
Research Article
Solving Nonlinear Fractional PDEs with Applications to
Physics and Engineering Using the Laplace Residual Power
Series Method

Khalid K. Ali ,1 F. E. Abd Elbary,2 Mohamed S. Abdel-Wahed,3 M. A. Elsisy ,3

and Mourad S. Semary3

1Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
2Faculty of Engineering, MTI University, Cairo, Egypt
3Department of Basic Engineering Sciences, Faculty of Engineering at Benha, Benha University, Cairo, Egypt

Correspondence should be addressed to Khalid K. Ali; khalidkaram2012@azhar.edu.eg

Received 29 September 2023; Revised 8 November 2023; Accepted 8 December 2023; Published 27 December 2023

Academic Editor: Igor Freire

Copyright © 2023 Khalid K. Ali et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te Laplace residual power series (LRPS) method uses the Caputo fractional derivative defnition to solve nonlinear fractional
partial diferential equations. Tis technique has been applied successfully to solve equations such as the fractional Kur-
amoto–Sivashinsky equation (FKSE) and the fractional generalized regularized long wave equation (GRLWE). By transforming
the equation into the Laplace domain and replacing fractional derivatives with integer derivatives, the LRPS method can solve the
resulting equation using a power series expansion.Te resulting solution is accurate and convergent, as demonstrated in this paper
by comparing it with other analytical methods. Te LRPS approach ofers both computational efciency and solution accuracy,
making it an efective technique for solving nonlinear fractional partial diferential equations (NFPDEs). Te results are presented
in the form of graphs for various values of the order of the fractional derivative and time, and the essential objective is to reduce
computation efort.

1. Introduction

In recent years, fractional calculus has gained signifcant
attention from scientists and engineers due to its broad
applicability and its ability to capture the complexities of
real-world problems in various felds such as plasma physics,
fuid dynamics, quantum mechanics, optics, and signal
processing. Its use has allowed for a more accurate repre-
sentation of these phenomena and has provided insights that
traditional calculus cannot capture [1, 2]. Fractional partial
diferential equations (FPDEs) are widely used in various
scientifc and technological felds, and many researchers
have been studying them lately. Tese fractional equations
can describe many interesting phenomena in the areas of
fuid and quantum mechanics, waves and optical fber,
electrodynamics, material science, plasma physics, and
more [3, 4].

Numerous techniques have been suggested in previous
studies to solve these equations. Some of these are FADM
[5], RDTM [6], ILTM [7], ETDM [8], and more [9, 10]. Our
goal in this paper is to use LRPSM to solve the following two
equations.

1.1. Fractional Generalized Kuramoto–Sivashinsky Equation.
Te fractional generalized Kuramoto–Sivashinsky equation
is a nonlinear partial diferential equation that can be used to
describe traveling waves in dispersive media, such as plasma
and porous media [11], and also the dynamics of fame
propagation in turbulent combustion. It is a generalization of
the Kuramoto–Sivashinsky equation, which exhibits chaotic
behavior and arises in a wide range of physical systems [12].
Te fractional generalized Kuramoto–Sivashinsky equation
involves fractional derivatives with nonsingular kernels,
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which can capture the memory and nonlocal efects of
complex phenomena.

Te fractional generalized Kuramoto–Sivashinsky
equation is given by the following equation:

D
α
ţφ + φξφ + μφξξ + ϑφξξξ + δφξξξξ � 0, 0< α⩽ 1. (1)

An electrostatic variable is denoted by φ(ξ, ţ), and the
parameters μ, ϑ, and δ are coefcients that determine the
strength of the second-, third-, and fourth-order derivatives,
respectively.Tey can afect the stability and dynamics of the
traveling waves. Te parameter α is the fractional order of
the time derivative, which can capture the memory and
nonlocal efects of complex phenomena.

Te GKSE models various phenomena in science and
engineering, such as chemical reactions, fows, fames, and
reaction-difusion systems. It also occurs in ocean engineering
problems, such as viscous fow, magneto hydrodynamics,
weather and climate, microtide turbulence, and of-shore
industry. Te Kuramoto–Sivashinky equation (KSE) [13] is
a special case of the generalized Kuramoto–Sivashinky (1)
when μ� δ � 1 and ϑ � 0.Te Laplace transformation and the
variational iteration method were used by Shah et al. to solve
(1) [14]. Te modifed Kudrayshov method was used to solve
(1) with μ� δ � ϑ � 1 in [15]. Te approximated solution of
the KSE was analyzed by Veeresha and Prakasha using novel
computational technique [16].

1.2. Te Fractional Generalized Regularized Long Wave
(FGRLW) Equation. A mathematical formula called the
FGRLW equation is used to describe how small-amplitude
extended waves travel through a fuid’s surface, and it also
describes the behavior of long water waves in the ocean,
including their propagation and interaction with diferent
coastal structures. So, it is suitable to investigate this
equation in fractional derivative to predict any unusual
formulation of waves. It can be stated as follows:

D
α
ţφ + φξ + aφξφ

p
− μφξξ ţ � 0, 0< α⩽ 1. (2)

Te FGRLW equation involves several parameters, in-
cluding constant μ, a positive integer a, and the order α of
the fractional derivative Dα

ţ . Tese parameters determine the

behavior of the system and its solutions. Te term Dα
ţφ

represents the time derivative of the dependent variable
φ(ξ, ţ), while φξ represents its spatial derivative. Te term
φξφp is a nonlinear term that describes the efects of wave-
wave interactions. Numerous disciplines, including fuid
dynamics, plasma physics, and quantum mechanics, use the
FGRLW equation extensively. Its solutions exhibit in-
teresting phenomena such as solitary waves, which are waves
that maintain their shape and speed over long distances. Te
study of the FGRLW equation and its solutions can provide
insights into the behavior of complex systems and phe-
nomena in nature.

