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)is paper studies and investigates total stability results of a class of dynamic systems within a prescribed closed ball of the state
space around the origin. )e class of systems under study includes unstructured nonlinearities subject to multiple higher-order
Lipschitz-type conditions which influence the dynamics and which can be eventually interpreted as unstructured perturbations.
)e results are also extended to the case of presence of multiple internal (i.e., in the state) point discrete delays. Some stability
extensions are also discussed for the case when the systems are subject to forcing efforts by using links between the controllability
and stabilizability concepts from control theory and the existence of stabilizing linear controls.)e results are based on the ad hoc
use of Gronwall’s inequality.

1. Introduction

)e study of the stability properties is of major interest in
dynamic systems since it allows to investigate the existence
and nature of the equilibrium points, their respective domains
of attraction, and the eventual existence of oscillations de-
pendent on the initial conditions or asymptotic oscillations
independent on the initial conditions (limit cycles). Typical
techniques of investigation of stability are those based on local
and global Lyapunov stability methods and Bendixson-type
theorems for investigation of the oscillatory and asymptotic
oscillatory behaviors (see, for instance, [1–16] and references
therein). )ere are also frequency-type methods of stability
analysis, such as, Routh–Hurwitz criterion, Jury criterion,
amplitude and phase Bode plots, Nyquist criterion, root locus,
Tsypkin locus, and describing function analysis, which are
very popular in the time-invariant case and also in systems
including some specific types of separate nonlinearities in
actuators or sensors such as, for instance, ban-bang (i.e., relay)
or saturating devices (see, for instance, [4–6]). Also, the well-
known Gronwall inequality in its various versions can be
adapted to stability studies in the time-domain (see, for in-
stance, [1, 2]).

On the other hand, it can be noticed that delays are
present in a natural way in the real life and in many real
processes such as, for instance, in some biological equations
as, for instance, in epidemic models, in some generalizations
of the Beverton–Holt equation, in prey-predator problems, or
in the sunflower equation and in population growing and
diffusion problems. )ey are also present in many engi-
neering diffusion problems, information package transmis-
sion, queuing storages, teleoperation systems, chemical
processes, and robotic systems. )e study of stability of time-
delay systems has received much attention in the last decades.
For instance, a nonautonomous functional differential
equation of the third order is considered in [7] with multiple
deviating arguments. Asymptotic stability results and uniform
boundedness of the solution results are obtained based on the
ad hoc use of the Lyapunov–Krasovskii functional approach
in the above paper. Other stability results for third-order
differential equations are proved in [9, 10]. Also, some suf-
ficiency-type conditions of global stability and asymptotic
stability results for time-varying systems with state-dependent
parameterizations are obtained in [8]. On the other hand,
other studies of stability and robustness of dynamic systems
have been performed in [11–14] and related studies for the
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presence of oscillatory behaviors have been performed in
[15, 16] and references therein. )e study of stabilization of
time-delay dynamic systems and/or integrodifferential
equations has been also addressed to more general classes of
equations. For instance, the exponential decay of a first-order
linear Volterra equation is investigated in [17] while the
exponential stability of controlled nonlinear systems subject
to time-varying delays has been discussed in [18]. It can be
noticed that Volterra-type equations can be interpreted as
being subject to a distributed delay on their previous evo-
lution history. On the other hand, the solvability and optimal
controls of a noninstantaneous impulsive neutral stochastic
integer-differential equation forced by Brownian motion are
addressed in [19]. It can be noticed that neutral differential
equations are a class of retarded equations where the highest-
order time-derivative is affected by delays contrarily to the
case of nonneutral ones.

)is paper gives some results on total stability of a class
of nonlinear time-varying systems subject to combined
multiple higher-order-type Lipschitz conditions. )e sta-
bility results are of global type within some prescribed closed
ball around the origin and are subject to conditions of
exponential stability of the nonlinearity-free system coun-
terpart and to maximum bounds of the various Lipschitz
constants. Some applications are given for the control case.
)e above results are included in Section 2. On the other
hand, Section 3 extends the results of Section 2 for the case of
presence of multiple punctual constant delays which appear
jointly in the linear dynamics of the system and in the
nonlinear one which is also subject to combined multiple
higher-order-type Lipschitz conditions.

2. Total Stability of Nonlinear Differential
Systems with Forcing Terms Subject to
Multiple Combined Higher-Order
Lipschitz Conditions

)e following result is two-fold since it relies on the
uniqueness of the solution exhibiting, furthermore, global
stability in a bounded region around the origin for a class of
nonlinear time-varying differential systems under a set of
Lipschitz-extended power-type perturbations of the state. A
combined analysis supported by the Banach Contraction
Principle and Bellman–Gronwall Lemma [1–3] is used to get
the next main result.

Theorem 1. Consider the following differential system:

_x(t) � F(t, x), (1)

subject to initial conditions x(t0) � x0 where F: [t0,∞) ×

Rn⟶ Rn is given by

F(t, x) � A(t)x(t) + 􏽘

p

i�1
fi(t, x) + 􏽘

q

i�1
gi(t, x), (2)

where A: [t0,∞)⟶ Rn×n has bounded piecewise continu-
ous entries and fi, gj: [t0,∞) × Rn⟶ Rn; i � 1, 2, . . . , p;
j � 1, 2, . . . , q are locally integrable functions of t on [t0,∞]

in the closed ball Br � x ∈ Rn: ‖x‖≤ r{ }, where ‖x‖ denotes
some vector norm, and suppose that the following two as-
sumptions hold:

(A1) fi(t, 0) � 0 and ‖fi(t, x1) − fi(t, x2)‖≤ βi‖x1
− x2‖

i; i � 1, 2, . . . , p for all x1, x2 ∈ Br

(A2) ‖gi(t, x1)‖≤ cir
i+1 and ‖gi(t, x1) − gi(t, x2)‖≤

ci‖x1 − x2‖
i; i � 1, 2, . . . , q for all x1, x2 ∈ Br

(A3) 6e auxiliary unforced differential system

_z(t) � A(t)z(t),

z t0( 􏼁 � z0,
(3)

is exponentially stable on [t0,∞) of stability abscissa
− α< 0; that is, there exist real constants α> 0 and K≥ 1
such that the fundamental matrix Ψ: [t0,∞]⟶ Rn,
which is the mild solution of _ψ(t, t0) � A(t)ψ(t, t0) for
t≥ t0 with ψ(t0, t0) � In (In being the n-th identity
matrix) satisfies ‖Ψ(t1, t2)‖≤Ke− α(t2− t1) for any t1 and
t2 such that t2 ≥ t1 ≥ t0.
(A4) 6e constants βi and cj, i � 1, 2, . . . , p and
j � 1, 2, . . . , q, satisfy

􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1 ≤
α
K

, (4)

for some given r> 0.
6en, the following properties hold:

(i) supt0 ≤ t≤∞‖x(t)‖≤ r if ‖x0‖≤ (r/K) so that differ-
ential systems (1) and (2) are globally Lyapunov
stable in the closed ball of radius r centred at the
origin.

