
Research Article
Existence of Strong Solutions for Nonlinear Systems of PDEs
Arising in Convective Flow

Khaled Bouazzaoui ,1 Mohammed Aiboudi,1 and Sameh Elsayed Ahmed 2
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In this paper, we will study the existence of strong solutions for a nonlinear system of partial differential equations arising in convective
flow, modeling a phenomenon of mixed convection created by a heated and diving plate in a porous medium saturated with a fluid.
)e main tools are Schäfer’s fixed-point theorem, the Fredholm alternative, and some theorems on second-order elliptic operators.

1. Introduction

In recent years, many authors have studied the case of the
semi-infinite vertical plane plate immersed in a porous
medium saturated with a fluid. )e following problem is
derived from this phenomenon:
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(1)

with mixed boundary conditions

zxΨ(x, 0) � − ωx
(m− 1)/2

,

T(x, 0) � Tω(x) � T∞ + Ax
m

,

zyΨ(x,∞) � 0, T(x,∞) � T∞,

(2)

where (x, y) is the rectangular Cartesian coordinates system.
)e constants k and λ depend on the density, the viscosity,
and the thermal expansion coefficient of the fluid. )ey also
depend on the permeability and the thermal diffusivity of the
saturated porous medium.

In the framework of boundary layer approximations, by
introducing similarity variables, we can transform the sys-
tem of partial differential equations into a system of ordinary
differential equations of the third order with appropriate
boundary values (see [1], p.3). )ese two-point boundary
value problems can be studied by using a shooting method
(see for example [2, 3]). For the auxiliary dynamical system,
we refer the reader to [4]. For an integral equation, we refer
the reader to [5]. For nonstandard analysis techniques, we
refer the reader to [6]. For numerical method, we refer the
reader to [7]. )e second natural way of dealing with this
problem, which is the framework of this paper, is straightly
related to the coupled partial differential equations (see
[1, 8, 9]).

)e aim of this paper is to generalize the existence of
strong solutions of the problem introduced in [1, 8, 9]. More
precisely, we will give new results about the existence of
strong solutions, in particular, without assuming that ‖Ψ‖H2

is small (as in [8], )eorem 4). We choose the data (the
function K) in the larger space inspired by other works, and
we will give conditions which make each solution in
(C∞(Ω))2.

Let us introduce now the problem in which we are in-
terested. Let Ω be a bounded domain of R2 whose boundary
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Γ � zΩ is sufficiently smooth and divided into two parts
Γ1 and Γ2 such that meas(Γ1)≠ 0 and

Γ1 ∪ Γ2 � Γ,

Γ1 ∩Γ2 � ∅.
(3)

On Ω, we consider the boundary value problem defined
by

ΔΨ � K · ∇T a.e. Ω, (4)

λΔT � ∇T · ∇Ψ⊥, a.e .Ω, (5)

with boundary conditions

Ψ � 0 on Γ1,

zΨ
z]

� 0 on Γ2,
(6)

T � Tω on zΩ , (7)

where λ is a strictly positive constant, ] is the unit outward
normal vector on zΩ, and ∇Ψ⊥ � (zyΨ, − zxΨ).

2. Preliminaries

In this section, we will introduce the notations, definitions,
and preliminary facts which are used throughout the paper.

2.1. Sobolev Spaces and Notations. For a positive integer k

and for 1≤p≤∞, the Sobolev space is defined as follows:

W
k,p

(Ω) � u ∈ L
p
(Ω), ∀α ∈ N2 with |α|

≤ k: D
α
(u) ∈ L

p
(Ω),

(8)

where Dα(u) is the α-derivative of u in the sense of dis-
tributions. For p � 2, we denote by Hk(Ω) the space
Wk,2(Ω). )e boundary space is defined as

B
k− (1/p),p

(zΩ) � the space of boundary valuesφ of functions u ∈ W
k,p

(Ω) , (9)

1<p<∞, equipped with the norm

‖φ‖Bk−(1/p),p � inf ‖u‖Wk,p : u|zΩ � φ . (10)

)roughout the paper, we use the following notations:

(i) Wk,2(Ω) � Hk(Ω), Bk− (1/2),2(zΩ) � Hk− (1/2)(zΩ),
and C is Poincaré’s constant of Ω

(ii) D(Ω, Γi) � u ∈ D(Ω): Ip(u)∩ Γi � ∅ ∪p(u)

(iii) W
1,p
0 (Ω, Γi) � D(Ω, Γi)

W1,p(Ω)
, W

1,p
0 (Ω) �

W
1,p
0 (Ω, Γ0), and W1,2

0 (Ω) � H1
0(Ω)

(iv) ‖ · ‖p, 1≤p≤∞, is the norm of Lp(Ω) (or the norm
of Lp(Ω) × Lp(Ω))

(v) ‖ · ‖ is the norm of L(E, F), i.e., the space of linear
operators from E into F (normed spaces)

2.2. Variational Formulation. Let us assume

Tω ∈ H
3/2

(zΩ). (11)

)en, from the existence and uniqueness theorem for the
Dirichlet problem for strong solutions (see [10], )eorem
5.13), there exists a unique function Θ ∈ H2(Ω) satisfying

