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We consider a saturated predator-prey system with delayed time. ­e system is motivated by natural disease management using
the interactions between the original and the treated species populations, such as Aedes aegypti andWolbachiamosquitoes, fertile
and infertile pests as a pesticide’s e�ect, uninfected and infected cancer cells by an oncolytic virus, and so forth. ­e delayed time
shows the gestation e�ect of the treated populations where the impact on the stability of the unique positive equilibrium point of
the system will be studied. We obtain the exact formula of the equilibrium point where it is asymptotically stable for the nondelay
case.­e stability region of the nonzero solution is given in parameter space following the Pontryagin criteria. Furthermore, some
conditions, such that for delay case this solution is conditionally stable, are also provided in this study.

1. Introduction

­e need for food continues to increase in line with the
increasing population and the higher level of domestic
consumption. However, agricultural and plantation pro-
duction yields can decrease or fail if the presence of pests
around the land is not controlled. One technique to reduce
the proportion of pests is through the application of Inte-
grated Pest Management (IPM). Some techniques applied to
suppress pest attacks are good agricultural practices, bio-
logical control, breeding and growth of resistant varieties,
and the use of chemical insecticides [1].

­e most common pest control technique used by
farmers is the use of chemical insecticides. It is due to the fact
that the pesticides can be applied easily and quickly and can
reach a large area. However, the use of pesticides can also
reduce the quality of crop yields. In particular, in excessive
use, the pesticides can harm farmers and the environment.
On the other hand, biological control is the safest and the
most e�ective technique to control the pest. ­is control
method utilizes the predatory behavior as the natural pest

control. However, this method is time-consuming and in-
e�cient. Based on these facts, the analysis related to the
dynamics of the prey population by considering its predator
and the presence of pesticides needs to be studied.

­e interaction of predator and prey populations can be
presented in a mathematical model, which was introduced
by Lotka in a simple manner, in which the growth of the
prey-predator population is assumed to be in�uenced only
by the birth and the interaction of both populations [2].
Recently, one of the developments in modeling has been to
involve the delayed time, such as on the predator density
[3, 4], on both prey and predator density [5, 6], on the
predator death rate [7], and on the harvesting time [8],
where the existence of the delayed time could change the
stability behavior of the system.

­e impact of the delayed time in pest controlling in
farming has been studied by Abraha et al. [9], where the
authors considered the delays in the level of awareness as a
saturated term. In [10], the authors adopt the predator prey
system to study the interaction of two populations of one
species, which is original and treated populations with
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saturation term for nondelay case. Meanwhile, the gestation
period also affects the growth rate of the original population.
Mathematically, the gestation period is represented by the
delayed time of the growth rate; see [11–13]. +erefore, in
this paper, we include the gestation period of original
population by adding a delayed time parameter to a satu-
rated model in [10]. +e objective of this research is to study
existence and stability of the equilibrium point of the delayed
time system. +e study is important to understand the effect
of the gestation period to have successful treatment.

+e stability of an equilibrium point in the system of
ordinary or delay differential equations is usually deter-
mined by calculating the roots of the characteristic equation
of the linearized system near an equilibrium point. An
equilibrium point is called asymptotically stable if and only if
the real parts of the roots of characteristic equation are
negative [14]. +e difference between the characteristic
equation of the ordinary differential equations (ODE) and
delay differential equation (DDE) systems is as follows. +e
characteristic equation of an ODE system is a polynomial,
which usually has finite number of characteristic roots.
Meanwhile, in DDE system, the characteristic equation is a
quasi-polynomial [15] that has infinitely many characteristic
roots [16, 17].

Due to the complexity of the equation, the stability
behavior of the delayed time system in some references was
observed without computing the roots. +e fundamental
criterion for calculating the roots of quasi-polynomial
equations was based on the work of Pontryagin [18] that
gave necessary and sufficient conditions for a quasi-poly-
nomial which has a principle term. Some other methods
have been proposed to study the stability of exponential
polynomials, such as Lyapunov’s direct method, Yesipovich-
Svirskii criterion, τ-decomposition method, Chebotarev
criterion, D-subdivision method, Nyquist criterion, Bode
criterion, Nichols criterion, and Michailov criterion. In this
paper, we consider a quasi-polynomial equation which has a
principle term, so that the stability regions of the equation
will be derived by applying Pontryagin +eorem.

+e stability regions of some cases of the second-order
delay differential equations that use Pontryagin +eorem
have been studied in [19–23]. In this paper, we obtain a new
type of quasi-polynomial characteristic equation, that is,
λ2 − Tλ + D − Ee− λτ � 0, where the methods to find the
roots of the quasi-polynomial equation will be studied. It is
important to determine the stability regions in the parameter
space and the bifurcation analysis in terms of the delay time
parameter.