When p � 1, the equation becomes the regularized long
wave equation, which is a signifcant equation in physics
media. It models phenomena that involve weak nonlinearity

and dispersive waves equation [17]. When p � 2, the
FGRLW becomes a special case that is called the modifed
regularized long wave (FMRLW) equation. Diferent ap-
proaches for solving the GRLW equation have been pro-
posed in the literature. Nuruddeen et al. [18] introduced the
METEM method for solving the FRLW equation. Nikan
et al. used a fnite diference method for solving the FRLW
equation [19]. Te optimal homotopy asymptotic method
was presented by Nawaz et al. [20] for solution for the
DGRLW equation. Also, there are many methods that have
been used to solve this equation.

Tis paper intends to clarify the LRPS, a straightfor-
ward and successful technique for resolving diferential
equations with variable coefcients.Te LRPS method was
suggested in [21, 22] and provides a more straightforward
and precise way to compute solutions for the equations
mentioned earlier. We use the Laplace transform (LT) and
power series method to deal with nonlinear diferential
equations. Tis involves changing the equations to Lap-
lace space and using a suitable expansion to solve the
equation that results from the power series method. To do
this, we have created a new expansion that represents the
solution of the equation in Laplace space. Te coefcients
of the series are then determined by the LRPS method.Te
LRPS method is simpler and more efcient than the
conventional residual power series method, as it de-
termines the coefcients based on the concept of the limit
instead of on fractional derivation. Tis reduces the
calculations, avoiding the need to repeatedly calculate
fractional derivatives as required in the RPS method. Our
suggested approach makes it possible to obtain precise
and accurate approximations by adding a fast convergent
series.

Tis paper consists of the following sections. In Section
1, we explain some important terms and ideas related to
fractional calculus, and in Section 2, we present the specifc
type of fractional series that we will use in our study. Next, in
Section 3, we describe the LRPS method, which is a useful
technique for fnding and predicting unique solutions to
nonlinear fractional diferential equations. Ten, in Section
4, we demonstrate how the LRPS method works on two
diferent diferential equations. In addition, Section 5 shows
graphs of the solutions that we obtained in Section 4. In
Section 6, we discuss the results and their signifcance. Fi-
nally, we conclude by summarizing our main points and
implications.

2. Preliminaries

Here, we introduce fundamental defnitions and concepts of
fractional calculus [23], alongside theorems related to
Laplace transform [21].

Defnition 1. If a real function φ( ţ), where ţ > 0, satisfes the
condition that there exists a real number ρ> υ such that
φ( ţ) � ţρφ1( ţ), where φ1( ţ) ∈ C(0,∞), then it is said to
belong to the space Cυ, where υ ∈ R. Similarly, if it satisfes
the same condition but with ρ> υ being a natural number,
then it is said to belong to the space Cℵυ, where ℵ ∈ N.
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Defnition 2. Te fractional integral of R–L of order α, α> 0
of a function φ( ţ) is defned as follows:

J
αφ( ţ) �

1
Γ(α)

􏽚
ţ

0
( ţ− ζ)

(α− 1)φ(ζ)dζ ,when α> 0, ţ > 0,

J
0φ( ţ) � φ( ţ).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Some properties of Jα are, for c, α⩾ 0, υ⩾ − 1, given by
the following equation:

J
α
J

cφ( ţ) � J
α+c

,

J
α ţψ �

Γ(ψ + 1)

Γ(ψ + α + 1)
ţψ+α

.

(4)

Defnition 3. Caputo fractional derivative is defned as
follows:

D
αφ( ţ) � J

m− α
D

mφ( ţ) �
1
Γ(α)

􏽚
ţ

0
( ţ− ζ)

(m− α− 1)φm
(ζ)dζ,

(5)

for m − 1< α⩽m, m ∈ N, and ţ > 0.

Lemma 4. If m − 1< α⩽m, m ∈ N, and φ(ţ) ∈ Cm
− 1,

D
α
J
αφ( ţ) � φ( ţ),

J
α
D

αφ( ţ) � φ( ţ) − 􏽘
m− 1

k�0
φ(k)

(0)
ţk

k!
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

For further details, see [23]. Because it permits the
formulation of our work by incorporating traditional initial
and boundary conditions, we adopt the Caputo fractional
derivative.

Defnition 5. Suppose we have a function φ(ξ, ţ) that is
piecewise continuous on I × [0,∞) and has an exponential
order of δ. In this case, we can defne the Laplace transform
of φ(ξ, ţ), denoted by Φ(x,S), as follows [24]:

Φ(ξ,S) ≡ Ļ[φ(ξ, ţ)] � 􏽚
∞

0
e

− S ţφ(ξ, ţ)dţ, S> σ, (7)

using inverse Laplace transform.

φ(ξ, ţ) ≡ Ļ− 1
[φ(ξ,S)] �

1
2πi

􏽚
ϵ+i∞

ϵ− i∞
e
S ţφ(ξ,S)dS, ϵ> ϵ0.

(8)

Te Laplace transform’s integral converges absolutely
only in the right half-plane, where ϵ0 is located.