ΔΘ � 0 a.e. Ω,

Θ � Tω on zΩ .
 (12)

Furthermore, Θ ∈ L∞(Ω) and ∇Θ ∈ (L4(Ω))2. For the
coefficient K � (k1, k2), it is supposed that

K ∈W
4
2(div,Ω), (13)

where

W
p
q (div,Ω) � f ∈ L

p Ω,R
2

 : div(K) ∈ L
q
(Ω) . (14)

Let us notice that D(Ω,R2) is dense in W4
2(div,Ω) (see

[11], Proposition 3.57). Let us set H � T − Θ. )en, (Ψ, T) is
the solution of problem (5)–(7) if and only if (Ψ, H) is the
solution of the problem

ΔΨ � K · ∇(H + Θ) a.e. Ω, (15)

λΔH � ∇H · ∇Ψ⊥ + ∇Θ · ∇Ψ⊥ a.e. Ω, (16)

with boundary conditions

Ψ � 0 on Γ1,

zΨ
z]

� 0 on Γ2,
(17)

H � 0 on zΩ . (18)

Let us assume that (Ψ, H) ∈ (H2(Ω))2 is a solution of
problem (15)–(18). Multiplying equation (15) by a function
u ∈ H1

0(Ω, Γ1) and equation (16) by a function v ∈ H1
0(Ω),

integrating on Ω, and using Green’s formula, we yield

(∇Ψ,∇u) � − (K · ∇(H + Θ), u), ∀u ∈ H
1
0 Ω, Γ1( ,

λ(∇H,∇v) � − v∇H,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( , ∀v ∈ H
1
0(Ω),

⎧⎨

⎩

(19)

where
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(f, g) � 
Ω

fg. (20)

3. Main Results

We start with the following lemma which plays a key role in
our main results.

Lemma 1. Let Ψ ∈W1,4(Ω). 4e function H ≡ 0 is the
unique solution of problem

λΔH − ∇H · ∇Ψ⊥ � 0 a.eΩ,

H � 0 on zΩ ,

⎧⎨

⎩ (21)

in the space H2(Ω)∩H1
0(Ω).

Proof. It is clear that H ≡ 0 is the solution of problem (21).
)en, if H ∈ H2(Ω)∩H1

0(Ω) satisfies λΔH − ∇H · ∇Ψ⊥ � 0,
multiplying the members of this equation by H, we get

λHΔH � H∇H · ∇Ψ⊥, a.e. onΩ. (22)

By integration on Ω, we get

λ
Ω

HΔH � − λ‖∇H‖
2
2

� 
Ω

H∇H · ∇Ψ⊥

� ∇H · ∇Ψ⊥, H( .

(23)

On the other hand, we have

∇H · ∇Ψ⊥ � div H∇Ψ⊥(  − Hdiv ∇Ψ⊥( 

� div H∇Ψ⊥( ,
(24)

because div(∇Ψ⊥) � 0, in the sense of distributions. Since
∇H · ∇Ψ⊥ ∈ L2(Ω), div(H∇Ψ⊥) ∈ L2(Ω), and hence, by the
density of D(Ω) in H1

0(Ω) (when Ω is at least a Lipschitz
open set), we have

− λ‖∇H‖
2
2 � div H · ∇Ψ⊥( , H( H− 1(Ω),H1

0(Ω)

� − H · ∇Ψ⊥,∇H( 

� − ∇H · ∇Ψ⊥, H( 

� λ‖∇H‖
2
2,

(25)

that is, ‖∇H‖2 � 0. )us, H � 0. □

Remark 1. From the proof of the previous lemma, we ob-
serve that for all H ∈ H2(Ω)∩H1

0(Ω) and Ψ ∈W1,4(Ω), we
have

H,∇H · ∇Ψ⊥(  � 0. (26)

)us, by the density of D(Ω) in H1
0(Ω) and by the

embedding H1(Ω)↬L4(Ω), we can easily show that for all
H ∈ H1

0(Ω) and Ψ ∈W1,4(Ω), we have

H,∇H · ∇Ψ⊥(  � 0. (27)

Now, we will prove the following proposition which
plays an important role in proving our main results.

Proposition 1. Let us assume that zΩ is of class C1,1 and
Ψ ∈W1,4(Ω). 4en, for all f ∈ L2(Ω), the equation

λΔH − ∇H · ∇Ψ⊥ � f a.e. Ω (28)

has exactly one solution H in the space H2(Ω)∩H1
0(Ω).