+e remainder of this paper is organized as follows. In
Section 2, we start with model formulations and then
continue with the main results in Section 3. In Subsection
3.1, we show the existence conditions of the positive equi-
librium point. By applying the Pontryagin +eorem, we
provide the sufficient and necessary condition in terms of the
parameters and the delay parameter such that the positive
equilibrium point is asymptotically stable; we show this in
Section 3.2. In the next sections, we identify the bifurcation
point and its conditions, and then finally some simulations
are given to illustrate the results.

2. Problem Formulation

We consider a two-dimensional delay differential equation
as follows:

dx

dt
� r1x − r1x

x + y

K
􏼒 􏼓 −

bxy

x + y + a
,

dy

dt
� r2y − r2y

xτ + y

K
􏼒 􏼓 +

bxy

x + y + a
− βy.

(1)

System (1) is based on the predator prey model with
logistic growth. +e system is motivated by a treatment
model of populations with one species which was studied in
[10]. +e model in [10] showed the interaction between the
original population (x) and the treated population (y) for
the delay parameter τ � 0. +e densities of the populations
were assumed to follow the logistic growth with the intrinsic
growth rates r1 and r2, respectively, and the carrying ca-
pacity K. +e other assumption is that the interaction be-
tween both populations is able to reduce the original
population that turns into the treated population. +e ex-
istence of the nontrivial positive equilibrium point due to the
parameter space and the stability criteria were studied in
[10], but the explicit expression of the equilibrium point was
not presented.

+e generalized model of System (1) in the sense of
parameter space has been presented in the work of Adi-
Kusumo et al. [24]. +e authors in [24] introduced two new
parameters that show the endurance of the populations and
efficacy of the treatment was introduced. Moreover, al-
though the expression of a nontrivial positive equilibrium
point is provided, the stability behavior of the equilibrium
point has not yet been studied.

+e existence of the nontrivial positive equilibrium
points of the nondelay case of System (1) depends on the
parameter space. In [10], there is a region in the parameter
space where the nontrivial positive equilibrium point is
unique. +e appearance of this equilibrium point is im-
portant in the sense of applications. +e stability of the
equilibrium point shows the situation where the original
population cannot be removed completely by the treatment.

In this paper, we add the delay time τ to the system in
[10], where xτ � x(t − τ); see System (1). +e delayed term
can be interpreted as the gestation period of the original
population that affects the interaction with the treated
populations. Our work focuses on understanding the effect
of the delay term on the behavior of the nontrivial positive
equilibrium point of System (1). Moreover, we will obtain
the stability region and some conditions for the appearance
of Hopf bifurcations.

3. Stability Analysis

3.1. ,e Equilibrium Points. Let R � R+⋃ 0{ } be a non-
negative real number set. +e domain of System (1) is
denoted by

Ω � (x, y) ∈R2
|0<x + y≤K􏽮 􏽯, (2)
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where all the parameters r1, r2, K, b, a, and β are nonnega-
tive. +e equilibrium solutions of System (1) must satisfy

r1x − r1x
x + y

K
􏼒 􏼓 −

bxy

x + y + a
� 0, (3)

r2y − r2y
xτ + y

K
􏼒 􏼓 +

bxy

x + y + a
− βy � 0. (4)

In the absence of delay, System (1) has four possible types
of equilibrium points, that is, E0(0, 0) as a trivial equilib-
rium, E1(K, 0) and E2(0, y) with y � (β − r2)/r2 as semi-
trivial equilibria, and E3(x∗, y∗) as the nontrivial
equilibrium point. +e equilibrium points E0, E1, and E2
indicate the extinction of one or both populations.

+ere is more than one positive nontrivial equilibrium
point due to the parameter space. However, in this paper, we
restrict our discussion to the parameter space that the system
has a unique positive equilibrium point. +e sufficient
conditions of the uniqueness were given in [10]. Here, we
provide the expression of the unique positive equilibrium
point in +eorem 1.

Suppose that y � f(x) is the nonzero solution of (4),
M � −βK/2r2 + K − a/2, N � K2β2 − 2K2βr2 + K2r22 − 2Ka

βr2 + 2Kar22 + a2r22, m1 � −r1Kβ/r2 + bK, m0 � KMr1+

Kar1 − M2r1 − Mar1, V � 4r22m0m1 − 4Km2
1br2/4r22, and

W � 4r22m
2
0 − m2

1N/4r22. In +eorem 1, we show the feasi-
bility and the uniqueness conditions of the nontrivial pos-
itive equilibrium point (x∗, y∗).

