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In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differen-
tiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a
solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. 'is concept is based on
the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of
order q ∈ (0, 1].

1. Introduction

Fractional calculus is generalization of differentiation and in-
tegration to an arbitrary order. 'e derivative for fuzzy-valued
mappings was developed by [1] that generalized and extended
the concept of Hukuhara differentiability (H-derivative) for set-
valued mappings to the class of fuzzy mappings. Subsequently,
using theH-derivative [2, 3] started to develop a theory for FDE.
'e concept of the fuzzy fractional derivative was introduced by
[4] and developed by [5–11], but these researchers tried to put a
definition of a fuzzy fractional derivative. Most of them used an
integral from the fuzzy fractional derivative, two of which are
the most popular ones, Riemann-Liouville definition and
Caputo definition [12–14]. All definitions above satisfy the
property that the fuzzy fractional derivative is linear. 'is is the
only property inherited from the first fuzzy derivative by all of
the definitions. However, the following are some of the setbacks
of the other definitions [15]. 'e fuzzy conformable derivative
may facilitate some computations:

(i) It satisfies all concepts and rules of an ordinary
derivative such as quotient, product, and chain rules
while the other fractional definitions fail to meet
these rules

(ii) It can be extended to solve exactly and numerically
fractional differential equations and systems easily
and efficiently

And it was introduced and developed in [16, 17]. 'e
objective of this study is to present some results for fuzzy
conformable differentiability and fuzzy fractional integra-
bility of such functions; we study the fuzzy fractional dif-
ferential equations (FFDEs) by using this derivative and give
an existence and uniqueness theorem for a solution of
FFDEs.

2. Preliminaries

Let us denote by RF � u: R⟶ [0, 1]{ } the class of fuzzy
subsets of the real axis satisfying the following properties:

(i) u is normal, i.e, there exists x0 ∈ R such that
u(x0) � 1

(ii) u is fuzzy convex, i.e, for x, y ∈ R and 0< λ≤ 1,

u(λx +(1 − λ)y)≥min[u(x), u(y)]. (1)

(iii) u is upper semicontinuous
(iv) [u]0 � cl x ∈ R|u(x)> 0{ } is compact

'en, RF is called the space of fuzzy numbers. Obvi-
ously, R ⊂ RF. For 0< α≤ 1, denote [u]α � x ∈ R|{

u(x) ≥ α}; then, from (i) to (iv), it follows that the α-level set
[u]α ∈ PK(R) for all 0≤ α≤ 1 is a closed bounded interval
which is denoted by [u]α � [uα

1 , uα
2]. By PK(R), we denote
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the family of all nonempty compact convex subsets ofR and
define the addition and scalar multiplication in PK(R) as
usual.

Theorem 1 (see [7]). If u ∈ RF, then

(i) [u]α ∈ PK(R) for all 0≤ α≤ 1
(ii) [u]α2 ⊂ [u]α1 for all 0≤ α1 ≤ α2 ≤ 1
(iii) αk􏼈 􏼉 ⊂ [0, 1] is a nondecreasing sequence which

converges to α, and then,

[u]
α

� ∩
k≥1

[u]
αk . (2)

Conversely, if Aα � [uα
1 , uα

2]; α ∈ (0, 1]􏼈 􏼉 is a family of
closed real intervals verifying (i) and (ii), then Aα􏼈 􏼉 defined a
fuzzy number u ∈ RF such that [u]α � Aα for 0< α≤ 1 and
[u]0 � ∪ 0<α≤1Aα ⊂ A0.

Lemma 1 (see [18]). Let u, v: RF⟶ [0, 1] be the fuzzy sets.
0en, u � v if and only if [u]α � [v]α for all α ∈ [0, 1].

'e following arithmetic operations on fuzzy numbers
are well known and frequently used below. If u, v ∈ RF, then

[u + v]
α

� u
α
1 + v

α
1 , u

α
2 + v

α
2􏼂 􏼃,

[λu]
α

� λ[u]
α

�
λu

α
1 , λu

α
2􏼂 􏼃, if λ≥ 0,

λu
α
2 , λu

α
1􏼂 􏼃, if λ< 0.

⎧⎨

⎩

(3)

Definition 1 (see [19, 20]). Let u, v ∈ RF. If there exists
w ∈ RF such as u � v + w, then w is called the H-difference
of u, v, and it is denoted as u⊖v.