Proof. Let us consider

TΨ: H
2
(Ω)∩H

1
0(Ω)⟶ L

2
(Ω), (29)

defined by

TΨ(H) � ∇H · ∇Ψ⊥,

T: H
2
(Ω)∩H

1
0(Ω)⟶ L

2
(Ω),

(30)

where the operator is defined by

T(H) � λΔH. (31)

)en, it is clear that for all H ∈ H2(Ω)∩H1
0(Ω), we have

λΔH − ∇H · ∇Ψ⊥ � f⟺T(H) − TΨ(H) � f. (32)

From the existence and uniqueness theorems for the
Dirichlet problem for strong solutions (see [12], )eorem
9.15, Lemma 9.17, problem 9.8) combined with the open
mapping theorem (see [13], Corollary 2.7), the operator T is
invertible. On the other hand, we can write TΨ � φ2 ∘φ1
where

φ1: H
2
(Ω)∩H

1
0(Ω)⟶ L

4
(Ω) 

2
, (33)

defined by

φ1(H) � ic ∘ j( (H), (34)

with j as the operator from H2(Ω)∩H1
0(Ω) into (H1(Ω))2

defined by j(H) � ∇H and ic � (ic, ic), where
ic: H1(Ω)↬L4(Ω), and

φ2: L
4
(Ω) 

2
⟶ L

2
(Ω), (35)

defined by

φ2(ξ) � ξ · ∇Ψ⊥. (36)

)en, TΨ is compact. Indeed, φ1 is continuous because
ic and j are continuous, and the operator ic is compact
(Rellich–Kondrachov theorem); it is clear that φ2 is con-
tinuous. Now, it is easy to show that for all
H ∈ H2(Ω)∩H1

0(Ω), (32) holds, if and only if

H − T
− 1 ∘TΨ (H) � T

− 1
(f) (37)

holds. By Lemma (21), H ≡ 0 is the unique solution of
equation

T(H) − TΨ(H) � 0, (38)
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in the space H2(Ω)∩H1
0(Ω). Hence, from the Fredholm

alternative, equation (28) has exactly one solution
H ∈ H2(Ω)∩H1

0(Ω). Besides

‖H‖H2 ≤ I − T
− 1 ∘TΨ 

− 1�����

����� · T
− 1����

���� · ‖f‖2, (39)

as needed. □

Lemma 2. Under the assumptions of the previous proposi-
tion, the mapping L from W1,4(Ω) into H1

0(Ω) is defined by
L(Ψ) � H where

λΔH − ∇H · ∇Ψ⊥ � ∇Θ · ∇Ψ⊥ a.eΩ,

H � 0 on zΩ .

⎧⎨

⎩ (40)

(Then, L � i ∘ (I − T− 1 ∘TΨ)
− 1with i: H2(Ω)↬H1(Ω)) is

continuous. Moreover, there exists R> 0 such that for all
Ψ ∈W1,4(Ω), if L(Ψ) � H,

|H + Θ|≤R. (41)

Proof. Let Ψ ∈W1,4(Ω) and let H ∈ H2(Ω)∩H1
0(Ω) be the

unique solution of problem (40). Let (Ψn)n be a sequence of
elements in D(Ω) converging to Ψ in W1,4(Ω). )en, there
exists a sequence (Hn)n of elements in H2(Ω)∩H1

0(Ω)

satisfying

λΔHn − ∇Hn · ∇Ψ⊥n � ∇Θ · ∇Ψ⊥n ,

Hn � 0 on zΩ .

⎧⎨

⎩ (42)

)en, for all n ∈ N, Hn + Θ is the solution of the problem

λΔW − ∇W · ∇Ψ⊥n � 0,

W � Tω on zΩ .

⎧⎨

⎩ (43)

By the weak maximum principle theorem (see [12],
)eorem 8.1), for all n ∈ N, we have

− sup
zΩ

Tω


≤Hn + Θ≤ sup
zΩ

Tω


, (44)

and by variational formulation (system (19)), we have

λ(∇H,∇v) � − v∇H,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( , ∀v ∈ H
1
0(Ω),

λ ∇Hn,∇v(  � − v∇Hn,∇Ψ⊥n(  − v∇Θ,∇Ψ⊥n( , ∀v ∈ H
1
0(Ω).

⎧⎨

⎩

(45)

Replacing v by H − Hn and using Remark 1, we give

λ ∇ Hn − H( 
����

����
2
2 � − H − Hn( ∇H,∇Ψ⊥( 

+ H − Hn( ∇Hn,∇Ψ⊥n( 

+ H − Hn · ∇Θ,∇ Ψn − Ψ( 
⊥

 

� Hn∇H,∇Ψ⊥(  + H∇Hn,∇Ψ⊥n( 

+ H − Hn · ∇Θ,∇ Ψn − Ψ( 
⊥

 .

(46)

On the other hand, for W � H − Hn, we have

W · ∇Θ,∇Ψ⊥(  � 
Ω

Wdiv Θ · ∇Ψ⊥( (

− W · Θ · div ∇Ψ⊥( ( 

� − 
Ω
Θ · ∇W · ∇Ψ⊥,

� − Θ∇W,∇Ψ⊥( .

(47)

Similarly, (H∇Hn,∇Ψ⊥n ) � − (Hn∇H,∇Ψ⊥n ). We replace
the previous inequality in inequality (46), and we use Re-
mark 1, to get

λ ∇ H − Hn( 
����

����
2
2 � Hn∇H,∇Ψ⊥(  − Hn∇H,∇Ψ⊥n( 

+ Θ∇ H − Hn( ,∇ Ψ − Ψn( 
⊥

 ,

� Hn∇H,∇ Ψ − Ψn( 
⊥

 

+ Θ∇ H − Hn( ,∇ Ψ − Ψn( 
⊥

 

� Hn∇ H − Hn( ,∇ Ψ − Ψn( 
⊥

 

+ Θ∇ H − Hn( ,∇ Ψ − Ψn( 
⊥

 

� Hn + Θ( ∇ H − Hn( ,∇ Ψ − Ψn( 
⊥

 ,

≤ Hn +Θ
����

����∞ ∇ Hn − H( 
����

����2 ∇ Ψn − Ψ( 
����

����2.