Theorem 1. If the conditions that

r1β − r2b> 0, r2 − β> 0, β<
bK

K + a
,

− r1 1 + f′(x)( 􏼁(2x + 2f(x) + a − K)

− Kbf′(x)< 0,

(5)

hold, then there is a unique positive equilibrium
E3(x∗, y∗) of System (1), where

x
∗

�
−V +

����������

V
2

− 4m
2
1W

􏽱

2m
2
1

,

y
∗

� M − x
∗

+
1
2r2

�����������

N + 4Kbr2x
∗

􏽱

.

(6)

Proof. Since we are looking for nonzero solution of (3) and
(4), we can simplify these equations into

r1 − r1
x + y

K
􏼒 􏼓 −

by

x + y + a
� 0, (7)

r2 − r2
x + y

K
􏼒 􏼓 +

bx

x + y + a
− β � 0. (8)

We solve (8) by acting it as a quadratic equation of y. +e
formula of positive y∗ is given in (6). Next, substituting this
solution to (7) yields

m1x
∗

+ m0 �
1
2r2

m1

�����������

N + 4Kbr2x
∗

􏽱

. (9)

Here we obtain nonlinear form of equation. By squaring
both sides to neglect the square root, we obtain a quadratic
equation. Since we only consider a unique positive equi-
librium, the positive roots are given in (6).

Talking about the stability behavior of the equilibrium
point, the following theorem shows the type of stability for
positive equilibrium point if it exists. □

Theorem 2. For System (1), if the delay does not appear in
the system, then we have that equilibrium E3 is locally as-
ymptotically stable if it exists.

Proof. +e characteristic equation of the linearized system at
E3(x∗, y∗) is

λ2 +
r1x
∗

+ r2y
∗

K
􏼠 􏼡λ + bx

∗
y
∗ r1 − r2

(x + y + a)K
+

ab

(x + y + a)
3􏼠 􏼡 � 0.

(10)

By the conditions in +eorem 1, we can derive that

b

β
>

K + a

K
> 1. (11)

+is implies that

r1 − r2 > 0. (12)

+erefore, both coefficients of the characteristic equation
are positive. In other words, the roots are two negative real
numbers or a pair of complex number with a negative real
part. Here, we can conclude that equilibrium E3 is locally
asymptotically stable if it exists. □

3.2. ,e Stability Region. By the fact that the nontrivial
positive equilibrium point (see (6)) is locally asymptotically
stable for the absence of delay case, the solutions near the
equilibrium points will converge to the equilibrium. How-
ever, the existence of a delay in System (1) could bring
different behavior. In this section, we will identify the delay
effect on the stability behavior of the solution near the
nontrivial positive equilibrium point.

If the property holds for all values of the delays, it is
named delay-independent. Meanwhile, if the stability is
preserved for some values of delays but become unstable for
other values, it is named delay-dependent.

Let us assume that the conditions in (5) hold such that
the positive equilibrium point exists. Since we only consider
the solution around the positive equilibrium point, we
linearize System (1) near E3(x∗, y∗). Using transformations
Z1 � x − x∗ and Z2 � y − y∗, the linearized system can be
written as

_Z1

_Z2

⎡⎣ ⎤⎦ �
A
∗

B
∗

C
∗

D
∗􏼢 􏼣

Z1

Z2
􏼢 􏼣 +

0 0

E
∗ 0

􏼢 􏼣
Z1τ

Z2τ
􏼢 􏼣. (13)

We have
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A
∗

� −
r1x
∗

K
+

bx
∗
y
∗

x
∗

+ y
∗

+ a( 􏼁
2,

B
∗

� −
r1x
∗

K
−

bx
∗

x
∗

+ y
∗

+ a
+

bx
∗
y
∗

x
∗

+ y
∗

+ a( 􏼁
2,

C
∗

�
by
∗

x
∗

+ y
∗

+ a
−

bx
∗
y
∗

x
∗

+ y
∗

+ a( 􏼁
2,

D
∗

� −
r2y
∗

K
−

bx
∗
y
∗

x
∗

+ y
∗

+ a( 􏼁
2,

E
∗

� −
r2y
∗

K
,

Z1τ � xτ − x
∗
, Z2τ

(14)

Suppose that the solution is a nontrivial exponential
solution [Z1 Z2]

T � eλt[u1 u2]
T, where u1 and u2 are con-

stants. To obtain a nontrivial solution, the value of λ should
satisfy

det λI −
A
∗

B
∗

C
∗

D
∗􏼢 􏼣 −

0 0

E
∗ 0

􏼢 􏼣e
− λτ

􏼢 􏼣 � 0. (15)

I is the identity matrix. According to the definition
defined in [25], (15) is later called the characteristic equation
associated with (13). +e characteristic equation of a delayed
linear system is in transcendent form and for System (1) the
characteristic equation is given by

λ2 − Tλ + D − Ee
− λτ

� 0, (16)

where

D � A
∗
D
∗

− B
∗
C
∗
, T � A

∗
+ D
∗
, danE � E

∗
B
∗
. (17)

Moreover, since we deal with positive equilibrium point
and all parameters are nonnegative, we obtain that T< 0 and
E> 0.

