0+ f(α)(t).

Theorem 1 (see [12]). Let α ∈ (0, 1] and f and g be
α−differentiable at a point t> 0 . (en,

(1) Tα(af + bg) � aTα(f) + bTα(g), for all a, b ∈ R
(2) Tα(tp) � ptp− α, for all p ∈ R
(3) Tα(λ) � 0, for all constant functions f(t) � λ
(4) Tα(f · g) � fTα(g)(t) + gTα(f)

(5) Tα(f/g) � (gTα(f) − fTα(g)/g2)

(6) If, in addition, f is differentiable, then Tα(f)(t) �

t1− α(df/dt)(t)

Theorem 2 (see [25]). Let f: [0,∞)⟶ R be a function
such that f is differentiable and also α−differentiable. Let g be
a function defined in the range of f and also differentiable;
then,

tTα(f · g)(t) � t
1− α

g′(t).f′(g(t)). (3)

2.2. Description of the Method. Consider a NFPDE in two
independent variables x and t as follows:

P u,tTαu,xTαu, . . .( 􏼁 � 0; 0< α≤ 1, (4)

where u(x, t) is an unknown function and P is a polynomial
in u and its conformable fractional partial derivatives.

We summarize the sub-equation method [23] as follows:

Step 1. Using the generalized traveling wave
transformation,

u(x, t) � u(ζ);

ζ � k
xα

α
+ 􏽚 t

α− 1
c(t)dt + δ,

(5)

where k and δ are constants and c(t) is a continuous
function.(is transformation can reduce NFPDE (4) to
an ODE with respect to one independent variable ζ so,

Q u, u′, u″, ...( 􏼁 � 0, (6)

where Q is a polynomial in u and its derivatives.
Step 2. We suppose the predicted solutions to (6) of the
following form:

2 International Journal of Differential Equations



u(ζ) � 􏽘
n

j�−n

aj(t)ϕj
(ζ), (7)

where aj(t) (j � −n, −n + 1, . . . , n − 1, n) are all func-
tions of t to be determined later. We determine the
positive integer n by considering the homogeneous
balance between the highest-order derivatives and
nonlinear terms appearing in (6). ϕ � ϕ(ζ) satisfies the
following Riccati equation:

ϕ′ � σ + ϕ2, (8)

where σ is a constant. One can found that the solutions
of Riccati equation (8) are given by [26]

ϕ(ζ) �

−
���
−σ

√
tanh(

���
−σ

√
ζ); σ < 0,

−
���
−σ

√
coth(

���
−σ

√
ζ); σ < 0,

��
σ

√
tan(

��
σ

√
ζ); σ > 0,

−
��
σ

√
cot(

��
σ

√
ζ); σ > 0,

−
1

ζ + μ
; σ � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where μ is a constant.
Step 3. Substituting (7) and (8) into (6), collecting the
coefficients of [ϕ(ζ)]j, and then setting the coefficients

of [ϕ(ζ)]j to be zero, we get an overdetermined system
of nonlinear differential equations for aj(t) and ζ.
Step 4. Solving the overdetermined system in Step 3 for
aj(t) and ζ and then using these results and the so-
lutions of (8) in (7), one can obtain the explicit solu-
tions of (6). Finally, using transformation (5), one get
the exact solutions of (4).

3. Main Results

Let us consider equation (1). Using generalized traveling
wave transformation (5) and (eorem 1 and (eorem 2,
equation (1) can be reduced to the following nonlinear
ordinary differential equation:

c(t)u′ + k
2
p(t)u″ + q(t)u

2
+ r(t)u

3
� 0, (10)

where u′ � (du/dζ) and u″ � (d2u/dζ2). We suppose that
equation (10) admits a solution by the form of (7). Balancing
the highest order derivative term u″ with nonlinear term u3,
one can find n � 1. So,

u(ζ) � a0(t) + a1(t)ϕ(ζ) +
a−1(t)

ϕ(ζ)
. (11)

Substituting (11) and (8) into (10), collecting all the
terms with the same power of [ϕ(ζ)]j(j � −3, −2, . . . , 2, 3)

and then equating each the coefficient of
[ϕ(ζ)]j(j � −3, −2, . . . , 2, 3) with zero, one can obtain the
overdetermined system of nonlinear differential equations
for a0(t), a1(t), a−1(t), and c(t):

ϕ0 : 6r(t)a0(t)a1(t)a−1(t) + a−1(t)c(t) + q(t)a
2
0(t) + r(t)a

3
0(t)

+ 2q(t)a1(t)a−1(t) + σa1(t)c(t) + t
1− αda0(t)

dt
� 0,

(12)

ϕ : 2q(t)a0(t)a1(t) + 3r(t)a
2
0(t)a1(t) + 3r(t)a

2
1(t)a−1(t)

+ 2σk
2
p(t)a1(t) + t

1− αda1(t)

dt
� 0,

(13)

ϕ2 : 3r(t)a0(t)a
2
1(t) + a1(t)c(t) + q(t)a

2
1(t) � 0, (14)

ϕ3 : 2k
2
p(t)a1(t) + r(t)a

3
1(t) � 0, (15)