(48)

)us,

∇ H − Hn( 
����

����2≤
R

λ
∇ Ψn − Ψ( 

����
����2⟶ 0 as n⟶∞, (49)

with

R � sup
zΩ

Tω


. (50)

)en, there exists a subsequence (Hnk
)k of the sequence

(Hn)n converging almost everywhere to H. )at is,

|H +Θ|≤R. (51)

From inequality (49), we get, for all Ψ1,Ψ2 ∈W1,4(Ω),

∇ H1 − H2( 
����

����2≤
R

λ
∇ Ψ1 − Ψ2( 

����
����2

≤C″ ∇ Ψ1 − Ψ2( 
����

����4,

(52)

where C″ > 0 depends only on Ω, R, and λ, as needed. □

Remarks 2

(1) )e main advantage of Proposition 1 (particularly,
Fredholm’s alternative) is the generalization of the
results ([8], )eorem 1 and )eorem 4, and [1],
)eorem 4), and more precisely, it leads us to show
that there exist strong solutions to problem (15)–(18)
without assuming that ‖Ψ‖H2 is bounded by certain
constants and without assuming that ‖K · ∇Θ‖2 is
quite small.
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(2) )e previous lemma is similar to Lemma 3.1 in [8],
but in this paper, we have seen a new technique for
its proof (it is proved by a weak maximum principle).

)e following proposition is useful.

Proposition 2. Let us assume, in addition to assumptions
(11)–(13), that zΩ is of class C1,1, Γ1 � zΩ, and K ∈ (D(Ω))2.
4en, problem (15)–(18) have at least one solution (Ψ, H) in
the space (W2,4(Ω))2.

Proof. For all H ∈ H1
0(Ω), we have K · ∇(H +Θ) ∈ L2(Ω).

)en, from the existence and uniqueness theorem for the
Dirichlet problem for strong solutions ([12], )eorem 9.15),
the problem

ΔΨ � K · ∇(H + Θ) a.e. Ω,

Ψ � 0 on zΩ ,
 (53)

has exactly one solution Ψ ∈ H2(Ω). Besides, there exists
C> 0 such that

‖Ψ‖H2 ≤C‖K · ∇(H + Θ)‖2, (54)

(see [12], Lemma 9.17). Let us denote by Λ the application
from H1

0(Ω) into H2(Ω) defined by Λ(H) � Ψ, and let us
consider the application J: H1

0(Ω)⟶ H1
0(Ω) defined by

J � L ∘ i ∘ Λ, (55)

with L given in Lemma 2 and i: H2(Ω)↬W1,4(Ω). )en, we
have

J(H) � L ∘ i ∘ Λ(H), ∀H ∈ H
1
0(Ω), (56)

that is, the set of the solutions of problem (15)–(18) is

(Λ(H), H)such thatH ∈ H
2
(Ω)∩H

1
0(Ω) and J(H) � H .

(57)

)en, J is continuous and compact. Indeed, L andΛ are
continuous because for Ψi � Λ(Hi), i � 1, 2, we have

Λ Ψ1(  − Λ Ψ2( 
����

����H2 ≤C‖K‖∞ ∇ H1 − H2( 
����

����2, (58)

and the continuity of L has been proved in Lemma 2. By the
Rellich–Kondrachov theorem, we can easily show that i is
compact. Now, let H be in the set

A � H ∈ H
1
0(Ω): H � εJ(H) for some ε ∈ [0, 1] . (59)

)en, there exists ε ∈ [0, 1] such that

ΔΨ � εK · ∇H + K · ∇Θ, a.eΩ,

λΔH − ∇H · ∇Ψ⊥ � ∇Θ · ∇Ψ⊥, a.eΩ,

Ψ � 0 on zΩ ,

H � 0 on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

By the variational formulation, the previous problem is
equivalent to

(∇Ψ,∇u) � − (K · ∇(εH + Θ), u), ∀u ∈ H
1
0(Ω),

λ(∇H,∇v) � − v∇H,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( , ∀v ∈ H
1
0(Ω).

⎧⎨

⎩

(61)

From the first equation in system (61), we have

‖∇Ψ‖
2
2 � − ε(K · ∇H,Ψ) − (K · ∇Θ,Ψ)

� ε((Hdiv(K),Ψ) − (div(HK),Ψ)) − (K · ∇Θ,Ψ)

� ε((Hdiv(K),Ψ) +(HK,∇Ψ)) − (K · ∇Θ,Ψ)

≤R′‖div(K)‖2‖Ψ‖2 + R′‖K‖2‖∇Ψ‖2 +‖K‖4‖∇Θ‖4‖Ψ‖2,

(62)

with R′ � R′(Θ,Ω). Hence,

‖∇Ψ‖2 ≤CR′‖div(K)‖2 + R′‖K‖2 + C‖K‖4‖∇Θ‖4. (63)