Lemma 6. Suppose we have a piecewise continuous function
φ(ξ, ţ) on I × [0,∞), with its Laplace transform denoted by

Φ(ξ,S) � Ļ[φ(ξ, ţ)]. Te function has the following
characteristics:

(1) Ļ 1/Γ(α) 􏽒
ţ
0 (ţ− ζ)(α− 1)φ(ξ, ζ)dζ􏼨 􏼩 � Sα− 1Φ(ξ,S),

for α> 0
(2) Ļ Dα

ţφ(ξ, ţ)􏼚 􏼛 � SαΦ(ξ,S) − 􏽐
m− 1
k�0 S

α− k− 1zk/

zţkφ(ξ, 0), for m − 1< α<m

(3) Ļ Dnα
ţ φ(ξ, ţ)􏼚 􏼛 � SnαΦ(ξ,S) − 􏽐

n− 1
k�0S

(n− k)α− 1Dkα
ţ

φ(ξ, 0), for 0< α< 1

Here, Dnα
ţ � zn/zţn(Dα

ţ ) represents the Caputo derivative.

Te demonstration for this lemma can be found in [25].

Theorem 7. Consider a function φ(ξ, ţ) that is sequentially
consistent on the interval I and for which the exponential
order δ exists on the time interval [0,∞). Let Φ(ξ,S) be the
Laplace transform of φ(ξ, ţ). Suppose that the fractional
expansion of Φ(ξ,S) is given by the following equation:

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1, 0< α⩽ 1, ξ ∈ I,S> ξ, (9)

then the coefcients ρn(x) are equal to the nth derivative of
φ(ξ, ţ) with respect to time evaluated at ţ � 0, denoted by
Dnα
ţ φ(ξ, 0).

Tis theorem provides a useful tool for solving fractional
diferential equations and other mathematical problems
involving the Laplace transform, particularly those with
a fractional expansion. Te evidence of theorem (1) can be
found in [25].

Remark 8. It is stated that the inverse Laplace transform of
the equation presented in (3) can be expressed in the fol-
lowing manner:

φ(ξ, ţ) � 􏽘
∞

n�0

D
nα
ţ φ(ξ, 0)

Γ(1 + nα)
ţnα

, 0< α⩽ 1, ţ ≥ 0. (10)

Te fractional Taylor’s formula, as described in [26], is
associated with the expression given for the inverse Laplace
transform.

3. An Overview of the LRPSM Methodology

Using LRPSM, which is a method for solving complex
equations involving fractional derivatives, we will explore
the basic concepts and techniques for dealing with nonlinear
fractional PDEs, which are equations that describe phe-
nomena with fractional order of change.

D
α
ţφ(ξ, ţ) + μΩφ[(ξ, ţ)] + βΨ[φ(ξ, ţ)] � 0, 0< α⩽ 1, (11)

subject to

φ(ξ, 0) � ρ0(ξ), (12)

and the path of motion of a solitary wave is given by an
unknown function φ(ξ, ţ) that depends on ξ and ţ. Te
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Caputo derivative is presented by Dα
ţ , while μ and β are

constant values. Te functions Ω and Ψ can be either linear
or nonlinear.

First, applying LT to equation (11), we have the following
equation:

Ļ D
α
ţφ(ξ, ţ)􏼚 􏼛 + μĻ Ω[φ[ξ, ţ]]􏼈 􏼉 + βĻ Ψ[φ(ξ, ţ)]􏼈 􏼉 � 0.

(13)

After applying the fact that

Ļ Dα
ţφ(ξ, ţ)􏼚 􏼛 � SαΦ(ξ,S) − Sα− 1φ(ξ, 0) and using the

initial condition (12), we can express equation (11) as
follows:

Φ(ξ,S) −
ρ0(ξ)

S
+

μ
S

αΩ[Φ(ξ,S)] +
β
S

α Ļ ΨĻ
− 1

[Φ(ξ,S)]􏽮 􏽯 � 0, (14)

where Φ(ξ,S) � Ļ[φ(ξ, ţ)].
Second, we express the function Φ(ξ,S) that has been

modifed by a fractional Laplace transform as an infnite sum
of terms.

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1. (15)

Ten, we write the function Φk(ξ,S) that is the kth

truncated of the series of (15) as follows:

Φk(ξ,S) � 􏽘
k

n�0

ρn(ξ)

S
nα+1 �

ρ0(ξ)

S
+ 􏽘

k

n�1

ρn(ξ)

S
nα+1. (16)

We defne the LRF of (14) which is used to determine the
unknown coefcients of the series in (16) by applying the
LRPS method.

ĻRes(ξ,S) � Φ(ξ,S) −
ρ0(ξ)

S
+

μ
S

αΩ[Φ(ξ,S)]

+
β
S

α Ļ ΨĻ[Φ(ξ,S)]􏼈 􏼉,

(17)

and the kth LRF is as follows:

ĻResk(ξ,S) � Φk(ξ,S) −
ρ0(ξ)

S
+

μ
S

αΩ Φk(ξ,S)􏼂 􏼃

+
β
S

α Ļ ΨĻ
− 1 Φk(ξ,S)􏼂 􏼃􏽮 􏽯.

(18)

Several properties that are present in the standard re-
sidual power series method [26] can also be extended to the
LRPSM. Tese properties include the following properties:

(1) ĻRes(ξ,S) � 0 and limk⟶∞ĻResk(ξ,S) � ĻRes
(ξ,S) for S> 0

(2) limS⟶∞SĻRes(ξ,S) � 0⇒ limS⟶∞SĻResk(ξ,

S) � 0

(3) limS⟶∞S
kα+1ĻRes(ξ,S) � 0 � limS⟶∞S

kα+1Ļ
Resk(ξ,S) � 0, 0< α⩽ 1, k � 1, 2, 3, 4, . . .