(ii) lim sup
t⟶∞

‖x(t)‖≤
Kr

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠≤ r,

(5)

for any given finite ‖x0‖.
(iii) Assume that A4 is restricted to a strict inequality,

that is,

(A5) 􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1 <
α
K

, (6)

for some given r> 0. 6en, there is a unique globally
Lyapunov stable solution of (1) and (2) in the closed
ball of radius r centred at the origin for t≥ t0 under
Assumptions A1, A2, A3, and A5 satisfying

‖x(t)‖≤Ke
− α− K 􏽐

q

i�1 βir
i− 1( 􏼁 t− t0( ) x0

����
���� +

K 􏽐
q

i�1 cir
i

α − K 􏽐
q
i�1 βir

i− 1

1 − e
− α− K 􏽐

q

i�1 βir
i− 1( 􏼁 t− t0( )􏼒 􏼓≤ r, ∀t≥ t0.

(7)

Proof. )e solution of (1) and (2) for t≥ t0 is given by
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x(t) � Ψ t, t0( 􏼁x0 + 􏽘

p

i�1
􏽚

t

t0

Ψ(t, τ)fi(τ, x(τ))dτ + 􏽘

q

i�1
􏽚

t

t0

Ψ(t, τ)gi(τ, x(τ))dτ, (8)

and, by using Assumptions A1 to A3, one gets

‖x(t)‖≤Ke
− α t− t0( ) x0

����
���� + K 􏽘

p

i�1
βir

i
+ 􏽘

q

i�1
cir

i⎛⎝ ⎞⎠ 􏽚
t

t0

e
− α(t− τ)dτ􏼠 􏼡,

� Ke
− α t− t0( ) x0

����
���� + K 􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠
r

α
1 − e

− α t− t0( )􏼒 􏼓,

� Ke
− α t− t0( ) x0

����
���� −

r

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +
Kr

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠≤ r, t≥ t0,

(9)

provided that A4 holds subject to

K x0
����

����≤
Kr

α
−

Kr

α
􏼒 􏼓 􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠ + r � r,

(10)

which is got from (9) for t � t0. )en, Property (i) is proved.
On the other hand, since α> 0, one gets from A4 and (9) that

(5) holds and Property (ii) is proved. Now, let Cn[t0,∞) be
the Banach space of continuous, bounded n-vector real
functions y: [t0,∞)⟶ Rn equipped with the norm
|‖y‖|[t0 ,∞) � supt0 ≤ t<∞‖x(t)‖. Let T an operator on
Cn[t0,∞) represent solution (1) which is defined pointwise
via

(Tx)(t) � Ψ t, t0( 􏼁x0 + 􏽘

p

i�1
􏽚

t

t0

Ψ(t, τ)fi(τ, x(τ))dτ + 􏽘

q

i�1
􏽚

t

t0

Ψ(t, τ)gi(τ, x(τ))dτ, (11)

for t≥ t0. )en, if ‖x0‖≤ (r/K), one has from (9) that

‖(Tx)(t)‖≤Ke
− α t− t0( ) x0

����
���� +

Kr

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠≤ r,

(12)

and one has then from (8) for any solutions x1, x2 ∈ Br on
[t0,∞) under the same initial condition x0 that

x1(t) − x2(t) � 􏽘

p

i�1
􏽚

t

t0

Ψ(t, τ) fi τ, x1(τ)( 􏼁 − fi τ, x2(τ)( 􏼁( 􏼁dτ

+ 􏽘

q

i�1
􏽚

t

t0

Ψ(t, τ) gi τ, x1(τ)( 􏼁 − gi τ, x2(τ)( 􏼁( 􏼁dτ,

(13)

which leads to

Tx1( 􏼁(t) − Tx2( 􏼁(t)
����

����

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 t0 ,∞[ )
≤

Kr

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠ x1(t) − x2(t)
����

����

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 t0 ,∞[ )
, (14)

so that T: Cn[t0,∞)⟶ Cn[t0,∞) is a contraction on the
closed subset Br � y ∈ Cn[t0,∞): ‖y‖≤ r􏼈 􏼉 of Cn[t0,∞) if
A5 holds. )is implies from the contraction mapping

theorem that solution (8) is unique. From (11) and As-
sumptions A–A3, one gets

‖x(t)‖ ≤Ke
− α t− t0( ) x0

����
���� + 􏽘

p

i�1
βir

i− 1⎛⎝ ⎞⎠ 􏽚
t

t0

e
− α(t− τ)

‖x(τ)‖dτ􏼠 􏼡 + 􏽘

q

i�1
cir

i⎛⎝ ⎞⎠ 􏽚
t

t0

e
− α(t− τ)dτ􏼠 􏼡, t≥ t0. (15)
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Also, one has from (15) that eαt‖x(t)‖ ≤ ξ(t), t≥ t0 from
Bellman–Gronwall Lemma, where ξ: [t0,∞)⟶ R is the
solution of

_ξ(t) � K 􏽘

p

i�1
βir

i− 1⎛⎝ ⎞⎠ξ(t) + 􏽘

q

i�1
cir

i⎛⎝ ⎞⎠e
αt⎡⎢⎢⎣ ⎤⎥⎥⎦,

ξ t0( 􏼁 � Ke
αt0 x0

����
����,

(16)

for t≥ t0, which is

ξ(t) � e
K 􏽐

q

i�1 βir
i− 1( 􏼁 t− t0( )ξ t0( 􏼁 +

K 􏽐
q
i�1 cir

i

α − K 􏽐
q
i�1 βir

i− 1 1 − e
− α− K 􏽐

q

i�1 βir
i− 1( 􏼁 t− t0( )􏼒 􏼓e

αt
, t≥ t0, (17)

which implies (7) and proves Proposition 3.
Some direct corollaries are as follows. □

Corollary 1. Consider differential system (1) with

F(t, x) � B(t)x(t) + 􏽘

p

i�1
fi(t, x) + 􏽘

q

i�1
gi(t, x), (18)

with B(t) � A(t) + 􏽥A(t). 6en, 6eorem 1 holds under the
same Assumptions A1–A5 with the replacement

β1⟶ β1′ � β1 + sup
t≥t0

‖B(t) − A(t)‖ � β1 + sup
t≥t0

sup
‖z‖�1

‖(B(t) − A(t))z‖

‖z‖
, (19)

where the vector-induced matrix norm
‖X‖ � sup‖z‖�1(‖Xz‖/‖z‖) is used.