As applied for ODEs, the zero solution of (16) is as-
ymptotically stable if and only if it has no zeros in the right
half plane λ |Re(λ)≥ 0{ } [26]. Beforehand, we study the
stability sets in its parameter spaces. To investigate the
stability region of this transcendent equation, we consider
the Pontryagin +eorem. Next, we are going to provide the
sufficient and necessary condition such that the zero solution
of System (13) is asymptotically stable.

If a polynomial h(z, λ) does not possess a principle term,
then it definitely has many number of zeros with positive real
part. In other words, the zero solution of this polynomial is
not asymptotically stable. However, if it has a principal term,
then the Pontryagin +eorem could be applied.

Theorem 3 (the Pontryagin Theorem [18]). Let
H(z) � h(z, ez), where h(z, w) is a polynomial with a
principal term. Function H(iy) is now separated into real and
imaginary parts; that is, we set H(iy) � F(y) + iG(y). If all
the zeros of function H(z) lie in the open left half plane, then

the zeros of functions F(y) and G(y) are real and interlacing
and

Δy � G′(y)F(y) − G(y)F′(y)> 0. (18)

It is for all real y. Moreover, in order that all the zeros of
function H(z) lie in the open left half plane, it is sufficient
that one of the following conditions is satisfied:

(1) All of the zeros of functions F(y) and G(y) are real
and interlacing, and inequality (18) is satisfied for at
least one value of r.

(2) All the zeros of function F(y) are real and for each of
these zeros y � r the condition in (18) is satisfied;
that is, F′(r)G(r)< 0.

(3) All the zeros of function G(y) are real and for each of
these zeros inequality (18) is satisfied; that is,
G′(r)F(r) > 0.

Multiplying both sides of characteristic (16) by eλτ and
letting z � λτ will transform that equation into

z
2
e

z
− Tze

z
+ De

z
− E � 0, (19)

where T � τT, D � τ2D, and E � τ2E. We obtain that the left
side of this equation has a principal term, z2ez, so the
Pontryagin +eorem could be applied.

Let us define

H(z) � z
2
e

z
− Tze

z
+ De

z
− E. (20)

Here we can restate

H(iy) � F(y) + iG(y), (21)

where

F(y) � −y
2 cos(y) + Ty sin(y) + D cos(y) − E, (22)

G(y) � −y
2 sin(y) − Ty cos(y) + D sin(y). (23)

In the following theorem, we show that, for T≤D≤E,
the zero solution of (16) is not asymptotically stable.
+erefore, for the next, we restrict our discussion for D<T

or D>E.

Theorem 4. Given T< 0 and E> 0, if T≤D≤E, then the
zero solution of (16) is not asymptotically stable.

Proof. It is clear that y � 0 is a root for function G(y). Here
we obtain that

Δ(0) � G′(0)F(0) � (−T + D)(D − E)≤ 0. (24)

+us, by +eorem 3, we obtain that the zero solution of
(16) is not asymptotically stable for T≤D≤E.

It is obvious that all roots of function F and/or G are real.
In+eorem 5, one shows sufficient and necessary conditions
such that all the roots of a function are real numbers. To use
the theorem, let us consider a polynomial in the form

f(z, u, v) � 􏽘

p

m�0
􏽘

q

n�0
bmnz

mϕ(n)
(u, v), (25)
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where ϕ(n)
m (u, v) is a homogeneous polynomial of degree n in

u and v. Denote brsz
rϕ(s)

r (u, v) as the principal term of
f(z, u, v); then

f(z, u, v) � z
rϕ(s)
∗ (u, v) + 􏽘

r−1

m�0
􏽘

s

n�0
bmnz

mϕ(n)
m (u, v), (26)

where ϕ(s)
∗ (u, v) � 􏽐

s
n�0 brnϕ

(n)
r (u, v). Also we let

Φ(s)
∗ (z) � ϕ(s)

∗ (cos(z), sin(z)). (27)
□

Theorem 5. Let f(z, u, v) be a polynomial with principal
term zrϕ(s)

r (u, v). If ε is such that Φ(s)
∗ (ε + iy)≠ 0 for all real

y, then, in the strip −2πk + ε≤x≤ 2πk + ε, z � x + iy,
function F(z) � f(z, cos(z), sin(z)) will have for all suf-
ficiently large values of k exactly 4sk + r zeros. ,us, in order
for function F(z0) to have only real roots, it is necessary and
sufficient that, in the interval −2πk + ε≤x≤ 2πk + ε, it has
exactly 4sk + r real roots for all sufficiently large k.