Now, from the second equation in system (61), since
(H∇H,∇Ψ⊥) � 0 (see Remark 1) and
(H∇Θ,∇Ψ⊥) � − (Θ∇H,∇Ψ⊥) (the same method as the one
used to get inequality (47)), we have

‖∇H‖2 ≤
‖Θ‖∞
λ

‖∇Ψ‖2. (64)

From inequalities (63) and (64), we deduce that
‖H‖H1 <∞, i.e., A is bounded. From Schäfer’s fixed-point
theorem (see [14], )eorem 11.1, p.59), we deduce that J has
at least one fixed point H ∈ H2(Ω)∩H1

0(Ω). )at is,
(Λ(H), H) is the strong solution of problem (15)–(18).
Furthermore, K · ∇(H + Θ) ∈ L4(Ω). )us, Ψ ∈W2,4(Ω),
i.e., ∇Ψ ∈ (L∞(Ω))2. Hence, H ∈W2,4(Ω), as needed. □

Remark 3. From the previous proof, it is observed that
under the assumptions

K ∈ L
∞

(Ω) × L
∞

(Ω),

div(K) ∈ L
∞

(Ω),
(65)

the previous result (the previous proposition) is still valid,
which is the generalization of ([8], )eorem 1 and )eorem
4). In addition, Proposition 1 helps us to generalize the
previous result in the case where K ∈W4

2(div,Ω).

Now, we are going to generalize the previous result in the
case where K ∈W4

2(div,Ω). To this end, we start with the
following remark.

Remark 4. Let (Ψ, H) ∈ (W2,4(Ω)∩W1,4
0 (Ω))2 be a solu-

tion of the problem

ΔΨ � K · ∇H + K · ∇Θ, a.e.Ω,

λΔH − ∇H · ∇Ψ⊥ � ∇Θ · ∇Ψ⊥, a.e.Ω,

Ψ � 0 on zΩ ,

H � 0 on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(66)

)en, from the first equation with boundary conditions,
for all u ∈ H1

0(Ω), we have
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Ω
∇Ψ · ∇u � − (K · ∇(H + Θ), u)

� − 
Ω

K · ∇H · u − 
Ω

K · ∇Θ · u

� 
Ω

(Hdiv(K) − div(HK)) · u − 
Ω

K · ∇Θ · u

� 
Ω

Hdiv(K) · u − 
Ω
div(HK) · u − 

Ω
K · ∇Θ · u


Ω

Hdiv(K) · u + 
Ω

HK · ∇u − 
Ω

K · ∇Θ · u

� (Hdiv(K), u) +(HK,∇u) − (K · ∇Θ, u).

(67)

Now, from the second equation in system (66) with
boundary conditions, for all v ∈ H1

0(Ω), we have

λ(∇H,∇v) � − v∇H,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( . (68)

On the other hand, we have

H∇v,∇Ψ⊥(  � − v∇H,∇Ψ⊥( , (69)

the samemethod as the one used to get inequality (47).)en,
we have

λ(∇H,∇v) � H∇v,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( . (70)

)ereby, if (Ψ, H) ∈ (W2,4(Ω)∩W1,4
0 (Ω))2 is a solution

of problem (66), then for all u, v ∈ H1
0(Ω), we have

(∇Ψ,∇u) � (K · ∇(H + Θ), u)

� (Hdiv(K), u) +(HK,∇u) − (K · ∇Θ, u),
(71)

λ(∇H,∇v) � H∇v,∇Ψ⊥(  − v∇Θ,∇Ψ⊥( . (72)

Now, we will prove the following result.

Theorem 1. Let us assume, in addition to assumptions
(11)–(13), that zΩ is of class C1,1 and Γ1 � zΩ. 4en, problem
(15)–(18) have at least one solution (Ψ, H) in the space
(W2,4(Ω)∩W1,4

0 (Ω))2.

Proof. Let (Kn)n⊆D(Ω) be a sequence converging to K in
W4

2(div,Ω). )en, from Proposition 2, there exists
(Ψn, Hn)n⊆(W2,4(Ω)∩W1,4

0 (Ω))2 which is bounded in
(H1(Ω))2 and satisfying

ΔΨn � Kn · ∇Hn + Kn · ∇Θ, a.eΩ,

λΔHn − ∇Hn · ∇Ψ⊥n � ∇Θ · ∇Ψ⊥n , a.eΩ,

Ψn � 0 on zΩ ,

Hn � 0 on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(73)

By the compactness of the embedding
H1(Ω)↬Lp(Ω), p≥ 2, there exists a subsequence
(Ψnk

, Hnk
)k of the sequence (Ψn, Hn)n converging weakly in

(H1(Ω))2 and strongly in Lp(Ω), p≥ 2, to an element
denoted (Ψ∗, H∗), and we have H∗ ∈ L∞(Ω). Now, we shall
complete the proof in three steps. □

Step 1. (Ψnk
, Hnk

)k converges in H1 to (Ψ∗, H∗). Indeed,
from Remark 4, for all u ∈ D(Ω), we have

∇ Ψnk+p
− Ψnk

 ,∇u  � Hnk+p
div Knk+p

  − Hnk
div Knk

 , u 

+ Hnk+p
Knk+p

− Hnk
Knk

, u 

− Knk+p
− Knk

 ∇Θ, u 

� Hnk+p
div Knk+p

− Knk
 , u 

+ div Knk
  Hnk+p

− Hnk
 , u 

+ Hnk+p
Knk+p

− Knk
 ,∇u 

+ Knk
Hnk+p

− Hnk
 ,∇u 

− Knk+p
− Knk

 ∇Θ, u .