Corollary 2. Consider the following controlled differential
system:

_x(t) � F(t, x) + u(t, x), (20)

subject to initial conditions x(t0) � x0, where
u: [t0,∞)⟶ Rm is a linear feedback control defined by
u(t, x) � K(t)x(t), where K: [t0,∞) × Rn⟶ Rm is a
bounded piecewise continuous matrix control gain and
F(t, x) is defined by (18) such that _z(t) � (B(t) + K(t))z(t)

is exponentially stable with stability abscissa − α< 0. 6en,
6eorem 1 holds with A(t) � B(t) + K(t).

Corollary 3. Assume that in Corollary 2,
u: [t0,∞) × Rn⟶ Ln

∞e[t0,∞), where Ln
∞e[t0,∞) is the set

of essentially bounded real n-vector functions in t on [t0,∞)

for all x ∈ Rn and let us define u � supx∈Rn 􏽒
∞
t0

‖u(τ, x)‖dτ.
6en, 6eorem 1 still holds by replacing (4) by

􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1
+

u

r
≤
α
K

, (21)

and (5) by its corresponding strict inequality.

Proof. It follows directly by replacing (8) and (9) by

x(t) � Ψ t, t0( 􏼁x0 + 􏽚
t

t0

Ψ(t, τ) 􏽘

p

i�1
fi(τ, x(τ)) + 􏽘

q

i�1
􏽚

t

t0

gi(τ, x(τ)) + u(τ, x(τ))⎛⎝ ⎞⎠dτ, t≥ t0,

‖x(t)‖ ≤Ke
− α t− t0( ) x0

����
���� −

r

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +
Kr

α
􏽘

p

i�1
βir

i− 1
+ 􏽘

q

i�1
cir

i− 1
+

u

r
⎛⎝ ⎞⎠≤ r, t≥ t0,

(22)

and following similar arguments to those used to prove
)eorem 1.

)e following uniform-type result within a bounded ball
of the solution of (1) and (2) follows from )eorem 1: □

Corollary 4. Assume that A4 is modified by replacing (4)
with

A4′( 􏼁max
1≤i≤p

βi + max
1≤i≤q

ci ≤
α

KMR( 􏼁
, (23)
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where

MR � pMRp + qMRq, (24)

MRp � max 1, R, . . . , R
p− 1

􏼐 􏼑,

MRq � max 1, R, . . . , R
q− 1

􏼐 􏼑.
(25)

6en, the following properties hold under Assumptions
A1–A3 and A4:

(i) If ‖x0‖≤ (r/K) then supt0 ≤ t≤∞‖x(t)‖ ≤ r for any
given r ∈ BR � z ∈ R+: ‖z‖≤R􏼈 􏼉 so that differential
system (1) and (2) is globally Lyapunov stable in BR.

(ii) Assume that A5 is modified by replacing (5) with

A5′( 􏼁max
1≤i≤p

βi + max
1≤i≤q

ci <
α

KMR( 􏼁
. (26)

6en, there is a unique solution of (1) and (2) for t≥ t0
under Assumptions A1, A2, A3, and A5 satisfying

‖x(t)‖≤Ke
− α− KpMRpmax1≤i≤pβi( 􏼁 t− t0( ) x0

����
���� +

KqMRqmax1≤i≤qci

α − KpMRpmax1≤i≤pβi

1 − e
− α− KpMRp( 􏼁 t− t0( )􏼒 􏼓≤ r, t≥ t0. (27)

Outline of Proof. )e proof follows directly from )eorem 1
by noting that (23) implies that

α≥KMR max
1≤i≤p

βi + max
1≤i≤q

ci􏼠 􏼡≥Kmax pMRp max
1≤i≤p

βi, qMRq max
1≤i≤q

ci􏼠 􏼡 (28)

and (24) implies that

α>KMR max
1≤i≤p

βi + max
1≤i≤q

ci􏼠 􏼡≥Kmax pMRp max
1≤i≤p

βi, qMRq max
1≤i≤q

ci􏼠 􏼡, (29)

which makes (27) to be well-posed.

3. Total Stability of Nonlinear Differential
Systems with Linear Constant Punctual
Delays and Forcing Terms Subject to
Combined Higher-Order
Lipschitz Conditions

Now, consider the following unforced linear time-invariant
differential system subject to a finite set of ϑ, in general,
incommensurate constant point delays
0< h1 < h2 < · · · < hϑ � h. )ese delays are commensurate in

the particular case that hi � ih, i � 1, 2, . . . , ϑ (see, for in-
stance, [3, 7] and some references therein). In the sequel, fix
the initial time instant to t0 � 0 for simplicity of the pre-
sentation of the subsequent results:

_x(t) � A0x(t) + 􏽘
ϑ

i�1
Aix t − hi( 􏼁, (30)

with Ai ∈ Rn×n, i � 0, 1, . . . , ϑ which is subject to any
bounded piecewise continuous function of initial conditions
φ: [t − h, 0]⟶ Rn with φ(0) � x0 whose unique solution
becomes to be

x(t) � e
A0t

x0 + 􏽘
ϑ

i�1
􏽚

t

0
e

− A0τAix τ − hi( 􏼁dτ⎛⎝ ⎞⎠

� e
A0t

x0 + 􏽘
ϑ

i�1
􏽚

hi

0
e

− A0τAiφ τ − hi( 􏼁dτ + 􏽘
ϑ

i�1
􏽚

t

hi

e
− A0τAix τ − hi( 􏼁dτ⎛⎝ ⎞⎠

� e
A0t

x0 + 􏽘
ϑ

i�1
􏽚

hi

0
e

− A0τAiφ τ − hi( 􏼁dτ + e
− A0hi 􏽘

ϑ

i�1
􏽚

t− hi

0
e

− A0τAix(τ)dτ⎛⎝ ⎞⎠,

(31)
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where ‖eA0t‖≤Ke− αt for all t≥ 0 and some real constants α
and K≥ 1 so that

‖x(t)‖ ≤Ke
− αt

x0
����

���� +
1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑 sup
− h≤τ≤0

‖φ(τ)‖⎡⎣ ⎤⎦ + Ke
− αt

􏽘

ϑ

i�1
e
αhi Ai

����
���� 􏽚

t− hi

0
e
ατ

‖x(τ)‖dτ

≤Ke
− αt 1 +

1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎛⎝ ⎞⎠φ0 +
K

α
􏽘

ϑ

i�1
1 − e

− α t− hi( )􏼒 􏼓 Ai

����
���� sup
0≤τ≤t− h

‖x(τ)‖,

(32)

where φ0 � sup− h≤τ≤0‖φ(τ)‖.
Above differential system (30) can be rewritten equiv-

alently as follows after introducing the zero delay h0 � 0 and
the matrix A � 􏽐

ϑ
i�0 Ai:

_x(t) � Ax(t) + 􏽘
ϑ

i�1
Ai x t − hi( 􏼁 − x(t)( 􏼁. (33)

Note from (30) that the auxiliary differential system
_x(t) � A0x(t) describes the time-delay system as

hi⟶∞ (i � 1, 2, . . . , ϑ), which can be interpreted al-
ternatively as the delay-free one when the contributions of
delayed dynamics are zeroed described by Ai � 0;
i � 1, 2, . . . , ϑ. Also, note from (33) that the auxiliary dif-
ferential system _x(t) � Ax(t) describes the time-delay
system as hi � 0 (i � 1, 2, . . . , ϑ). It follows that the solu-
tion may be equivalently defined by

x(t) � e
At

x0 + 􏽘
ϑ

i�1
􏽚

hi

0
e

− Aτ
Ai φ τ − hi( 􏼁 − φ(τ)( 􏼁dτ + 􏽘

ϑ

i�1
􏽚

t

hi

e
− Aτ

Ai x τ − hi( 􏼁 − x(τ)( 􏼁dτ⎛⎝ ⎞⎠, (34)

where ‖eAt‖≤Ke− αt for all t≥ 0 and some real constants α
and K≥ 1 so that

‖x(t)‖ ≤Ke
− αt

x0
����

���� +
2
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑 sup
− h≤τ≤0

‖φ(τ)‖⎡⎣ ⎤⎦ + 2Ke
− αt

􏽘

ϑ

i�1
e
αhi Ai

����
���� 􏽚

t− hi

0
‖x(τ)‖e

ατdτ

≤Ke
− αt 1 +

2
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎛⎝ ⎞⎠φ0 +
2K

α
􏽘

ϑ

i�1
1 − e

− α t− hi( )􏼒 􏼓 Ai

����
���� sup
0≤τ≤t− h

‖x(τ)‖,

(35)

where φ0 � sup− h≤τ≤0‖φ(τ)‖.
)e following auxiliary result holds.

Proposition 1. 6e following properties hold:

(i) Let A0 be a stability matrix such that ‖eA0t‖≤Ke− αt

for all t≥ 0 and some real constants α> 0 and K≥ 1
(with K being norm-dependent) and fix φ0 � λr. If

0≤ λ≤ λM �
α + K 􏽐

ϑ
i�1 Ai

����
���� e

αhi − 1􏼐 􏼑

α + 􏽐
ϑ
i�1 Ai

����
���� e

αhi − 1􏼐 􏼑􏼐 􏼑K
, (36)

then ‖x(t)‖≤ r; ∀t≥ 0, and thus, the system is globally
Lyapunov stable.

(ii) Let A � 􏽐
ϑ
i�0 Ai be a stability matrix such that

‖eAt‖≤Ke− αt for all t≥ 0 and some real constants

α> 0 and K≥ 1 (with K being norm-dependent) and
fix φ0 � λr. If

0≤ λ≤ λM �
α + 2K 􏽐

ϑ
i�1 Ai

����
���� e

αhi − 1􏼐 􏼑

α + 2􏽐
ϑ
i�1 Ai

����
���� e

αhi − 1􏼐 􏼑􏼐 􏼑K
, (37)

then ‖x(t)‖ ≤ r; ∀t≥ 0, and this the system is globally
Lyapunov stable.

Proof. Note that λ≤ 1 so that sup− h≤τ≤0‖x(τ)‖ �

sup− h≤τ≤0‖φ(τ)‖≤ r and there exist some t0 > 0 such that
sup− h≤τ≤t0‖x(τ)‖≤ r by continuity of the solution. Now,
proceed by complete induction by using (32). Assume that
there is a first time instant t1(> 0) ∈ [t − (i + 1)h, t − ih) for
some i(∈ Z) ∈ [0, max int(z: z≤ (t1/h) − 1)] such that
‖x(t1)‖> r. However, this gives a contradiction since then
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sup− h≤τ<t1‖x(τ − h)‖> r and then there is some t2 ∈ (0, t1 − h)

which is the first time instant such that ‖x(t2)‖> r. As a result,
φ0≤(α+ K􏽐

ϑ
i�1 ‖Ai‖(eαhi − 1))/(αK + K 􏽐

ϑ
i�1 ‖Ai‖(eαhi − 1))r

implies that supt≥− h‖x(t)‖≤r which proves Property (i). )e
proof of Property (ii) is similar to that of Property (i) by using
(35) instead of (32). □

Remark 1. Note that λM and λM are strictly decreasing
functions of any delay on the positive real axis. )is is seen
easily by considering only one delay h � h1 and define v(h) �

‖Ai‖(eαhi − 1) leading to λM � λM(v) � (αK− 1 + v)/(α + v).
Assume that h′ > h, so that v(h′)> v(h) then λM(v′)< λM(v)

since, equivalently, 0< (K− 1 + 1)α(v′(h) − v(h)). A similar
conclusion follows for λM. )is concern is that we can expect
from intuition; that is, the increase in the delay sizes
translates into a more strict sufficiently type constraint on
the “smallness” constraint on the initial conditions to
guarantee that the solution is kept under a certain prescribed
closed ball through time.

Two sufficiently type conditions of global asymptotic
Lyapunov stability at exponential rate of (30) are obtained in
the next result.

Proposition 2. 6e following properties hold:

(i) Assume that A0 is a stability matrix such that
‖eA0t‖≤Ke− αt for all t≥ 0 and some real constants
α> 0 and K≥ 1. 6en, differential system (30) is
exponentially stable (i.e., for any given bounded
piecewise continuous function of initial conditions) if
α>K 􏽐

ϑ
i�1 eαhi ‖Ai‖ which is guaranteed for any delays

0< hi < hi+1; i � 1, 2, . . . , ϑ − 1 satisfying hϑ < (1/
α)ln(α/Kϑ􏽐

ϑ
i�1 ‖Ai‖).

(ii) Assume that A � 􏽐
ϑ
i�0 Ai is a stability matrix such

that ‖eAt‖≤Ke− αt for all t≥ 0 and some real constants
α> 0 and K≥ 1 so that the delay-free version of (30) is
exponentially stable. 6en, differential system (30) is
exponentially stable if α> 2K 􏽐

ϑ
i�1 eαhi ‖Ai‖ which is

guaranteed for any delays 0< hi < hi+1; i � 1, 2, . . . ,

ϑ − 1 satisfying hϑ < (1/α)ln(α/2Kϑ􏽐
ϑ
i�1 ‖Ai‖).