Let g(y, u, v) � −y2v − Tyu + Dv; then
G(y) � g(y, cos(y), sin(y)). +e principal term of this
function is −y2v, so we obtain that r and s in+eorem 5 are 1
and 2, respectively. Moreover,

Φ(1)
∗ (ε + iy) � −sin(ε + iy),

� −sin(ε)cosh(y) − i cos(ε)sinh(y).
(28)

Taking ε � π/2 yields

Φ(1)
∗

π
2

+ iy􏼒 􏼓 � −cosh(y)< 0. (29)

Hence, +eorem 5 implies that the zeros of G(y) are all
real if and only ifG(y) has exactly 4k + 2 roots in the interval
−2πk + π/2≤y≤ 2πk + π/2.

Theorem 6. Given T< 0 and E> 0, for D> 0, the zero so-
lution of System (13) is to be asymptotically stable if and only
if

(1) D>E,
(2) F(r∗)> 0.

Here r∗ is the root of function G and r∗ ∈ (π, 2π).

Proof. ⇒
As mentioned before that y � 0 is a root of function

G(y), the zero solution of this function is asymptotically
stable; therefore we obtain that Δ(0)> 0. Since D> 0, this
implies D − T> 0. By the condition that Δ(0)> 0, we have
D>E. Next, we will show that the second condition holds.
Suppose that rj is a nonzero solution of G(y) � 0. From
equation (22) we can write

D �
r
2
j sin rj􏼐 􏼑 + Trj cos rj􏼐 􏼑

sin rj􏼐 􏼑
. (30)

By substituting (30) into the first derivative function
G′(y), we can rewrite this function as

G′ rj􏼐 􏼑 � −2rj sin rj􏼐 􏼑 − T cos rj􏼐 􏼑 +
Trj

sin rj􏼐 􏼑
. (31)

+e value of G′(rj) can be seen in Figure 1.
Since the minimum value of Ty/sin(y) is greater than

the maximum value of T cos(y) in interval [π, 2π], we can
conclude that

Ty

sin(y)
>T cos(y), forT< 0. (32)

Moreover, the Pontryagin +eorem yields

F rj􏼐 􏼑G′ rj􏼐 􏼑> 0, for all j ∈ Z. (33)

For rj � r∗ ∈ [π, 2π], from (32), we obtain that
G′(r∗)> 0. From (33) and G′(r∗)> 0, we can conclude that

F r
∗

( 􏼁> 0S. (34)

⇐
To show that the zero solution is asymptotically stable,

we are going to prove that the Pontryagin conditions hold by
showing that all roots of G(y) are real numbers and
Δ(y0)> 0 for all y0 real roots of functionG(y). It is clear that
G(y) is an odd function; meanwhile, G′(y) and F(y) are
even functions. So, we restrict our discussion to the non-
negative domain and use the property of odd and even
functions to extend the domain.

(1) If D>E, then all roots of function G(y) are real
roots.
For y � jπ, we get G(jπ) � (−1)j+1Tjπ. +is implies
that G(jπ)< 0 for all j positive odd numbers and
G(jπ)> 0 for all j positive even numbers. According
to Intermediate Value +eorem, there exists at least
one real root. Moreover, there is an odd number of
root. For y � y0 nonzero root of G(y), it satisfies

w y0( 􏼁 � ξ y0( 􏼁, (35)

where w(y) � D/y − y and ξ(t) � T cot(y). For
D>E> 0, we obtain that w′(y)< 0 and, for T< 0, we
obtain that ξ′(y)> 0. Because ξ(y) is a periodic
function with period π and both functions are
monotone, we can say that there is only one real root
in each interval (jπ, (j + 1)π). +is implies in in-
terval (−2kπ, 2kπ) that there exist 4k + 1 roots for all
k ∈ Z, including y � 0. Taking 0< ε< π/2 and for k

sufficiently large, function G(y) has one root and no
roots in intervals (2k, 2k + ε) and (−2kπ, −2kπ + ε),
respectively. +erefore, the number of roots in
(−2kπ + ε, 2kπ + ε) is 4k + 2. In other words, func-
tion G(y) has all real roots.