Definition 2 (see [21]). Let we denote

0 �
1, t � 0,

0, t≠ 0.
􏼨 (4)

Define d: RF × RF⟶ R+ ∪ 0{ } by the equation

d(u, v) � sup
α∈[0,1]

dH [u]
α
, [v]

α
( 􏼁, for all u, v ∈ RF, (5)

where dH is the Hausdorff metric.

dH [u]
α
, [v]

α
( 􏼁 � max u

α
1 − v

α
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, u

α
2 − v

α
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (6)

It is well known that (RF, d) is a complete metric space.
We list the following properties of d(u, v):

d(u + w, v + w) � d(u, v),

d(u, v) � d(v, u),

d(ku, kv) � |k|d(u, v),

d(u, v)≤ d(u, w) + d(w, v),

(7)

for all u, v, w ∈ RF and λ ∈ R.
Let (Ak) be a sequence in PK(R) converging to A. 'en,

theorem in [2] gives us an expression for the limit.

Theorem 2 (see[2]). If d(Ak, A)⟶ 0 as k⟶∞, then

A � ∩
k≥1
∪

m≥k
Am. (8)

3. Fuzzy Conformable Fractional
Differentiability and Fuzzy
Fractional Integral

3.1. FuzzyConformable FractionalDifferentiability. Now, we
present our new definition, which is the simplest and most
natural and efficient definition of fractional derivative of
order q ∈ (0, 1].

Definition 3 (see[17]). Let F: (0, a)⟶ RF be a fuzzy
function, and qth order fuzzy conformable fractional de-
rivative of F is defined by

Tq(F)(t) � lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ε

� lim
ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
,

(9)

for all t> 0, q ∈ (0, 1). Let F(q)(t) stands for Tq(F)(t).
Hence,

F
(q)

(t) � lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ε

� lim
ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
.

(10)

If F is q-differentiable in some (0, a) and limt⟶0+ F(q)(t)

exists, then

F
(q)

(0) � lim
t⟶0+

F
(q)

(t), (11)

and the limits (in the metric d).

Remark 1. From the definition, it directly follows that if F is
q-differentiable, then the multivalued mapping Fα is
q-differentiable for all α ∈ [0, 1] and

TqFα � F
(q)

(t)􏽨 􏽩
α
. (12)

where TqFα is denoted from the conformable fractional
derivative of Fα of order q.

Theorem 3 (see[17]). Let F: (0, a)⟶ RF be q-differen-
tiable. Denote Fα(t) � [fα

1(t), fα
2(t)], α ∈ [0, 1]. 0en, fα

1(t)

and fα
2(t) are q-differentiable and

F
(q)

(t)􏽨 􏽩
α

� f
α
1( 􏼁

(q)
(t), f

α
2( 􏼁

(q)
(t)􏼔 􏼕. (13)

Theorem 4. Let F: (0, a)⟶ RF is q-differentiable on
(0, a). If t1, t2 ∈ (0, a) with t1 ≤ t2, then there exists λ ∈ RF

such that F(t2) � F(t1) + λ.

2 International Journal of Differential Equations



Proof. For each s ∈ [t1, t2], there exists δ(s)> 0 such that the
H-differences F(s + εs1− q)⊖F(s) and F(s)⊖F(s − εs1− q)

exist for all 0≤ ε< δ(s). 'en, we can find a finite sequence
t1 � s1 < s2 < · · · < sn � t2 such that the family
Isi

� (si − δ(si), si + δ(si))|i � 1, 2, . . . , n􏽮 􏽯 covers [t1, t2]

and Isi
∩ Isi+1
≠∅. Pick xi ∈ Isi

∩ Isi+1
, i � 1, 2, . . . , n − 1, such

that si < xi < si+1. 'en,

F si+1( 􏼁 � F xi( 􏼁 + A1 � F si( 􏼁 + A2 + A1

� F si( 􏼁 + λi, i � 1, 2, . . . , n − 1,
(14)

for some A1, A2, λi ∈ RF. Hence,

F t2( 􏼁 � F t1( 􏼁 + 􏽘
n−1

i�1
λi � F t1( 􏼁 + λ. (15)

□

Theorem 5. If F: (0, a)⟶ RF is q-differentiable, then it is
continuous.