We can recursively derive a system for obtaining the
coefcient functions ρn(ξ) by satisfying the following con-
dition: limS⟶∞S

kα+1ĻResk(ξ,S) � 0, , , , , 0< α⩽ 1, k �

1, 2, 3, 4, . . .

After obtaining the coefcient functions ρn(ξ) through
a recursive system, we use them to compute Φk(ξ,S) for
a given Laplace variable S and then apply the inverse
Laplace transform to obtain the kth approximate solution
φk(ξ, ţ) as a function of the time variable ţ. Tis procedure
allows us to solve the original problem using an iterative
approach that yields increasingly accurate solutions with
each iteration.

3.1. Convergence Analysis. Since the proposed technique
lead to the truncated power series of the following form:

􏽘

κ

ι�0
fι � 􏽘

κ

ι�0
φι(ξ)

ţια

Γ(ια + 1)
, (19)

with exact solution φκ(ξ, ţ), we can prove the convergence
using the same manner as follows.

Te investigated equation is written in the following
form:

D
α
ţφ(ξ, ţ) � F φ,φ2

, . . . ,φx,φxx, . . .􏼐 􏼑, 0< α≤ 1, (20)

Theorem 9. Let F be an operator from H⟶H (where H is
the Hilbert space) and let φ be the exact solution of equation
(20), then the approximated solution (13) is convergent to φ if
there exist a constant W, (0<W≤ 1) in which
‖fκ+1i(ξ, ţ)‖≤W‖fκi(ξ, ţ)‖, for all κ ∈ N∪ 0{ }.

Proof. We aim to prove that fι||
∞
ι�0 is a convergent Cauchy

sequence as follows:

fι+1 − fι
����

���� � fι+1
����

����≤B fι
����

����≤W
2

fι− 1
����

����≤ . . . ≤W
ι

f1
����

����≤ W
ι+1

f0
����

����. (21)
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For ι, m ∈ N, ι>m, we obtain the following equation:

fι − fm

����
���� � fι − fι− 1( 􏼁 + fι− 1 − fι− 2( 􏼁 + · · · + fm+1 − fm( 􏼁

����
����

≤ fι − fι− 1( 􏼁
����

���� + fι− 1 − fι− 2( 􏼁
����

���� + · · · + fm+1 − fm( 􏼁
����

����

≤W
ι

f0(ξ)
����

���� + W
ι− 1 f0(ξ)

����
���� + · · · + W

m+1 f0(ξ)
����

����

≤ W
ι
+ W

ι− 1
+ · · · + W

m+1
􏼐 􏼑 f0(ξ)

����
����

≤W
m+11 − W

ι− m

1 − W
f0(ξ)

����
����⟶ 0 as ι, m⟶∞.

(22)

Hence, fι||
∞
ι�0 is a convergent Cauchy sequence in

H. □

4. Applications

We show how the LRPS method can fnd solitary solutions
for some FPDEs that are common in many felds, such as the
fractional generalized Kuramoto–Sivashinsky and fractional
generalized regularized long wave equations. We give two
examples to illustrate the advantages and performance of the
LRPS method for these problems. We used MATHEMA-
TICA 11 for all the symbolic and numerical computations in
this paper.

4.1. Application 1. Given the following, the fractional gen-
eralized Kuramoto–Sivashinsky equation is as follows:

D
α
ţφ + φξφ + μφξξ + ϑφξξξ + δφξξξξ � 0, 0< α⩽ 1, (23)

with initial condition

φ(ξ, 0) � Ω(ξ). (24)

4.1.1. Case I. Let us consider FKS (23) for μ � − 1, ϑ � 0, δ �

1 [16]:

D
α
ţφ + φξφ − φξξ + φξξξξ � 0, (25)

with initial condition

φ(ξ, 0) � β +
15tan h

3
[κ(ξ − v)] − 45 tan h[κ(ξ − v)]

19
��
19

√ ,

(26)

where β, v, and κ are constants. Te exact solution at α � 1 is
as follows:

φ(ξ, ţ) � β +
15tan h

3
[κ(ξ − β ţ− v)] − 45 tan h[κ(ξ − β ţ− v)]

19
��
19

√ .

(27)

We apply the LT on equation (25) and the initial con-
dition from equation (26) to obtain the following equation:

Φ(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φ(ξ,S)ξ􏽨 􏽩Ļ− 1
[Φ(ξ,S)]􏽨 􏽩 +

1
S

α (− Φ(ξ,S))ξξ +(Φ(ξ,S))ξξξξ􏽨 􏽩 � 0. (28)

We presume that the following form is the series solution
of equation (25):

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1. (29)

Te kth truncate series of equation (25) can be obtained
by performing the following steps:

Φk(ξ,S) �
ρ0(ξ)

S
+ 􏽘

k

n�1

ρn(ξ)

S
nα+1. (30)

Furthermore, we provide the following description for
the kth LRF of equation (25):

ĻResk(ξ,S) � Φk(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φk(ξ,S)ξ􏽨 􏽩Ļ− 1 Φk(ξ,S)􏼂 􏼃􏽨 􏽩 +
1
S

α − Φk(ξ,S)( 􏼁ξξ + Φk(ξ,S)( 􏼁ξξξξ􏽨 􏽩. (31)
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To fnd ρk(ξ) for k � 1, 2, 3, . . ., we begin by
substituting the kth truncate series (31) into the kth LRF
equation (31). We then multiply both sides of (31) bySkα+1.
Next, we solve the resulting relation

limS⟶∞S
kα+1ĻResk(ξ,S) � 0, k � 1, 2, 3, 4, . . . recursively

to obtain ρk(ξ). We can now obtain the frst few elements of
the sequence ρk(ξ).