(2) If F(r∗)> 0, then Δ(rj)> 0.
For y � 0, it is clear that Δ(0)> 0. Suppose that y �

rj is the root of function G(y) in the interval
(jπ, (j + 1)π) for all j positive integers. By
substituting (30) into function F(y), we can rewrite
this function as
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F rj􏼐 􏼑 � Trj

1
sin rj􏼐 􏼑

− E. (36)

Now, let us consider that for j � 2k where k ∈ Z+ ∪ 0{ }, it
is obvious that F(r2k)< 0. Since G′(r2k)< 0, we can conclude
that it is satisfying the Pontryagin Condition:

G′ r2k( 􏼁F r2k( 􏼁> 0. (37)

Next, for j � 2k + 1 where k ∈ Z+ ∪ 0{ }, using the similar
argument as given in (32) yields G′(r2k+1)> 0. Based on the
monotonicity of [r2k+1] converging to (2k + 1)π,
limy⟶(2k+1)π+ F(y) �∞, and we can conclude that
F(r2k+1)<F(2k + 3) for all k ∈ Z∪ 0{ }. +e illustration of
F(rj) can be seen in Figure 2. Since F(r∗)> 0, we obtain that
F(2k + 1)> 0. According to this, the Pontryagin Condition
also holds for all k ∈ Z∪ 0{ }.

G′ r2k+1( 􏼁F r2k+1( 􏼁> 0. (38)

We have shown that the Pontryagin Condition is sat-
isfied for nonnegative domain. Next, using the properties
that F(y) and G′(y) are both even functions, we obtain that

F −rj􏼐 􏼑G′ −rj􏼐 􏼑 � F rj􏼐 􏼑G′ rj􏼐 􏼑> 0. (39)

+e proof is complete.
Next, whether the stability behavior of the equilibrium is

changed by the existence of the delay or not will be
discussed. □

4. Bifurcation Analysis for Delay Parameter

A bifurcation analysis for the expansion of the model with
parameterized logistic growth has been carried out in [24].
At the beginning, we have discussed that the positive
equilibrium point is asymptotically stable for nondelay case.
Due to the continuity of the delay, the following theorem
shows that there exists 􏽢τ > 0 such that interior equilibrium
point will remain asymptotically stable for every τ ∈ [0, 􏽢τ).
However, one should check whether the stability behavior is
preserved or changed by the existence of the delay. +ere-
fore, we will also investigate whether there is τ0 such that E3
changes stability to τ > τ0. If there is, then this equilibrium
point is called conditionally stable. In this chapter, we will

look for when the Hopf bifurcation occurs with respect to
the delay parameter and then analyze the characteristic if
there is a small change at the bifurcation point.

Theorem 7. For delay case, there exists 􏽢τ such that the E3
equilibrium point of System (1) is asymptotically stable for
every τ ∈ [0, 􏽢τ).

Proof. By the continuous dependence of roots of (16) and
+eorem 2, there exists 􏽢τ such that Re(λ(τ))< 0 for
τ ∈ [0, 􏽢τ).

It is well known from the stability theory of linear time-
invariant time-delayed systems (LTI-TDS) that the pure
imaginary characteristic roots are the only possible transi-
tion points from stable to unstable behavior, and vice versa
[27]. First, we consider looking for the existence of these
bifurcation points. +e bifurcation point is reached when
v � 0 and the first partial derivative with respect to w of the
characteristic function is not equal to zero. Suppose that λ �

iw(w> 0) is the root of (16).

−e
− iwτ

E + D − iTw − w
2

� 0. (40)

Separating the real and imaginary parts yields

−w
2

+ D � E cos(wτ), (41)

Tw � E sin(wτ). (42)

Squaring the two sides and adding them together will
give a quartic polynomial given in

−w
2

+ D􏼐 􏼑
2

+ T
2
w

2
� E

2
. (43)

Expanding this formula yields

w
4

+ T
2

− 2D􏼒 􏼓w
2

+ D
2

− E
2

� 0. (44)

By considering (43) as a quadratic equation for a new
variable w2, the solution to this equation can be expressed in
terms of

P
0
 (r

0
, G' (r

0
))

P
1
 (r

1
, G' (r

1
))

P
2
 (r

2
, G' (r

2
))

P
3
 (r

3
, G' (r

3
))

G' (y) = –2y sin (y)–T cos (y)+
Ty

sin (y)
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Figure 1: +e graph of G′(y) and its value at the roots of G(y), rj

in positive domain.
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Figure 2:+e graph of F(y) and its value at the roots of G(y), rj in
positive domain.
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w
2
1,2 � −

1
2
T
2

+ D ±
1
2

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

. (45)