Proof. Let t, t + t1− qε ∈ (0, a) with ε> 0. 'en, by properties
of equation (7) and the triangle inequality, we have

d F t + t
1− qε􏼐 􏼑, F(t)􏼐 􏼑 � d F t + t

1− qε􏼐 􏼑⊖F(t), 0􏼐 􏼑≤ ε d
F t + t

1− qε􏼐 􏼑⊖F(t)􏼐 􏼑

ε
, F

(q)
(t)⎛⎝ ⎞⎠ + ε d F

(q)
(t), 0􏼐 􏼑, (16)

where ε is so small that the H-difference F(t + t1− qε)⊖F(t)

exists. By the differentiability, the right-hand side goes to
zero as ε⟶ 0+, and hence, F is right continuous. 'e left
continuity is proved similarly. □

Theorem 6. Let q ∈ (0, 1]. If F is differentiable and F is
q-differentiable, then

TqF(t) � t
1− q

F′(t). (17)

'e proof is similar to the proof of 'eorem 8 case (i) in
[17] and is omitted.

Theorem 7. Let q ∈ (0, 1], and if F, G: (0, a)⟶ RF are
q-differentiable and λ ∈ R, then

Tq(F + G)(t) � Tq(F) + Tq(G) and
Tq(λF)(t) � λTq(F)(t)

Proof. Since F is q-differentiable, it follows that
F(t + εt1− q)⊖F(t) exists, i.e., there exists u1(t, εt1− q) such
that

F t + εt1− q
􏼐 􏼑 � F(t) + u1 t, εt1− q

􏼐 􏼑. (18)

Analogously, since G is q-differentiable, there exists
v1(t, εt1− q) such that

G t + εt1− q
􏼐 􏼑 � G(t) + v1 t, εt1− q

􏼐 􏼑, (19)

and we get

F t + εt1− q
􏼐 􏼑 + G t + εt1− q

􏼐 􏼑 � F(t) + G(t) + u1 t, εt1− q
􏼐 􏼑

+ v1 t, εt1− q
􏼐 􏼑,

(20)

that is, the H-difference

F t + εt1− q
􏼐 􏼑 + G t + εt1− q

􏼐 􏼑􏼐 􏼑⊖(F(t) + G(t)) � u1 t, εt1− q
􏼐 􏼑 + v1 t, εt1− q

􏼐 􏼑. (21)

By similar reasoning, we get that there exist u2(t, εt1− q)

and v2(t, εt1− q) such that

F(t) � F t − εt1− q
􏼐 􏼑 + u2 t, εt1− q

􏼐 􏼑,

G(t) � G t − εt1− q
􏼐 􏼑 + v2 t, εt1− q

􏼐 􏼑,
(22)

and so

(F(t) + G(t)) � F t − εt1− q
􏼐 􏼑 + G t − εt1− q

􏼐 􏼑􏼐 􏼑

+ u2 t, εt1− q
􏼐 􏼑 + v2 t, εt1− q

􏼐 􏼑,
(23)

that is, the H-difference

(F(t) + G(t))⊖ F t − εt1− q
􏼐 􏼑 + G t − εt1− q

􏼐 􏼑􏼐 􏼑

� u2 t, εt1− q
􏼐 􏼑 + v2 t, εt1− q

􏼐 􏼑.
(24)

We observe that

lim
ε⟶0+

u1 t, εt1− q
􏼐 􏼑

ε
� lim

ε⟶0+

u2 t, εt1− q
􏼐 􏼑

ε
� F

(q)
(t),

lim
ε⟶0+

v1 t, εt1− q
􏼐 􏼑

ε
� lim

ε⟶0+

v2 t, εt1− q
􏼐 􏼑

ε
� G

(q)
(t).

(25)

Finally, by multiplying (21) and (24) with 1/ε and passing
to limit with limε⟶0+ , we get that F + G is q-differentiable
and Tq(F + G)(t) � TqF(t) + TqG(t). 'e case (ii) is similar
to the previous one. □

3.2. Fuzzy Fractional Integral. Let q ∈ (0, 1] and
F: (0, a)⟶ RF be such that [F(t)]α � [fα

1(t), fα
2(t)] for

all t ∈ (0, a) and α ∈ [0, 1]. Suppose that
fα
1 , fα

2 ∈ C((0, a),R)∩ L1((0, a),R) for all α ∈ [0, 1] and let
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Aα≕ 􏽚
t

0

f
α
1

x
1−q

(x)dx, 􏽚
t

0

f
α
2

x
1−q

(x)dx􏼢 􏼣, t ∈ (0, a). (26)

Lemma 2. 0e family Aα; α ∈ [0, 1]􏼈 􏼉, given by equation
(26), defined a fuzzy number F ∈ RF such that [F]α � Aα.