ρ0(ξ) � β +
15tan h

3
[κ(ξ − v)] − 45 tan h[κ(ξ − v)]

19
��
19

√ ,

ρ1(ξ) � −
1

27436
45κsec h

7
[κ(− v + ξ)](− 57

��
19

√
β cos h[κ(− v + ξ)]

− 19
��
19

√
β cos h[3κ(− v + ξ)] + 430 − 38

��
19

√
κ − 1672

��
19

√
κ3

+ 15 − 38
��
19

√
κ + 608

��
19

√
κ3􏼐 􏼑cos h[2κ(− v + ξ)]sin h[κ(− v + ξ)],

ρ2(ξ) �
1

139129348431872
45k

2sec h
20

[k(− v + ξ)]

· 162362880000
��
19

√
k
3

− 4491417600000k
4

+ 2275651584000
��
19

√
k
5

− 596460257280000k
6

+ 336796434432000
��
19

√
k
7

+ 32532715044864000
��
19

√
k
9

+ 308868589260β − 403653658980
��
19

√
kβ

− 16891353114240
��
19

√
k
3β − 213342336000

��
19

√
k
3β2 − 20 2245708800k

4
− 39823902720

��
19

√
k
5

􏼐 􏼑

− 31969910476800k
6

+ 5711885475840
��
19

√
k
7

+ 2212661548154880
��
19

√
k
9

− 24349957566β + 33637804915
��
19

√
kβ

+ 8
��
19

√
k
3 688176000 + 158873940137β + 1688960160β2􏼐 􏼑cosh[2k(− v + ξ)] + . . . .

(32)

We can write the solution of (25) using the LRPSmethod
as an infnite series.

Φ(ξ,S) �
ρ0(ξ)

S
+
ρ1(ξ)

S
α+1 +

ρ2(ξ)

S
2α+1 + . . . . (33)

Te kth-approximate solution of our problem is obtained
by taking the Laplace inverse of (33):

φ(ξ, ţ) � ρ0(ξ) +
ρ1(ξ) ţα

Γ(α + 1)
+

ρ2(ξ) ţ2α

Γ(2α + 1)
+ . . . . (34)

We have the option to compute additional co-
efcients; however, we will limit our calculation to ρ2. We
will then compare the errors between the exact
solution and the approximate solution obtained from
this series.

Table 1 presents the results obtained by applying the
LRPS method to solve the FKS equation (25) (Case I) for
diferent combinations of time ( ţ), spatial variable (ξ), and
fractional derivative order (α). It demonstrates the con-
vergence of solutions for diferent values of α.
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4.1.2. Case II. Let us consider the FKS (25) for μ � 1, ϑ �

0, δ � 1 [16]:

D
α
ţφ + φξφ + φξξ + φξξξξ � 0, (35)

with initial state

φ(ξ, 0) � β +
15
19

��
11
19

􏽲

11tan h
3
(κ(ξ − v)) − 9 tanh(κ(ξ − v))􏼐 􏼑.

(36)

where β, v, and κ are constants.Te exact solution at α � 1 is

φ(ξ, ţ) � β +
15
19

��
11
19

􏽲

11tan h
3
(κ(ξ − β ţ− v)) − 9 tanh(κ(ξ − β ţ− v))􏼐 􏼑. (37)

By performing a LT on both sides of equation (35) and
utilizing the initial condition provided in equation (36), we
can derive the following expression:

Φ(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φ(ξ,S)ξ􏽨 􏽩Ļ− 1
[Φ(ξ,S)]􏽨 􏽩 +

1
S

α (Φ(ξ,S))ξξ +(Φ(ξ,S))ξξξξ􏽨 􏽩 � 0. (38)

We make the assumption that the series solution of
equation (35) takes the following form:

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1. (39)

Te kth truncated series of equation (35) can be obtained
by the following equation:

Φk(ξ,S) �
ρ0(ξ)

S
+ 􏽘

k

n�1

ρn(ξ)

S
nα+1. (40)

We can defne the kth LRF of equation (35) in the fol-
lowing manner:

ĻResk(ξ,S) � Φk(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φk(ξ,S)ξ􏽨 􏽩Ļ− 1 Φk(ξ,S)􏼂 􏼃􏽨 􏽩

+
1
S

α Φk(ξ,S)( 􏼁ξξ + 4(Φ(ξ,S))ξξξ + Φk(ξ,S)( 􏼁ξξξξ􏽨 􏽩.

(41)

To fnd ρk(ξ) for k � 1, 2, 3, . . ., we begin by substituting
the kth truncate series (40) into the kth LRF (41). We then
multiply both sides of equation (41) by Skα+1. Next, we

solve the resulting relation limS⟶∞S
kα+1ĻResk(ξ,S) �

0, k � 1, 2, 3, 4, . . . recursively to obtain ρk(ξ). We can now
obtain the frst few elements of the sequence ρk(ξ).

Table 1: Numerical results for FGKS equation (25) of case (I) at β � 5, κ � 1/2
��
19

√
, v � − 25 and diference values of α.