In the following lemma, we present sufficient and nec-
essary conditions on which there is only one positive root for
w2. Consequently the characteristic in (16) has exactly two
imaginary roots, ±iw0. □

Lemma 1. Suppose that D
2

− E
2 < 0, and T

4
− 4 DT

2
+

4E
2 > 0. ,e characteristic in (16) has only two pure imagi-

nary roots, ±iw0, where

w0 � −
1
2
T
2

+ D +
1
2

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

􏼢 􏼣

1/2

, (46)

for

τn �
1

w0
cos− 1 1

E
D − w

2
0􏼐 􏼑􏼒 􏼓 +

2nπ
w0

, n ∈ N. (47)

Proof. Use the properties of real numbers. For p> 0,�����
s2 + p

􏽰
> |s|≥ ± s. According to these properties, by taking

s � T
2

− 2D and p � 4(E
2

− D
2
), we can derive that

w
2
1 � −

1
2
T
2

+ D +
1
2

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

> 0, (48)

w
2
2 � −

1
2
T
2

+ D −
1
2

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

< 0. (49)

Suppose that w0 is the characteristic root of (16). Since
we only consider for w0 real number, the only positive real
root is given in (47), w0 �

���

w2
1

􏽱

. Moreover, by substituting
w � w0 into (40) one obtains that the value of τ is given by
(1). +is completes the proof.

From these results, we can conclude that when the delay
time reaches τ � τn, we get a pure imaginary characteristic
root. Consequently, the solution of the system is a periodic
solution. Subsequently, the smallest bifurcation value is
achieved for τ � τ0 where

τ0 �
1

w0
cos− 1 1

E
D − w

2
0􏼐 􏼑􏼒 􏼓. (50)

Since τ0 is the smallest bifurcation point, according to
+eorem 7, we can conclude that the zero solution of the
characteristic equation is asymptotically stable for
τ ∈ [0, τ0). In the following theorem, we will show that there
is a change in the stability properties before and after the
bifurcation point by referring to the first derivative of the
real part of the characteristic root at the equilibrium point.
Suppose that the eigenvalues are expressed as a function of
delay, λ(τ) � v(τ) + iw(τ). □

Theorem 8. Let λ(τ) � v(τ) + iw(τ) be the root of (16)
satisfying v(τ0) � 0, w(τ0) � w0 defined by (45); then the
following transversality condition holds:

dv(λ)

dτ

􏼌􏼌􏼌􏼌􏼌􏼌 v�0,w�w0 ,τ�τ0( )
> 0. (51)

Proof. Differentiating the characteristic in (16) with respect
to τ and using the implicit function theorem yield

2λ
dλ
dτ

− T
dλ
dτ

− Ee
− λτ

−τ
dλ
dτ

− λ􏼠 􏼡 � 0,

or
dλ
dτ

�
−Eλe

− λτ

2λ − T + Eτe
−λτ .

(52)

Next, it will be shown that the derivative at the bifur-
cation value is nonzero. According to the characteristic
equation, we use

e
− λτ

�
λ2 − Tλ + D

E
. (53)

We obtain that the first derivative of the real part of eigen
value with respect to τ at bifurcation point (τ0, w0) is

dv

dτ
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌 0,ω0 ,τ0( )
�

w
2
0T

2
+ 2w

4
0 − 2w

2
0D

Z0
, (54)

where Z0 � (τw2
0 + τD − T)2 + (2w0 − τTw0)

2. From (47),
since w2

0 � w2
1, one obtains that w2

0T
2

+ 2w4
0−

2w2
0D � w2

0(T
2

+ 2w2
0 + 2 E

2
) � w2

0

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

> 0.
+erefore, both the numerator and the denominator of the
first derivative are positive. In other words,

dv(λ)

dτ

􏼌􏼌􏼌􏼌􏼌􏼌 v�0,w�w0 ,τ�τ0( )
> 0. (55)

+erefore, the transversality condition holds.
Another possibility for the roots of (42) is that both roots

are positive.+e sufficient and necessary condition on which
there are two positive roots for w2 is given in Lemma 2. □

Lemma 2. Suppose that D
2

− E
2 > 0, T

2
− 2D< 0, and

T
4

− 4DT
2

+ 4E
2 > 0. ,e characteristic in (16) has two pure

positive imaginary roots, iw ±0 , where

w
±
0 � −

1
2
T
2

+ D ±
1
2

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

􏼢 􏼣

1/2

. (56)

+is is for

τn �
1

w
±
0
cos− 1 1

E
D − w

±
0( 􏼁

2
􏼐 􏼑􏼒 􏼓 +

2nπ
w
±
0

, n ∈ N. (57)