Proof. For α< β, we have fα
1(x)≤f

β
1(x) and fα

2(x)≥f
β
2(x).

It follows Aα⊇Aβ. Since f0
1(x)≤f

αn

1 (x)≤f1
1(x), we have

x
q− 1

f
αn

i (x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤max a
q− 1

f
0
i (x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, a

q− 1
f
1
i (x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯≕gi(x),

(27)

for αn ∈ [0, 1] and i � 1, 2. Obviously, gi is integrable on
(0, a). 'erefore, if αn↑α, then by Lebesque’s dominated
convergence theorem, we have

lim
n⟶∞

􏽚
t

0

f
αn

i

x
1−q

(x)dx � 􏽚
t

0

f
α
i

x
1−q

(x)dx, i � 1, 2. (28)

From 'eorem 1, the proof is complete. □

Definition 4. Let F ∈ C((0, a),RF)∩L1((0, a),RF) define
the fuzzy fractional integral for q ∈ (0, 1],

Iq(F)(t) � I t
q− 1

F􏼐 􏼑(t) � 􏽚
t

0

F

x
1− q

(x)dx, (29)

by`

Iq(F)(t)􏽨 􏽩
α

� I t
q− 1

F􏼐 􏼑(t)􏽨 􏽩
α

� 􏽚
t

0

F

x1− q
(x)dx􏼢 􏼣

α

� 􏽚
t

0

f
α
1

x
1−q

(x)dx, 􏽚
t

0

f
α
2

x
1−q

(x)dx􏼢 􏼣,

(30)

where the integral 􏽒
t

0(fα
i /x

1− q)(x)dx for i � 1, 2 is the usual
Riemann improper integral. Also, the following properties
are obvious.

Lemma 3. Let q ∈ (0, 1] and F, G: (0, a)⟶ RF be frac-
tional integrable and λ ∈ R. 0en,

(i) IqλF(t) � λIqF(t)

(ii) Iq(F + G)(t) � IqF(t) + IqG(t)

Proof. 'e proof is similar to the proof of 'eorem 4.3 cases
(i) and (ii) in [2] and is omitted. □

Theorem 8. TqIq(F)(t) � F(t), for t≥ 0, where F is any
continuous function in the domain of Iq

Proof. Since F is continuous, then Iq(F)(t) is clearly
q-differentiable because

Iq(F)(t) � I t
q− 1

F􏼐 􏼑(t), (31)

and tq− 1F(t) is continuous for all t ∈ (0, a); then, by 'e-
orem 5.6 in [2] and 'eorem 6, the fractional integral is
q-differentiable. Hence,

TqIq(F)(t)􏽨 􏽩
α

� t
1− q d

dt
Iq(F)(t)􏼢 􏼣

α

� t
1− q d

dt
􏽚

t

0

f
α
1(x)

x
1−q

dx, t
1− q d

dt
􏽚

t

0

f
α
2(x)

x
1−q

dx􏼢 􏼣

� t
1− qf

α
1(t)

t
1−q

, t
1− qf

α
2(t)

t
1−q

􏼢 􏼣

� [F(t)]
α
.

(32)□

Theorem 9. Let q ∈ (0, 1] and F be q-differentiable in (0, a),
and assume that the conformable derivative F(q) is integrable
over (0, a). 0en, for each s ∈ (0, a), we have

F(s) � F(0) + IqF
(q)

. (33)

Proof. Let q ∈ (0, 1] and α ∈ [0, 1] be fixed. We shall prove
that

Fα(s) � Fα(0) + IqF
(q)
α , (34)

where F
(q)
α is the Hukuhara conformable fractional deriv-

ative of Fα; then, using 'eorems 3 and 6 gives us the
following equation.

Fα(s) � Fα(0) + IqF
(q)
α

� Fα(0) + Iq t
1− q

Fα′􏼐 􏼑.
(35)

By equation (29), we have

Fα(s) � Fα(0) + Iq t
1− q

Fα′􏼐 􏼑

� Fα(0) + 􏽚
s

0
t
q− 1

t
1− q

Fα′􏼐 􏼑.
(36)

So,

Fα(s) � Fα(0) + 􏽚
s

0
Fα′, (37)

where Fα′ is the Hukuhara derivative of Fα; equation (37) is
also true for a fuzzy mapping F: (0, a)⟶ RF. 'e equality
(34) now follows 'eorem 5.7 in [2]. □

4. Fuzzy Comformable Fractional
Differential Equations

We study the fuzzy initial value problem

Tqx(t) � F(t, x(t)), q ∈ (0, 1],

x(0) � x0,
(38)

where F: (0, a) × RF⟶ RF is the continuous fuzzy
mapping, and x0 is the fuzzy number. From 'eorems 5, 8,
and 9, it immediately follows.
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Theorem 10. A mapping x: (0, a)⟶ RF is a solution to
problem (38) if and only if it is continuous and satisfies the
integral equation:

x(t) � x0 + IqF(t, x(t)), (39)

for all t ∈ (0, a) and q ∈ (0, 1].