Proof. From the first inequality in (32), it follows that

v(t) � ‖x(t)‖e
αt ≤K x0

����
���� +

1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑 sup
− h≤τ≤0

‖φ(τ)‖⎡⎣ ⎤⎦ + K 􏽘
ϑ

i�1
e
αhi Ai

����
���� 􏽚

t

0
v(τ)dτ, ∀t≥ 0, (38)

so that, from Gronwall Lemma [1–3],

v(t) ≤K x0
����

���� +
1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑 sup
− h≤τ≤0

‖φ(τ)‖⎡⎣ ⎤⎦e
K 􏽐

ϑ
i�1 eαhi Ai‖ ‖t

, ∀t≥ 0, (39)

and then

‖x(t)‖≤K 1 +
1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎡⎣ ⎤⎦ sup
− h≤τ≤0

‖φ(τ)‖e
− α− K 􏽐

ϑ
i�1 eαhi Ai‖ ‖( 􏼁t

, ∀t≥ 0. (40)

On the other hand, one obtains from the first inequality
in (35) and Gronwall Lemma that

‖x(t)‖ ≤K 1 +
2
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎡⎣ ⎤⎦ sup
− h≤τ≤0

‖φ(τ)‖e
− α− 2K 􏽐

ϑ
i�1 eαhi Ai‖ ‖( 􏼁t

, ∀t≥ 0. (41)

Property (i) follows from (40) if A0 is stability matrix
while Property (ii) follows from (41) if A is a stability matrix.

)e extensions of Propositions 1 and 2 to the time-varying
linear case are direct as follows in the subsequent result: □

Proposition 3. 6e following properties hold if differential
system (30) is time-varying:

(i) Assume that
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(A6) Ai: [0,∞)⟶ Rn×n, (i � 0.1, . . . , ϑ) have piece-
wise continuous and bounded entries.

(A7) the unforced system _z(t) � A0(t)z(t) is exponen-
tially stable, that is, its fundamental matrix of
Ψ0(t, 0), such that _Ψ0(t, 0) � A(t)Ψ0(t, 0) with
Ψ0(0, 0) � In, satisfies ‖Ψ0(t, 0)‖≤Ke− αt for all
t≥ 0 with real constants K≥ 1 and α> 0.
6us, if φ0 � sup− h≤τ≤0‖φ(τ)‖≤ (α + K 􏽐

ϑ
i�1

supt≥0‖Ai(t)‖(eαhi − 1))/((α + 􏽐
ϑ
i�1 supt≥0‖Ai(t)‖

(eαhi − 1))K)r then ‖x(t)‖ ≤ r; ∀t> 0. Also, if
α>K 􏽐

ϑ
i�1 eαhi ‖Ai‖, then differential system (30) is

globally asymptotically stable, with the solution
trajectory being constrained to the ball ‖x(t)‖≤ r;
∀t> 0, and x(t)⟶ 0 at exponential rate − (α −

K 􏽐
ϑ
i�1 eαhi ‖Ai‖) as t⟶∞.

(ii) Assume that Assumption A6 holds and,
furthermore,

(A8) the unforced system _z(t) � A(t)z(t) is exponen-
tially stable, that is, its fundamental matrix of
Ψ(t, 0), such that _Ψ(t, 0) � A(t)Ψ(t, 0) with
Ψ(0, 0) � In, satisfies ‖Ψ(t, 0)‖≤Ke− αt for all t≥ 0
with real constants K≥ 1 and α> 0.

6us, if φ0 � sup− h≤τ≤0‖φ(τ)‖≤ (α + 2K 􏽐
ϑ
i�1 supt≥0‖Ai

(t)‖(eαhi − 1))/((α + 2􏽐
ϑ
i�1 supt≥0‖Ai(t)‖(eαhi − 1))K)r,

then ‖x(t)‖ ≤ r; ∀t> 0. Also, if α>K 􏽐
ϑ
i�1 eαhi ‖Ai‖, then dif-

ferential system (30) is exponentially stable, with the solution
trajectory being constrained to the ball ‖x(t)‖≤ r; ∀t> 0, so
that x(t)⟶ 0 at exponential rate − (α − K 􏽐

ϑ
i�1 eαhi ‖Ai‖) as

t⟶∞.
6e following main total stability result gives sufficiency-

type global stability conditions of the delayed system in the
presence of nonlinearities which generalize those considered in
6eorem 1.

Theorem 2. Consider the following differential system:

_x(t) � F t, x(t), x t − h1( 􏼁, x t − h2( 􏼁, . . . , x t − hϑ( 􏼁( 􏼁,

(42)

with Ai ∈ Rn×n (i � 0, 1, . . . , ϑ) which is subject to any
bounded piecewise continuous function of initial conditions
φ: [t − h, 0]⟶ Rn with φ(0) � x0 where
F: [0,∞) × Rn⟶ Rn is given by

F(t, x) � A0(t)x(t) + 􏽘
ϑ

i�1
Ai(t)x t − hi( 􏼁

+ 􏽘

p

i�1
fi t, x(t), x t − h1( 􏼁, . . . , x t − hϑ( 􏼁( 􏼁 + 􏽘

q

i�1
gi t, x(t), x t − h1( 􏼁, . . . , x t − hϑ( 􏼁( 􏼁,

(43)

where Ai: [t0,∞)⟶ Rn×n (i � 1, 2, . . . , ϑ) have piecewise
continuous entries and fi, gj: [t0,∞) × R(ϑ+1)n⟶ Rn;
i � 1, 2, . . . , p; j � 1, 2, . . . , q are locally integrable functions

of t on [0,∞] in the closed ball Br � x ∈ Rn: ‖x‖≤ r{ }.
Suppose that Assumption A6 and that furthermore the fol-
lowing assumptions hold for some given r> 0:

(A9)fi(t, 0, . . . , 0) � 0,

fi t, x1, x2, . . . , xϑ+1( 􏼁 − fi t, y1, y2, . . . , yϑ+1( 􏼁
����

����≤ 􏽘
ϑ

j�0
βijk xj − yk

�����

�����
i
, i � 1, 2, . . . , p, for all xj, yk ∈ Br,

(A10) gi t, x1, x2, . . . , xϑ+1( 􏼁
����

����≤ 􏽘
ϑ

j�0
􏽘

ϑ

k�0
cijkr

i+1
,

gi t, x1, x2, . . . , xϑ+1( 􏼁 − gi t, y1, y2, . . . , yϑ+1( 􏼁
����

����≤ 􏽘

ϑ

j�0
􏽘

ϑ

k�0
cijk xj − yk

�����

�����
i
, i � 1, 2, . . . , q, for all xj, yk ∈ Br,

(44)

(A11)α>max α1, α2( 􏼁, (45)

which is guaranteed if α> α1 + α2, where
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α1 >K 􏽘
ϑ

i�1
sup
t≥0

Ai(t)
����

���� e
αhi − 1􏼐 􏼑,

α2 >K 􏽘

p

i�1
􏽘

ϑ

j�0
􏽘

ϑ

k�0
βijkr

i− 1
+ 􏽘

q

i�1
􏽘

ϑ

j�0
􏽘

ϑ

k�0
cijkr

i− 1⎛⎝ ⎞⎠,

(46)