Proof. +e third condition implied that the characteristic
roots are real number. Moreover, note that

w
+
0 + w

−
0 � −T

2
+ 2D> 0,

w
+
0 × w

−
0 � D

2
− E

2 > 0.
(58)

+e multiplication of two real numbers is positive;
therefore both numbers are positive or negative. Since the
summation is also positive, we can conclude that both
numbers are positive.
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In the following theorem, we will show that if the
conditions are satisfied, then there is a change in stability for
the given delay value. □

Theorem 9. Let λ(τ) � v(τ) + iw(τ) be the root of (16)
satisfying v(τ0) � 0, w(τ ±0 ) defined in (55); the following
transversality condition holds:

dv(λ)

dτ v�0,w�w+
0 ,τ�τ+

0( )
> 0,

dv(λ)

dτ

􏼌􏼌􏼌􏼌􏼌􏼌 v�0,w�w−
0 ,τ�τ−

0( )
< 0. (59)

Proof. Similar to +eorem 8, we obtain that

dv

dτ
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌 v�0,w�w−
0 ,τ�τ−

0( )
�

w
+
0 T

2
+ 2w

+2
0 − 2D􏼒 􏼓

Z
+
0

�
w

+2
0

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

Z
+
0

> 0,

dv

dτ
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌 v�0,w�w−
0 ,τ�τ−

0( )
�

w
−
0 T

2
+ 2w

−2
0 − 2D􏼒 􏼓

Z
−
0

� −
w

−2
0

���������������

T
4

− 4 DT
2

+ 4E
2

􏽱

Z
−
0

< 0.

(60)

Z ±0 � (τw ± 20 + τD − T)2 + (2w ±0 − τTw ±0 )2.
From the result in +eorems 8 and 9, we can conclude

that the positive equilibrium of System (1) is conditionally
stable if it is satisfying sufficient conditions given in Lemma
1 or Lemma 2. Otherwise, it is absolutely stable equilibrium
point. Next, the results of the numerical analysis show the
effect of the presence of delay on the system solution for the
initial value around the positive equilibrium point. □

5. Numerical Simulation

In this section, we would like to verify the results from the
previous sections by showing some numerical simulations.
Here, we consider the parameter values given in [10].

r1 � 40, K � 100, r2 � 2, a � 0.05, b � 0.02, β � 0.003. (61)

+e equilibrium points for this set of parameters are

E0(0, 0), E1(100, 0), E2(0, 99.85), E3(10.5295, 89.4258).

(62)

Here we consider the positive equilibrium point E3 which
later in the figures will be depicted as star∗. Using these
parameter values, we obtain that

D � 7.604830378, T � −6.000317366, E � 7.533271847.

(63)

Since this satisfies the first condition of +eorem 6, we
can see that the unstable condition holds whenever the
second condition is not satisfied. However, the coefficient of
function G(y) is also dependent on the delay and the for-
mula of the first positive root of G(y) has not been provided.
+erefore, we analyze the stability properties of this model
using the bifurcation analysis of the delay term given in
Lemmas 1 and 2.

Here, we take x0 � 10 and y0 � 88 as the constant initial
population of prey and predator which is close to the positive
equilibrium point. For τ � 0, as given in the phase portrait in
Figure 3(a) and the solution graph for the predator in
Figure 3(b), we can see that the solution converges to E3. Let
us perform comparison to the models with delay, for τ � 2
and τ � 40.
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Figure 3: Nondelay case, τ � 0. (a) +e phase portrait; (b) the number of predators converging to the equilibrium point.
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For τ � 2, we have D
2

− E
2

� 1.08326036,
T
2

− 2D � 20.79414773, and T
4

− 4DT
2

+ 3E � 428.063539.
Since the conditions in both Lemmas 1 and 2 are not
satisfied, we can conclude that this equilibrium point is
absolutely stable. However, the populations reach oscilla-
tion near the equilibrium point and as the time goes they
converge to their equilibrium value as seen in Figure 4.
+ough different property is shown for τ � 40, it also
converges to equilibrium point. +is behavior can be seen
in Figure 5.

6. Concluding Remarks

In this paper, we have provided the formula of the positive
equilibrium point and the condition of its existence. For
nondelay case, the stability of this point is asymptotically stable
and, due to the continuity property, this behavior remains
stable for some interval delay time. However, the existence of
delay could change the stability behavior of the equilibrium
point. As can be seen in this paper that we have not provided
the stability conditions for D< 0, according to +eorem 4 one

of the conditions for this case is that D should be less than T.
Nevertheless, the analytical explanation according to Pon-
tryagin +eorem for this case has not been discussed before.
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Figure 4: Delay case, τ � 2. (a) +e phase portrait; (b) the number of predators with short delay.
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