ϕ− 1
: 2k

2σa−1(t) + 2q(t)a0(t)a−1(t) + 3r(t)a
2
0(t)a−1(t)

+ 3r(t)a1(t)a
2
−1(t) + t

1− αda−1(t)

dt
� 0,

(16)

ϕ− 2
: σa−1(t)c(t) + 3r(t)a0(t)a

2
−1(t) + q(t)a

2
−1(t) � 0, (17)

ϕ− 3
: 2σ2k2

a−1(t) + r(t)a
3
−1(t) � 0. (18)

Solving this system, we obtain four cases. For simplicity,
we introduce the notation η(t) � exp(− 􏽒 tα− 1f(t)dt),

where f(t) is a continuous function to obtain the following
cases.
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Case 1
a0(t) � η(t),

a−1(t) � 0,

a1(t) � c1 exp − 􏽚 2q(t)η(t) + 3r(t)η2(t) + 2σk
2
p(t)􏼐 􏼑t

α− 1dt􏼔 􏼕,

c(t) �
−1

σa1(t)
η(t) q(t)η(t) + r(t)η2(t) − f(t)􏼐 􏼑.

(19)

Case 2

a0(t) � η(t),

a1(t) � 0,

a−1(t) � c2 exp − 􏽚 2q(t)η(t) + 3r(t)η2(t) + 2σk
2

􏼐 􏼑t
α− 1dt􏼔 􏼕,

c(t) �
−1

a−1(t)
η(t) q(t)η(t) + r(t)η2(t) − f(t)􏼐 􏼑.

(20)

Case 3

a0(t) � c3η(t),

a1(t) � c4η(t),

a−1(t) �

exp − 􏽚 2q(t)c3η(t) + 3r(t)c
2
3η

2
(t) + 2σk

2
􏼐 􏼑t

α− 1dt􏼔 􏼕

c5 + 3􏽒 exp − 􏽚 2q(t)c3η(t) + 3r(t)c
2
3η

2
(t) + 2σk

2
􏼐 􏼑t

α−1dt􏼔 􏼕r(t)c4η(t)tα−1dt

,

c(t) � −
c4a−1(t)η(t) 6c3r(t) + 2q(t)( 􏼁 + c23q(t)η2(t) + c33r(t)η3(t) − c3f(t)η(t)

a−1(t) + c4ση(t)
.

(21)

Case 4

a0(t) � c3η(t),

a1(t) � c4η(t),

a−1(t) �
q(t)η(t) σc24 − c23( 􏼁 + c3r(t)η2(t) 3σc24 − c23( 􏼁 + c3f(t)

c4 3c3r(t)η(t) + q(t)( 􏼁
,

c(t) � c4η(t) 3c3r(t)η(t) + q(t)( 􏼁,

(22)

where c1, c2, c3, c4, and k are the arbitrary constants.
Having obtained the expressions for a0(t), a1(t), a−1(t),

and c(t), we construct, when σ < 0, a family of hyperbolic

function solutions of equation (1) from Cases 1–4 as each
u(x,t) has a number:

u(x, t) � a0(t) −
���
−σ

√
a1(t)tanh

���
−σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡

−
a−1(t)

���
−σ

√ coth
���
−σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡,

u(x, t) � a0(t) −
���
−σ

√
a1(t)coth

���
−σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡

−
a−1(t)

���
−σ

√ tanh
���
−σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡.

(23)
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Also when σ > 0, we have a family of trigonometric function
solutions of equation (1) from Cases 1–4 as each u(x,t) has a
number:

u(x, t) � a0(t) +
��
σ

√
a1(t)tan

��
σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡

+
a−1(t)

��
σ

√ cot
��
σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡,

u(x, t) � a0(t) −
��
σ

√
a1(t)cot

��
σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡

−
a−1(t)

��
σ

√ tan
��
σ

√
k

xα

α
+ 􏽚 t

α− 1
c(t)dt + δ􏼠 􏼡􏼠 􏼡.

(24)

One can also obtain, whenσ � 0, a family of rational
solutions of equation (1) from Cases 1–4 as follows:

u(x, t) � a0(t) −
a1(t)

k xα/α( ) + 􏽚 t
α−1

c(t)dt + λ

− a−1(t) k
xα

α
+ 􏽚 t

α− 1
c(t)dt + λ􏼠 􏼡,

(25)

where λ � δ + μ.

4. Conclusion

In this work, we construct three types of exact solutions
including hyperbolic function solutions, trigonometric
function solutions, and rational solutions to the space-time
fractional Zeldovich equation in sense of conformable
fractional derivative with time-dependent coefficients by
using the sub-equation method. (e solutions obtained in
this paper are recommended for future research in chem-
istry, namely, on the combustion models. Remarkably, these
solutions and the proposed traveling wave transformation
have not been reported in other literature. We might con-
clude that the used method in this paper is convenient and
efficient and can be used for many NFPDEs involving
conformable fractional derivative with time-dependent co-
efficients arising in physics and chemistry. It is worth to
apply other algebraic methods to NFPDEs, such as exp-
function method. (is is our aim in the future.
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