φ0 � sup
− h≤τ≤0

‖φ(τ)‖≤
α − K 􏽐

p
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 βijkr

i− 1
+ 􏽐

q
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 cijkr

i− 1
􏼐 􏼑

α + 􏽐
ϑ
i�1 sup

t≥0
Ai(t)

����
���� e

αhi − 1􏼐 􏼑􏼠 􏼡K

r.
(47)

6en, the following properties hold: (i) 6ere is a unique globally Lyapunov stable solution of
(42) and (43) satisfying

‖x(t)‖≤K 1 +
1
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎡⎣ ⎤⎦ sup
− h≤τ≤0

‖φ(τ)‖e
− α− K 􏽐

ϑ
i�1 eαhi supτ≥0 Ai(τ)‖ ‖+􏽐

p

i�1 􏽐
ϑ
j�0 􏽐

ϑ
k�0 βijkri− 1􏼐 􏼑􏼐 􏼑t

+
K 􏽐

q
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 cijkr

i

α − K 􏽐
p
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 βijkr

i− 1 1 − e

− α− K 􏽘

ϑ

i�1
e
αhisupτ≥0 Ai(τ)

����
���� + 􏽘

p

i�1
􏽘

ϑ

j�0
􏽘

ϑ

k�0
βijkr

i− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠t⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ r, ∀t≥ 0.

(48)

(ii) Assume that α, α1, and α2 and φ0 in (45)–(47) are
replaced with similar equations under the replace-
ments α1⟶ α1 � 2K 􏽐

ϑ
i�1 supt≥0‖Ai(t)‖(eαhi − 1),

α2⟶ α2 (obtained by replacing K⟶ K), As-
sumption A1 being modified with the replacement
α⟶ α>max(α1, α2) and (47) being modified with

the replacements α⟶ α, K⟶ K, and
supt≥0‖Ai(t)‖⟶ 2supt≥0‖Ai(t)‖ in the denomina-
tor of (47) and to define. 6en, there is a unique
globally Lyapunov stable solution of (42) and (43)
satisfying

‖x(t)‖ ≤K 1 +
2
α

􏽘

ϑ

i�1
Ai

����
���� e

αhi − 1􏼐 􏼑⎡⎣ ⎤⎦ sup
− h≤τ≤0

‖φ(τ)‖e
− α− 2K 􏽐

ϑ
i�1 eαhi supτ≥0 Ai(τ)‖ ‖+􏽐

p

i�1 􏽐
ϑ
j�0 􏽐

ϑ
k�0 βijkri− 1􏼐 􏼑􏼐 􏼑t

+
K 􏽐

q
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 cijkr

i

α − K 􏽐
p
i�1 􏽐

ϑ
j�0 􏽐

ϑ
k�0 βijkr

i− 1 1 − e

− α− 2K 􏽘

ϑ

i�1
e
αhisupτ≥0 Ai(τ)

����
���� + 􏽘

p

i�1
􏽘

ϑ

j�0
􏽘

ϑ

k�0
βijkr

i− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠t⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ r, ∀t≥ 0.

(49)

Proof. It follows directly by combining Propositions 2 and 3
for differential system (42) and (43) with a similar technique
of proof of )eorem 1. □

Remarks 2. (1) It is convenient now to summarize at a first
glance which are the basic ideas behind
the above results concerning the studied
time-delay system.

(2) Note that Proposition 2 gives two results of global
asymptotic Lyapunov stability in the large (i.e., for
any bounced piecewise continuous function of initial
conditions). In this way, the solution trajectory
converges asymptotically to the zero equilibrium
point at exponential rate. )e result is independent
of the delay size type if the delays are small enough
provided that either the auxiliary system with delay-
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free dynamics of that with zero delay is exponentially
stable.

(3) Note also that Proposition 1 gives two results of
global Lyapunov stability independent of the delay
sizes for a certain range of values of the delays with
the trajectory solution being constrained within a
certain closed ball around the origin for t> 0 suffi-
ciently small initial conditions provided that one of
the above auxiliary unforced systems is exponentially
stable.
Proposition 3 states results on global stability and
global asymptotic stability with the trajectory being
constrained to as ball around the origin if one of the
two mentioned auxiliary systems is exponentially
stable.

(4) )eorem 2 gives two alternative results of solution
uniqueness and global stability within a ball around
the origin, based on either the stability of the matrix
A0, corresponding to the system without delayed
dynamics, or on the stability of the delay-free system
of matrix dynamics A, in the case that systems (42)
and (43) become forced under forcing functions with
eventual delays which satisfy general nonlinear
constraints based on extending those invoked in
)eorem 1 for the delay-free system. Both results are
supported by the constraints that the stability of the
matrices A0 and A guarantee, respectively, the ex-
ponential stability of their respective unforced sys-
tems independent of the delay sizes within a range of
values with a maximum bound.

In particular, Assumption A11 has a direct interpreta-
tion as follows: firstly, α> α1 guarantees that the exponential
stability of the unforced differential system _z(t) � A0z(t),
which describes the case of absence of delayed dynamics,
under any finite bounded conditions z(0) � z0, guarantees
that of system (30) for any bounded piecewise continuous
function of initial conditions involving point delays for a

certain maximum allowable size of the maximum delay.
Secondly, if furthermore, in (46), α2 is small enough to
satisfy α2 < α − α1, for given forcing functions f(·), g(·)

subject to Assumptions A9 and A10, i.e., such that As-
sumption A11, is also satisfied; then, the forcing system
remains globally Lyapunov stable within the closed ball of
radius r centred at the origin and satisfies (48). )e alter-
native constraints invoked to get (49) are interpreted in a
similar way based on the assumption of exponential stability
under any finite initial conditions of the unforced delay-free
differential system _z(t) � Az(t), which describes the zero-
delay case, that is, the case when hi � 0 for i � 1, 2, . . . , ϑ.

For the following discussion, recall that (F, G) is a
controllable pair with F ∈ Rn×n and G ∈ Rm×n if and only if
rank(G, FG, . . . , Fn− 1G) � n, equivalently, if and only if
rank[sIn − F, G] � n for any s ∈ Cwhich is not an eigenvalue
of F (the Popov–Belevitch–Hautus controllability test). If
(F, G) is controllable, then the spectrum of F + GK can be
prefixed arbitrarily through the choice of K ∈ Rm×n [4–6].