ţ ξ α � 0.6 α � 0.75 α � 0.95

1.5

− 5 4.63869 4.63871 4.63873
− 4 4.63835 4.63837 4.63838
− 3 4.63814 4.63815 4.63815
5 4.63777 4.63777 4.63777

2

− 5 4.63882 4.63889 4.63896
− 4 4.63844 4.63848 4.63853
− 3 4.63819 4.63822 4.63825
5 4.63778 4.63778 4.63778
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ρ0(ξ) � β +
15
19

��
11
19

􏽲

11tan h
3
(κ(ξ − v)) − 9 tan h(κ(ξ − v))􏼐 􏼑,

ρ1(ξ) � −
1

27436
45κ sec h

7κ(− v + ξ)

(− 57
��
19

√
β cosh(κ(− v + ξ)) − 19

��
19

√
β cosh(3κ(− v + ξ)))

−
180
27436

κ sec h
7κ(− v + ξ)sin hκ(− v + ξ)

· 30 − 38
��
19

√
κ − 1672

��
19

√
κ3 + 15 − 38

��
19

√
κ + 608

��
19

√
κ3􏼐 􏼑cosh(2κ(− v + ξ))􏼐 􏼑,

ρ2(ξ) �
45κ2 sec h

20
(κ(ξ − v))

139129348431872
− 14086852217856000

���
209

√
κ5 − 2195584579584000000κ4􏼐 􏼑

− 1176121279618560000
���
209

√
κ3 + 632740085375016960000κ6 + 61497533769540β

+ 2952744405000192000
���
209

√
κ7 − 407623914461085696000

���
209

√
κ9

+ 3094678052180
���
209

√
βκ − 157818230567360

���
209

√
βκ3 + 456054800256000

���
209

√
β2κ3

+ 176 8898688491264000κ4 + 1984083724800
���
209

√
κ5 − 5476943044260864000κ6􏼐 􏼑

− 11205934203801600
���
209

√
κ7 + 3478774808768716800

���
209

√
κ9 + 477602355615β+

· 28745033291
���
209

√
βκ + 8

���
209

√
215120188800β2 − 166024914049β + 1289172289680000􏼐 􏼑

· κ3 cosh(2κ(ξ − v)) − . . . .

(42)

Te solution to (35) via the LRPS method can be
expressed as an infnite series.

Φ(ξ,S) �
ρ0(ξ)

S
+
ρ1(ξ)

S
α+1 +

ρ2(ξ)

S
2α+1 + . . . . (43)

By applying Laplace inverse to (43), we can obtain the
kth-approximate solution to our problem.

φ(ξ, ţ) � ρ0(ξ) +
ρ1(ξ) ţα

Γ(α + 1)
+

ρ2(ξ) ţ2α

Γ(2α + 1)
+ . . . . (44)

We could calculate more coefcients, but for now, we
will only calculate ρ2. Afterward, we will compare the errors
between the precise solution and the estimated solution
obtained from this series.

Table 2 presents the results obtained by applying the
LRPS method to solve the FKS equation (35) (Case II) for
diferent combinations of time ( ţ), spatial variable (ξ), and
fractional derivative order (α). It demonstrates the con-
vergence of solutions for diferent values of α.

4.1.3. Case III. Let us consider FKS (16) for μ � 1, ϑ � 4, δ �

1 [16]:

D
α
ţφ + φξφ + φξξ + 4ϑφξξξ + φξξξξ � 0, (45)

with initial condition

φ(ξ, 0) � β + 9 − 15 − tan h
3
(κ(ξ − β ţ− v)) + tan h

2
(κ(ξ − β ţ− v)) + tan h(κ(ξ − v))􏼐 􏼑, (46)

where β, v, and κ are constants. Te exact solution at α � 1 is

8 International Journal of Diferential Equations



φ(ξ, ţ) � β + 9 − 15 − tan h
3
(κ(ξ − v)) + tan h

2
(κ(ξ − β ţ− v)) + tan h(κ(ξ − β ţ− v))􏼐 􏼑. (47)

Following the initial condition specifed in equation (46)
while performing the Laplace transform of each side of
equation (45), we obtain the following equation:

Φ(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φ(ξ,S)ξ􏽨 􏽩Ļ− 1
[Φ(ξ,S)]􏽨 􏽩 −

1
S

α (Φ(ξ,S))ξξ +(Φ(ξ,S))ξξξξ􏽨 􏽩 � 0. (48)

We presume that the following form can be used to
express the series answer of equation (45):

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1. (49)

Te kth truncated series of equation (45) can be obtained
by performing the following steps:

Φk(ξ,S) �
ρ0(ξ)

S
+ 􏽘

k

n�1

ρn(ξ)

S
nα+1. (50)

Furthermore, we provide the following defnition for the
kth LRF of equation (45):

ĻResk(ξ,S) � Φk(ξ,S) −
φ(ξ, 0)

S
+

1
S

α Ļ Ļ− 1 Φk(ξ,S)ξ􏽨 􏽩Ļ− 1 Φk(ξ,S)􏼂 􏼃􏽨 􏽩

+
1
S

α Φk(ξ,S)( 􏼁ξξ + 4(Φ(ξ,S))ξξξ + Φk(ξ,S)( 􏼁ξξξξ􏽨 􏽩.

(51)

In order to compute ρk(ξ) for values of k from 1 to
infnity, we frst insert the truncated series expression (50)
for the kth term into the corresponding LRF (51). We then
multiply equation (51) by Skα+1 and proceed to solve the
resulting equation:

limS⟶∞S
kα+1ĻResk(ξ,S) � 0, k � 1, 2, 3, 4, . . . , (52)

recursively to determine ρk(ξ).
By following this method, we are able to calculate the

initial terms of the sequence ρk(ξ) as follows:

Table 2: Numerical results for FGKS equation of case (II) (35) at β � 5, κ � 0.5
�����
11/19

√
, v � − 25 and diference values of α.