(74)

)en, for u � Ψnk+p
− Ψnk

, we have

∇ Ψnk+p
− Ψnk

 

������

������

2

2
≤ Hnk+p

�����

�����∞
div Knk+p

− Knk
 

������

������2
Ψnk+p

− Ψnk

�����

�����2

+ div Kk( 
����

����2 Hnk+p
− Hnk

�����

�����4
Ψnk+p

− Ψk

�����

�����4

+ Hnk+p

�����

�����∞
Knk+p

− Knk

�����

�����2
∇ Ψnk+p

− Ψnk
 

������

������2

+ Knk

�����

�����4
Hnk+p

− Hnk

�����

�����4
∇ Ψnk+p

− Ψnk
 

������

������2

+ Knk+p
− Knk

�����

�����4
‖∇Θ‖4 ∇ Ψnk+p

− Ψnk
 

������

������2
.

(75)

By Lemma 2 and the fact that (Kn)n is convergent in
W4

2(div,Ω), we get that there are strictly positive constants
C1, C2, and C3, such that

∇ Ψnk+p
− Ψnk

 

������

������2
≤C1 div Knk+p

− Knk
 

������

������2

+ C2 Knk+p
− Knk

�����

�����4
+ C3 Hnk+p

− Hnk

�����

�����4
.

(76)

)at is, (Ψnk
)k converges strongly to Ψ∗. On the other

hand, for all v ∈ H1
0(Ω), we have

λ ∇Hnk
,∇v  � Hnk

∇v,∇Ψ⊥nk
  − v∇Θ,∇Ψ⊥nk

 , (77)

By the same process as the one used to obtain inequality
(52), we have

∇ Hnk+p
− Hnk

 

������

������2
≤

‖Θ‖∞
λ
∇ Ψnk+p

− Ψnk
 

������

������2
, (78)

that is, (Hnk
)k converges strongly to H∗.

Step 2. (Ψ∗, H∗) satisfies systems (71) and (72). Indeed, for
all u ∈ D(Ω), we have
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Knk
· ∇ Hnk

+Θ , u  � Knk
· ∇ Hnk

− H∗ , u 

+ Knk
· ∇ H∗ + Θ( , u .

(79)
For all u ∈ D(Ω), we have

Knk
∇ Hnk

− H∗ , u 


≤ Knk

�����

�����4
∇ Hnk

− H∗ 
�����

�����2
‖u‖4⟶ 0,

Knk
· ∇ H∗ + Θ( , u  − K · ∇ H∗ + Θ( , u( 



≤ Knk
− K

�����

�����4
∇ H∗ +Θ( 

����
����2‖u‖4⟶ 0.

(80)

Taking the limit as k⟶∞ in (71) when (Ψ, H, K) �

(Ψnk
, Hnk

, Knk
) gives

∇Ψ∗,∇u(  � K · ∇ H∗ + Θ( , u( , ∀u ∈ D(Ω). (81)

Now, for all v ∈ H1
0(Ω), we have

v∇Hnk
, ∇Ψ⊥nk

  � − Hnk
· ∇v,∇Ψ⊥nk

 

� − Hnk
· ∇v,∇ Ψnk

− Ψ∗ 
⊥

 

− Hnk
· ∇v,∇Ψ⊥∗ 

⟶ − H∗ · ∇v,∇Ψ⊥∗( ,

(82)

because

Hnk
· ∇v,∇ Ψnk

− ∇Ψ∗ 
⊥

 




≤R′‖∇v‖2 ∇ Ψnk

− Ψ∗ 
⊥�����

�����2

⟶ 0.

(83)

By the dominated convergence theorem, we have

Hnk
· ∇v,∇Ψ⊥∗ ⟶ H∗∇v,∇Ψ⊥∗( . (84)

Obviously,

∇ Hnk
− H∗ ,∇v , v∇Θ,∇ Ψnk

− Ψ∗ 
⊥

 ⟶ 0. (85)

Taking the limit in (77) as k⟶∞ yields

λ ∇H∗,∇v(  � H∗∇v,∇Ψ⊥∗(  − v∇Θ,∇Ψ⊥∗( . (86)

Step 3. (Ψ∗, H∗) ∈ (W2,4(Ω))2. Indeed

∇Ψ∗,∇u(  � − K · ∇ H∗ + Θ( , u( , ∀u ∈ D(Ω). (87)

Since K ∈ (L4(Ω))2, we have K · ∇(H∗ + Θ) ∈ L4/3(Ω).
)en, from the existence and uniqueness theorems for the
Dirichlet problem for strong solutions and since the
application

(Ψ, u) ∈ H
1
0(Ω) 

2
⟶ (∇Ψ,∇u) (88)

is continuous and coercive, we deduce that
Ψ∗ ∈W2,(4/3)(Ω). )us, ∇Ψ∗ ∈ (W1,(4/3)(Ω))2 in which
W1,(4/3)(Ω)↬L4(Ω) (see [11], )eorem 2.72), that is,
Ψ∗ ∈ (W1,4(Ω))2. )en, from Proposition 1, there exists a
unique H ∈ H2(Ω)∩H1

0(Ω) satisfying

λ(∇H,∇v) − H∇v,∇Ψ⊥∗(  � v∇Θ,∇Ψ⊥∗( , ∀v ∈ H
1
0(Ω),

λΔH − ∇H∇Ψ⊥∗ � ∇Θ∇Ψ⊥∗ .