On the other hand, (F, G) is a stabilizable pair if and only
if rank[sIn − F, G] � n for any s ∈ C with Res≥ 0 which is
not an eigenvalue of F (the Popov–Belevitch–Hautus sta-
bilizability test). If (F, G) is stabilizable, then the spectrum of
F + GK can be stabilized (but it cannot be either arbitrarily
assigned or prefixed subject to a prefixed stability abscissa)
through the choice of K ∈ Rm×n so that, for some K ∈ Rm×n,
all the eigenvalues of F + GK can be allocated in the open
complex left-hand-side plane Res< 0, [4, 5].

It turns out that if (F, G) is controllable, then it is
stabilizable, but the converse is not true.

)e subsequent results rely on the stabilization of (42)
and (43) though a linear feedback control of the form
u(t) � K0x(t).

Corollary 5. Assume that B0 ∈ Rn×m, with m≤ n, are con-
stant matrices and that the pair (A0, B0) is controllable and
let differential system (42) be defined by

F(t, x) � A0x(t) + B0K0x(t) + 􏽘
ϑ

i�1
Ai(t)x t − hi( 􏼁

+ 􏽘

p

i�1
fi t, x(t), x t − h1( 􏼁, . . . , x t − hϑ( 􏼁( 􏼁 + 􏽘

q

i�1
gi t, x(t), x t − h1( 􏼁, . . . , x t − hϑ( 􏼁( 􏼁,

(50)

under the assumptions on the initial conditions and matrices of
dynamics of 6eorem 2 and Assumptions A9–A10 for any set of
ϑ point delays 0< h1 < h2 < · · · < hϑ ≤ h< +∞ with any as-
sociated matrices of dynamics supτ≥0max1≤i≤ϑ‖Ai(τ)‖≤ a< +

∞ and any nonnegative real constants βijk ≤ β< +∞,
cℓjk ≤ c< +∞; i � 1, 2, . . . , p; ℓ � 1, 2, . . . , q;
j, k � 1, 2, . . . , ϑ. 6en, for any given quadruple (h, a, β, c) of
nonnegative real constants, there exists amatrixK0 ∈ Rm×n such
that differential systems (42) and (43) are globally Lyapunov
stable with its unforced s version being exponentially stable.

Proof. Since (A0, B0) is controllable, the spectrum (and then
the stability abscissa) of any given matrix Λ0 ∈ Rn×n can be
fixed by some existing K0 ∈ Rm×n which satisfies the matrix
equality A0 + B0K0 � Λ0. So, for any given triple (a, β, c), it is
possible to fix a stability abscissa (− αΛ0)< 0 of some Λ0 which
satisfies Assumption A11, and then )eorem 2 (i) holds.

Under stabilizability conditions, rather than controlla-
bility conditions, of the pair (A0, B0), a weaker result than
Corollary 5 is now given since the stability abscissa of A0 +

B0K0 cannot be arbitrarily prefixed. □
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Corollary 6. Assume the assumptions of Corollary 5 except
for that the pair (A0, B0) is stabilizable rather than con-
trollable. 6en, a quintuple (h, a, β, c, K0) can be fixed such
that differential systems (42) and (43) are globally Lyapunov
stable with its unforced s version being exponentially stable.

6e subsequent result relies on the stabilization of a linear
time-delay system with a unique delay h1 though a linear
feedback control of the form u(t) � K0x(t) + K1x(t − h). It is
found that the exponential stability is achievable for large
delay ranges if (A0, B) and (A1, B) are, respectively, stabi-
lizable and controllable.

Corollary 7. Consider the following delayed unforced system:

_x(t) � Ax(t) + A1x t − h1( 􏼁 + Bu(t), (51)

with a control law u(t) � K0x(t) + K1x(t − h) and assume
that B ∈ Rn×m, with m≤ n and some matrix feedback control
gains K0, K1 ∈ Rm×n. Assume that the pairs (A0, B) and
(A1, B) are, respectively, stabilizable and controllable. 6en,
for any existing stabilizing matrix gain K0 of the pair (A0, B),
there exists a matrix gain K1 such that the above system is
exponentially stable for h1 ∈ [0, h) and some h � h(K1)> 0
for each stabilizing control gain K0 of (A0, B) and which
depends on the control gain K1. 6e stabilizing delay max-
imum bound h can be made arbitrarily large depending on the
choice of such a control gain K1.

Proof. Since (A0, B) is stabilizable, there is K0 such that
(A0 + B0K0) is a stability matrix of some nonprefixed
abscissa − α0 < 0. Now, from Proposition 2, the above system
is exponentially stable if h1 < (1/α0)ln(α0/K‖A1 + B1K1‖)

with K(≥ 1) being norm-dependent. However, since (A1, B)

is controllable, the whole spectrum of A1 + B1K is freely
assignable by the choice of K1; then, the spectral radius
ρ(A1 + B1K1) of A1 + B1K1, which is arbitrarily close to
some matrix norm, can be chosen as small as possible so that
the exponential stability holds for arbitrarily large delay
according to the following formula:

0≤ h1 < h �
1
α0

ln
α0

Kρ A1 + B1K1( 􏼁 + ε
�

1
α0

ln
α0

K A1 + B1K1
����

����
.

(52)□

Corollary 8. Assume that A0: [0,∞)⟶ Rn×n is bounded
piecewise continuous with A0(t) � A0∗ + 􏽥A0(t) and that all
the remaining assumptions of Corollary 5 hold with the
modifications that (A0∗, B0) is controllable and
supt≥0(max1≤i≤ϑ‖Ai(t)‖, ‖􏽥A0(t)‖)≤ a< +∞ and
supt≥0(max1≤i≤ϑ‖Ai(t)‖)≤ a< +∞. 6en, for any given
quadruple (h, a, β, c) of nonnegative real constants, there
exists a matrix K0 ∈ Rm×n such that differential systems (42)
and (43) are globally Lyapunov stable with its unforced
version being exponentially stable.

Proof. It is identical to that of Corollary 5 by adding a new
(zero) delay h0 � 0 with matrix of dynamics 􏽥A0(t) and
replacing the lower-bound of α1 in (45) with the

corresponding summation from i � 0 to i � ϑ, i.e., by in-
corporating the extra norm associated with
supt≥0‖

􏽥A0(t)‖. □

Remark 3. It turns out that a similar result to Corollary 8 can
be directly formulated by considering that (A0∗, B0) is
stabilizable rather than controllable.

Remark 4. Extensions of Corollaries 5 to 7 and the direct
result got as indicated in Remark 3 are direct from)eorem
2 (ii) for the cases of either controllability or stabilizability of
the pair (A, B) for a given B ∈ Rm×n and A � 􏽐

ϑ
i�0 Ai ∈ Rn×n

describing the delay-free auxiliary system. If A(t) is time-
varying then, the problem can be stated by extending
)eorem 2 (ii) with A(t) � A∗ + 􏽥A(t), (A∗, B) being con-
trollable/stabilizable and 􏽥A(t) being a disturbance matrix of
zero delay (see Corollary 7).