Theorem 11. Let F: (0, a) × RF⟶ RF be continuous,
and assume that there exists k> 0 such that

d(F(t, x), F(t, y))≤ k d(x, y), (40)

for all t ∈ (0, a), x, y ∈ RF. 0en, problem (38) has a unique
solution on (0, a).

Proof. If in problem (38) we consider the conformable
derivative x(q) for all q ∈ (0, 1] 'eorem 3, then from
'eorem 6.1 in [2] and using Definition 4 and Lemma
1,(0, a) we can prove that there exists an unique solution on
(0, a), and the proof is now complete. □

Remark 2. In [15], it is observed that if we fuzzify the
equivalent ordinary differential equation x(q) + x � 0, then
we will get fuzzy differential equations (the equation was
fuzzified by adding a forcing term σ(t) in the right-hand
side).'at is, if we consider fuzzy differential equation x(q) +

x � σ(t) with the same initial condition x(t0) � x0, we get
the result.

Consider the following linear fractional equation:

x
(q)

(t) + x(t) � σ(t), q ∈ (0, 1] and t ∈ (0, a), (41)

where σ ∈ C((0, a) × RF). Denote [x(t)]α � [xα
1(t), xα

2(t)],

[x0]
α � [xα

01, yα
02], and [σ(t)]α � [σα1(t), σα2(t)].

Theorem 12. Equation (41) has a unique solution in (0, a),
and for given initial x0 ∈ RF, it is given by

x(t) � x0e
− tq/q( ) + 􏽚

t

0
s

q− 1σ(s)e
sq− tq( )/qds, t ∈ (0, a),

� x0e
− tq/q( ) + e

− tq/q( )Iq σ(t)e
tq/q( )􏼒 􏼓, t ∈ (0, a).

(42)

Proof. Equation (41) can be written, levelwise, as

x
α
1( 􏼁

(q)
(t), x

α
2( 􏼁

(q)
(t)􏼔 􏼕 + x

α
1(t), x

α
2(t)􏼂 􏼃

� σα1(t), σα2(t)􏼂 􏼃, t ∈ (0, a),

(43)

for every α ∈ [0, 1], so that

x
α
1( 􏼁

(q)
(t) + x

α
1(t) � σα1(t),

x
α
2( 􏼁

(q)
(t) + x

α
2(t) � σα2(t).

(44)

'us, for t ∈ (0, a),

x
α
1e

tq/q( )􏼒 􏼓
(q)

(t) � σα1(t)e
tq/q( ),

x
α
2e

tq/q( )􏼒 􏼓
(q)

(t) � σα2(t)e
tq/q( ),

(45)

and, therefore, it can be deduced that

x
α
1(t) � x

α
01e

− tq/q( ) + 􏽚
t

0
s

q− 1σα1(s)e
sq− tq( )/qds,

x
α
2(t) � x

α
02e

− tq/q( ) + 􏽚
t

0
s

q− 1σα2(s)e
sq− tq( )/qds.

(46)

'is proves that, for α ∈ [0, 1],

[x(t)]
α

� x0􏼂 􏼃
α
e

− tq/q( )

+ 􏽚
t

0
s

q− 1
[σ(s)]

α
e

sq− tq( )/qds, t ∈ (0, a).
(47)

So,

[x(t)]
α

� x0􏼂 􏼃
α
e

− tq/q( )

+ e
− tq/q( )Iq [σ(t)]

α
e

tq/q( )􏼒 􏼓, t ∈ (0, a).
(48)

□

5. Conclusion

In this study, for developing and proving some results for
fuzzy conformable differentiability and fuzzy fractional in-
tegrability of such functions, we provided existence and
uniqueness solutions to fuzzy fractional problems for order
q ∈ (0, 1] FFDEs, which is interpreted by using the gener-
alized conformable fractional derivatives concept.

For future research, we will solve the fractional fuzzy
conformable partial differential equations [22, 23] and a class
of linear differential dynamical systems [24] by using the
proposed method.
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