⎧⎨

⎩

(89)

On the other hand, from Remark 1, the bilinear form

(H, v) ∈ H
1
0(Ω) 

2
⟶ (∇H,∇v) − H∇v,∇Ψ⊥∗(  (90)

is continuous and coercive. )us, from the Lax–Milgram
theorem, we deduce that H � H∗. Hence, K · ∇H∗ ∈ L2(Ω),
that is, K · ∇(H∗ + Θ) ∈ L2(Ω), and thereby, from the ex-
istence and uniqueness theorems for the Dirichlet problem
for strong solutions ([12], )eorem 9.15, problem 9.8) and
from the Lax–Milgram theorem, Ψ∗ is the unique function
in H2(Ω)∩H1

0(Ω) obeying

∇Ψ∗,∇u(  � − K · ∇ H∗ + Θ( , u( , ∀u ∈ H
1
0(Ω),

ΔΨ∗ � K · ∇ H∗ + Θ( .

⎧⎨

⎩

(91)

By the same method as the one used in the previous
proposition, we get

(Ψ, H) ∈ W
2,4

(Ω) 
2
. (92)

)is completes the proof.

Remark 5. Notice that in Step 3 of the previous proof,
Proposition 1 is necessary. Also, we need Lemma 1 and
Remark 1, particularly, (H∇H,∇Ψ⊥) � 0 for H ∈ H1

0(Ω)

and Ψ ∈W1,4(Ω) which is a different result from ([8],
Lemma 2.1) and it is proved by the generalized Green
formula.

In addition to the previous results, we will study the
existence of solutions in Cn(Ω), n≥ 3.

Theorem 2. Let us assume, in addition to the hypotheses of
the previous theorem, that zΩ is of class Cn,
Tω ∈ Hn− (1/2)(zΩ), and K ∈Wn− 2,4(Ω) with n≥ 2. 4en,
problem (15)–(18) have at least one solution (Ψ, H) in the
space Hn(Ω) × Hn(Ω).

Proof. Let us assume n≥ 3, and let (Ψ, H) ∈ (W2,4(Ω))2 be a
solution of problem (15)–(18). )en, we have

∇Ψ,∇H ∈ H
1
(Ω)∩L

∞
(Ω) 

2
. (93)
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On the other hand, from (12) and by the regularity
theorem of elliptic problem ([12], )eorem 8.13), Θ is in
Hn(Ω). It then follows that

zxi
Θ ∈ H

n− 1
(Ω)∩L

∞
(Ω). (94)

Since K ∈ (Wn− 2,4(Ω))2, n≥ 3, we have

K · ∇Θ ∈ H
1
(Ω) ,

K · ∇H ∈ H
1
(Ω).

(95)

From the regularity theorem of elliptic problem ([12],
)eorem 8.13), we deduce that Ψ is in H3(Ω). Hence,

∇Θ · ∇Ψ⊥,

∇H · ∇Ψ⊥ ∈ H
1
(Ω),

(96)

that is, H ∈ H3(Ω). Continuing the above process, we ob-
tain, after n − 2 steps, (Ψ, H) ∈ (Hn(Ω))2. □

Let us denote by c0 the trace operator on zΩ. )en, we
have the following result.

Corollary 1. Let us assume, in addition to the hypotheses of
the previous theorem, that zΩ is of class C∞ and
K ∈ (C∞(Ω))2 and there exists φ ∈ C∞(Ω) such that
c0(φ) � Tω. 4en, problem (15)–(18) have at least one so-
lution (Ψ, H) in the space C∞(Ω) × C∞(Ω).

Remark 6. If Γ1 and Γ2 are closed and open subsets and Ω is
sufficiently smooth (being able to apply Poincaré’s in-
equality), then by applying )eorem 2.24 given in ([15], p.
132) or)eorem 5.8 given in ([16], p. 146), we can prove that
the previous results of the existence of strong solutions are
still valid in the general case where Γ2 ≠∅.

4. Conclusion

In this paper, we study a problem given by two strongly
coupled partial differential equations in a two-dimensional
bounded domain, modeling a phenomenon of convective
flow created by a heated and diving plate in a porous me-
dium saturated with a fluid. We have established the exis-
tence of strong solutions without assuming that ‖Ψ‖H2 is
bounded by a certain constant (nor ‖K∇Θ‖2 is small enough)
and by choosing K in W4

2(div,Ω). Besides, we have added a
new result (which does not exist in the literature) which is
the existence of solutions of class Cn, n≥ 3 (particularly,
solutions of class C∞).