ţ ξ α � 0.6 α � 0.75 α � 0.95

1.5

− 5 6.201210 6.201200 6.201220
− 4 6.201310 6.201310 6.201310
− 3 6.201360 6.201360 6.201360
5 6.201400 6.201400 6.201400

2

− 5 6.201090 6.201080 6.201100
− 4 6.201250 6.201250 6.201260
− 3 6.201330 6.201330 6.201330
5 6.201400 6.201400 6.201400
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ρ0(ξ) � β + 9 − 15 − tan h
3
(κ(ξ − β ţ− v)) + tan h

2
(κ(ξ − β ţ− v)) + tan h(κ(ξ − v))􏼐 􏼑,

ρ1(ξ) �
1
8

(− 15)ksech
6
(k(ξ − v)) 4 β + 344k

3
− 32k

2
+ 2k − 36􏼐 􏼑􏼐 􏼑

· cos h(2k(ξ − v)) + β − 136k
3

+ 112k
2

− 10k − 6􏼐 􏼑cos h(4k(ξ − v))

+ 3 β − 456k
3

− 80k
2

+ 2 β + 120k
3

− 112k
2

− 2k + 14􏼐 􏼑sin h(2k(ξ − v))􏼐

+ β − 40k
3

+ 48k
2

− 2k − 6􏼐 􏼑sin h(4k(ξ − v)) + 6k + 74

+ β − 40k
3

+ 48k
2

− 2k − 6􏼐 􏼑sinh(4k(ξ − v))(tanh(k(ξ − v)) − 1),

ρ2(ξ) �
15k

2 sec h
20

(k(ξ − v))(cosh(k(ξ − v)) − sinh(k(ξ − v)))

32768

· 10 282805862400k
9

+ 1756448686080k
8

− 55526031360k
7

􏼐 􏼑􏼐 􏼑

+ 267156 − 3289β2 − 37752β + 352(949β + 192)k
2

+ 22(559β + 7986)k

· 256(2980800β − 729836371)k
5

− 2752(2851200β + 190438387)k
6

. . .

· cosh(k(ξ − v)) − 8 656985600000k
9

+ 3528382464000k
8

− 99503769600k
7

􏼐 􏼑

− 352(637β − 447)k
2

− 11(1001β + 10344)k + +80(702000β + 88825831)k
4

+ 128(9082800β − 3024200401)k
5

+ . . . cosh(3k(ξ − v)) . . . .

(53)

We can write the solution of (45) using the LRPSmethod
as an infnite series.

Φ(ξ,S) �
ρ0(ξ)

S
+
ρ1(ξ)

S
α+1 +

ρ2(ξ)

S
2α+1 + . . . . (54)

We can obtain the kth approximate solution to our
problem by utilizing LI on equation (54).

φ(ξ, ţ) � ρ0(ξ) +
ρ1(ξ) ţα

Γ(α + 1)
+

ρ2(ξ) ţ2α

Γ(2α + 1)
+ . . . . (55)

For now, our main goal is to fnd the value of ρ2. We
might compute more coefcients later. Ten, we will
measure the diferences between the exact solution and the
approximation from this series. Tis allows us to assess the
quality of the estimated solution.

Table 3 presents the results obtained by applying the
LRPS method to solve the FKS equation (45) (Case III) for
diferent combinations of time ( ţ), spatial variable (ξ), and
fractional derivative order (α). It demonstrates the con-
vergence of solutions for diferent values of α.

4.2. Application 2. Given the following time-fractional
GRLWE,

D
α
ţφ + φξ + aφξφ

p
− μφξξ ţ � 0, 0< α⩽ 1, ţ ⩾ 0, ξ ∈ R,

(56)
where p, a, and μ are real parameters.

With initial condition,

φ(ξ, 0) � Acsec h
2 p

2

�������
c

μ(c + 1)

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/p

, (57)

where c, A, and ξ0 are constants. Te exact solution is as
follows:

φ(ξ, ţ) � Acsec h
2 p

2

�������
c

μ(c + 1)

􏽳

ξ − (c + 1) ţ− ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/p

.

(58)

Te parameters A and p are usually related to the
amplitude and the phase of the wave packet, respectively.
Te parameter c represents the speed of the wave packet, and
ţ is the time variable. Te parameter μ is related to the
dispersion of the medium, and ξ0 is the position of the wave
packet’s peak at time ţ � 0.

4.2.1. Case I. When p � 1, the equation becomes the reg-
ularized long wave equation, which is a signifcant equation
in physics media.

Given the following time-fractional RLWE,

D
α
ţφ + φξ + φξφ − φξξ ţ � 0, 0< α⩽ 1. (59)

Te initial condition according to [27] is as follows:
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φ(ξ, 0) � 3csec h
2 1

2

�������
c

μ(c + 1)

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (60)

For α � 1, the exact solution is as follows:

φ(ξ, ţ) � 3csec h
2 1

2

�������
c

μ(c + 1)

􏽳

ξ − (c + 1) ţ− ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(61)

After performing the LT on each sides of equation (59)
and applying the initial condition described in equation (60),
we can derive the following expression:

Φ(ξ,S) −
φ(ξ, 0)

S
+

1
S

α L Φ(ξ,S)ξ􏽨 􏽩 +
a

S
α Ļ Ļ− 1 Φ(ξ,S)ξ􏽨 􏽩Ļ− 1

[Φ(ξ,S)]􏽨 􏽩 −
μ
S

α L Φ(ξ,S)ξ􏽨 􏽩 � 0. (62)

We assume that the structure is taken by the series
solution of equation (59):

Φ(ξ,S) � 􏽘
∞

n�0

ρn(ξ)

S
nα+1, (63)

and the kth truncated series of equation (59) is obtained by
the following equation:

Φk(ξ,S) �
ρ0(ξ)

S
+ 􏽘

k

n�1

ρn(ξ)

S
nα+1. (64)

To further clarify, we can defne the kth LRF of equation
(59) with the following formulation:

ĻResk(ξ,S) � Φk(ξ,S) −
φ(ξ, 0)

S
−

1
2Sα Ļ Ļ− 1 Φk(ξ,S)ξξ􏽨 􏽩Ļ− 1 Φk(ξ,S)􏼂 􏼃􏽨 􏽩

+
2
S

α Ļ Ļ− 1 Φk(ξ,S)ξ􏽨 􏽩 Ļ− 1 Φk(ξ,S)􏼂 􏼃􏼐 􏼑
2

􏼔 􏼕 −
1
S

α Ļ Ļ− 1 Φk(ξ,S)􏼂 􏼃􏼐 􏼑
2

􏼔 􏼕 � 0.