It can be of interest to give some ideas about how the
above results can be applied when switching through time
between alternative active configurations of a time-delay
system are performed. For this purpose, consider a non-
empty set ofΩ distinct configurations S of (42) and (43) such
that Sj � (Aji, fjk, gjℓ: i ∈ ϑ∪ 0{ }, k ∈ p, q ∈ ℓ), with
n � 1, 2, . . . , n{ }, which admit switching between them
through time given by a switching law σ: [0,∞)⟶Ω
which is a piecewise continuous function. T � ti􏼈 􏼉

χ
i�0, with

t0 � 0, is either a set or an infinite sequence (i.e., χ ≤∞) of
switching instants between configurations; that is, σ(ti) �

σ(t+
i )≠ σ(t−

i ) and σ(t) � σ(ti) � j(∈ Ω); ∀t ∈ [ti, ti+1), and
it is said that j is the active configuration on [ti, ti+1). Assume
that S � Ss ∪ Ss such that

the configurations of Ss satisfy )eorem 2 so that each
corresponding unforced version of (42) and (43) is
exponentially stable, so that it has a negative stability
abscissa
the configurations of Ss are Ss � Scs ∪ Sus, where Scs have
critically stable unforced versions so that each corre-
sponding unforced version of (42) and (43) has a zero
stability abscissa while the configurations of Sus are
unstable so that each corresponding unforced version
of (42) and (43) has a positive stability abscissa

Theorem 3. Assume that S � Ss ∪ Ss with Ss ≠∅ and that
there is at least one S∗ � Si∗ ∈ Ss with a pair (K∗, − α∗) with
α∗ > 0 satisfying (α∗/K∗)>R for some given finite real
constant R> 0. 6en, for any given admissible function of
initial conditions satisfying φ0 ≤R, there always exists
switching laws σ: [0,∞)⟶Ω with a finite number of
switches and switching time instants t0, t1, . . . , tk􏼈 􏼉 such that
σ(tk) � i∗ and ‖x(t)‖≤ ri∗; ∀t≥ tk.

Remark 5. Note that, in particular, t1 � ti∗ is such a
switching law of only one or two switching time instants, the
initial one at t0 � 0, which can be at a distinct active con-
figuration of Si∗ if S≠ Si∗ or directly at Si∗, necessarily if
S � Si∗, and the second one at t1 � ti∗ which is only feasible if
S≠ Si∗.

International Journal of Differential Equations 11



Data Availability

No data were used to support this study.

Conflicts of Interest

)e author declares that he does not have any conflicts of
interest.

Acknowledgments

)e author is grateful to the Spanish Government for grant
RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE) and to the
Basque Government for grant IT1207-19. He also thanks the
Spanish Institute of Health Carlos III for its support through
grant COV 20/01213.

References

[1] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson Jr. et al.,
Stability of Adaptive Systems. Passivity and Averaging Anal-
ysis, )e MIT Press, Cambridge, MA, USA, 1986.

[2] M. Delasen, “Use of Gronwall’s Lemma for robust compen-
sation of the time-varying linear systems via synthesis of
augmented exciting signals,” International Journal of Systems
Science, vol. 21, no. 11, pp. 2317–2335, 1990.

[3] M. De la Sen and N. S. Luo, “A note on the stability of linear
time-delay systems with impulsive inputs,” IEEE Transactions
on Circuits and Systems I- Regular Papers, vol. 50, no. 1,
pp. 149–152, 2003.

[4] S. Barnett, Matrices in Control 6eory with Applications to
Linear Programming, Van Nostrand Reinhold Company, New
York, NY, USA, 1971.

[5] S. Barnett, Polynomials and Linear Control Systems, Marcel
Dekker, New York, NY, USA, 1983.

[6] S. Barnett, Introduction to Mathematical Control 6eory,
Oxford University Press, New York, NY, USA, 1990.

[7] C. Tunç andM. Gozen, “Stability and uniform boundedness in
multidelay functional differential equations of third order,”
Abstract and Applied Analysis, vol. 2013, Article ID 248717,
7 pages, 2013.

[8] M. De la Sen, “On some sufficiency-type global stability results
for time-varying dynamic systems with state-dependent pa-
rameterizations,” International Journal of Differential Equa-
tions, vol. 2019, Article ID 5097974, 15 pages, 2019.

[9] C. Tunç, “On the stability and boundedness of solutions of
nonlinear vector differential equations of third order,” Non-
linear Analysis: 6eory, Methods & Applications, vol. 70, no. 6,
pp. 2232–2236, 2009.

[10] Q. Wang, “On the construction of globally asymptotically
stable Lyapunov functions for a type on nonlinear third-order
system,” Acta Mathematicae Applicatae Sinica, vol. 6, no. 3,
pp. 309–323, 1983.

[11] T. Yoshizawa, “Asymptotic behaviour of solutions of a system
of differential equations,” Contributions to Differential
Equations, vol. 1, pp. 371–387, 1963.

[12] D. Hinrichsen and A. J. Pritchard, “Robust exponential sta-
bility of time-varying linear systems,” International Journal of
Robust and Nonlinear Control, vol. 3, no. 1, pp. 63–83, 1993.

[13] T. A. Ademola, B. S. Ogundare, M. Ogundiran, and
O. A. Adesina, “Stability, boundedness, and existence of
periodic solutions to certain third-order delay differential
equations with multiple deviating arguments,” International

Journal of Differential Equations, vol. 2015, Article ID 213935,
12 pages, 2015.

[14] B. S. Ogundare, J. A. Ayanjinmi, and O. A. Adesina, “Bounded
and -solutions of certain third order non-linear differential
equation with a square integrable forcing term,” Kragujevac
Journal of Mathematics, vol. 29, pp. 151–156, 2006.

[15] J. Andres and V. Vlcek, “Square integrable processes in
nonlinear oscillators I,” Acta UPO, vol. 92, pp. 91–104, 1991.

[16] J. Andres and V. Vlcek, “Square integrable processes in
nonlinear oscillators II,” Acta UPO, vol. 106, pp. 153–158,
1991.

[17] M. Conti, F. dell’Oro, and V. Pata, “Exponential decay of a
first order linear Volterra equation,” Mathematics in Engi-
neering, vol. 2, no. 3, pp. 459–471, 2020.

[18] J. Xuelian, “Exponential stability analysis and control design
for nonlinear systems with time-varying delay,” AIMS
Mathematics, vol. 6, no. 1, pp. 102–113, 2021.

[19] R. Dhayal, M. Malik, and S. Abbas, “Solvability and optimal
controls of non-instantaneous impulsive stochastic neutral
integro-differential equation driven by fractional Brownian
motion,” AIMS Mathematics, vol. 4, no. 3, pp. 663–683, 2019.

12 International Journal of Differential Equations