Appendix

Numerical Example

Let us consider a semi-infinite vertical permeable or im-
permeable flat plate embedded in a fluid-saturated porous
medium at the ambient temperature Tb. )e rectangular
Cartesian co-ordinates system is applied with the origin
fixed at the leading edge of the vertical plate. )e x-axis is
directed upward along the plate, and the y-axis normal to it.

m=0.1, 0.2, 0.3, 0.4, 0.5, 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′ 
(η

)

2 4 6 8 10 120
η

Figure 1: Profiles of f′(η) for the case of prescribed heat at c � 0.5.

m=0.2, 0.4, 0.6, 0.8, 1.0, 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 60
η

Figure 2: Profiles of f′(η) for the case of prescribed heat flux at
c � 0.5.

Table 1: Values of f″(0) for the case of prescribed heat at c � 0.5.

M f″(0)

0.1 − 0.383276439
0.2 − 0.446235343
0.3 − 0.501716988
0.4 − 0.551568992
0.5 − 0.597004528
0.6 − 0.638866144

Table 2: Values of f′(0) for the case of prescribed heat flux at
c � 0.5.

M f′(0)

0.2 1.109186225
0.4 1.047023594
0.6 0.998565092
0.8 0.959474627
1.0 0.927113207
1.2 0.899773212

8 International Journal of Differential Equations



It is assumed that the porous medium is homogeneous and
isotropic where all the properties of the fluid and the porous
medium are constants except the density. Also, the flow is
incompressible and follows the Darcy–Boussinesq law.
Based on these assumptions, the following governing
equations are introduced:

z
2Ψ

zx
2 +

z
2Ψ

zy
2 � zyT, (A.1)

z
2
T

zx
2 +

z
2
T

zy
2 � zxTzyΨ − zyTzxΨ, (A.2)

with boundary conditions

zxΨ(x, 0) � − ωx
(m− 1)/2

,

zxT(x, 0) � − x
m

,

T(x, 0) � Tω(x) � Tb + Ax
m

,

(A.3)

zyΨ(x, 0) � x
m

,

zyΨ(x, b) � 0,

T(x, b) � Tb,

(A.4)

with m ∈ R, A, b> 0, λ � 1 and K ≡ (1, 0). )e parameter
ω ∈ R is the mass transfer coefficient where ω � 0 refers to
the impermeable wall. Also, the permeable surface is rep-
resented by ω< 0 for the fluid suction and ω> 0 for the fluid
injection.

Now, a brief discussion for the similarity solutions is
given. Assuming that the convection takes place in a thin
layer around the plate (we can neglect z2Ψ/zx2 and
z2T/zy2) and hence the boundary layer approximation is
obtained:

z
2Ψ

zy
2 �

ρbβ · g

μ
zyT, (A.5)

z
2Ψ

zy
2 � zxTzyΨ − zyTzxΨ, (A.6)

with same boundary conditions (A.3)-(A.4).
For the case of prescribed heat, we introduce the new

dimensionless similarity variables

η � Rax( 
1/2y

x
,

Ψ(x, y) � Rax( 
1/2

f(η),

T(x, y) � Tω(x) − Tb( θ(η) + Tb,

(A.7)

where

Rax �
ρbβ · g Tω(x) − Tb( x

μ
(A.8)

is the local Rayleigh number; equations (A.1) and (A.2) with
boundary conditions (A.3) and (A.4) lead to the third-order
ordinary differential equation

f
‴

+
m + 1
2

ff″ − mf′
2

� 0, (A.9)

on [0, b) subjected to

f(0) � − c,

f′(0) � 1,

f′(b) � 0,

(A.10)

where

c �
2ω

m + 1

��������μ
ρbβ · g · A



. (A.11)

In the case of prescribed heat flux, we introduce the new
dimensionless similarity variables:

η � 3− (1/3)
R

(1/3)
a x

(m− 1)/3
y,

Ψ(x, y) � 32/3R(1/3)
a x

(m+2)/3
f(η),

T(x, y) � 3(1/3)
R

− (1/3)
a x

(2m+1)/3θ(η) + Tb,

(A.12)

where the Rayleigh number is

Ra �
ρbβ · g

μ
. (A.13)

Equations (A.5) and (A.6) with boundary conditions
(A.3) and (A.4) lead to the third-order ordinary differential
equation

f
‴

+(m + 2)ff″ − (2m + 1)f′
2

� 0, (A.14)

on [0, b) subjected to

f(0) � − c,

f″(0) � − 1,

f′(b) � 0,

c �
31/3R− (1/3)

a ω
m + 2

.

(A.15)

In order to show the effectiveness of main results,
numerical results are presented in this part and dis-
cussed. Here, the transformed equations governing the
case of prescribed constant heat and the prescribed heat
flux at c � 0.5 are solved, numerically, using the fourth-
order Runge–Kutta method based on the shooting
technique. )e obtained data are presented in Figures 1
and 2 for f′(η), as well as values of f″(0) and f′(0) are
included in Tables 1 and 2. It is seen that a strong solution
is existed and the behaviors of f′(η) for all values of m are
asymptotic. In addition, the growth in the power index m

has negative impacts on the values of f′(η), f″(0), and
f′(0) due to the decrease in the temperature distribu-
tions at the surface and thickness of the thermal
boundary layers.
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