(65)

To compute the values of ρk(ξ) for k ranging from
1 to infnity, we employ a recursive method that invol-
ves inserting the truncated series expression (64) into
the corresponding Laplace residual function (65). We
then multiply the resulting equation by Skα+1 and solve

for limS⟶∞S
kα+1ĻResk(ξ,S) � 0, k � 1, 2, 3, 4, . . . in

a recursive manner to determine ρk(ξ). By using this
approach, we can calculate the initial terms of the se-
quence ρk(ξ) without having to compute the entire
infnite series.

Table 3: Numerical results for FGKS equation (45) of case (III) at β � 3, κ � 0.5, v � − 13 and diference values of α.

ţ ξ α � 0.6 α � 0.75 α � 0.95

1.5

− 5 − 2.99888 − 2.99884 − 2.99892
− 4 − 2.99985 − 2.99984 − 2.99985
− 3 − 2.99998 − 2.99998 − 2.99998
5 − 3.00000 − 3.00000 − 3.00000

2

− 5 − 2.99809 − 2.99801 − 2.99815
− 4 − 2.99974 − 2.99973 − 2.99975
− 3 − 2.99996 − 2.99996 − 2.99997
5 − 3.00000 − 3.00000 − 3.00000
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ρ0(ξ) � 3csech2 1
2

�������
c

μ(c + 1)

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

ρ1(ξ) �
3
2
c

������
c

cμ + μ

􏽳

cosh

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠ + 12c + 1⎛⎝ ⎞⎠

tanh
1
2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠sech4 1
2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠,

ρ2(ξ) �
1

32(c + 1)μ
3c2 − 576c2 − 96c − 8 + 432c2 − 48c − 9􏼐 􏼑cosh

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠ + 48c cosh 2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠ + cosh 3

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠sech8
1
2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(66)

We can write the solution of (59) using the LRPSmethod
as an infnite series.

Φ(ξ,S) �
ρ0(ξ)

S
+
ρ1(ξ)

S
α+1 +

ρ2(ξ)

S
2α+1 + · · · . (67)

By utilizing the Laplace inverse on equation (67), we can
obtain an approximate solution to our problem for the kth

iteration.

φ(ξ, ţ) � ρ0(ξ) +
ρ1(ξ) ţα

Γ(α + 1)
+

ρ2(ξ) ţ2α

Γ(2α + 1)
+ · · · . (68)

Our primary purpose is to compute the numerical value
of the third coefcient, ρ2. Additional coefcients may need
to be computed at a later time. Following that, we will
carefully examine any inconsistencies between the exact
solution and the estimated solution produced from this
series.Tis will allow us to assess the precision and reliability
of the calculated solution.

Table 4 displays the results of solving FRLW equation
(59) using the LRPSmethod for diferent values of ţ and ξ, as
well as various values of α (namely, α � 0.6, 075 and 1). We
notice from the results of the table a convergence of solu-
tions at diferent values of α.

4.2.2. Case II. When p � 2, the FGRLW becomes a special
case that is called the modifed regularized long wave
(FMRLW) equation. Given the following time-fractional
RLWE,

D
α
ţφ + φξ + 6φξφ

2
− μφξξ ţ � 0, 0< α⩽ 1. (69)

Te initial condition according to [28] is

φ(ξ, 0) �
�
c

√
sec h

�������
c

μ(c + 1)

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (70)

For α � 1, the exact solution is as follows:

φ(ξ, ţ) �
�
c

√
sec h

�������
c

μ(c + 1)

􏽳

ξ − (c + 1) ţ− ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(71)

and following the same steps mentioned earlier, we will
obtain the following equation:

ρ0(ξ) �
�
c

√
sec h

��������

c(c + 1)μ
􏽱

ξ − ξ0( 􏼁􏼒 􏼓,

ρ1(ξ) �
1

cμ + μ
6c3 tanh2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠sec h
4

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

ρ2(ξ) �
1

(c + 1)
4μ4

62208c12
������

c

cμ + μ

􏽳

cosh 2

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠ − 2⎛⎝ ⎞⎠

2

⎛⎝ tanh5
�����

c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠sec h
20

�����
c

cμ + μ

􏽳

ξ − ξ0( 􏼁⎛⎝ ⎞⎠⎞⎠,

⋮.

(72)

We can write the solution of (69) using the LRPSmethod
as an infnite series.

Φ(ξ,S) �
ρ0(ξ)

S
+
ρ1(ξ)

S
α+1 +

ρ2(ξ)

S
2α+1 + . . . (73)

Applying the Laplace inverse to equation (73) can yield
the kth approximate solution to our problem.

φ(ξ, ţ) � ρ0(ξ) +
ρ1(ξ) ţα

Γ(α + 1)
+

ρ2(ξ) ţ2α

Γ(2α + 1)
+ . . . (74)
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Our primary objective is to determine the numerical
value of the third coefcient, ρ2. It may be necessary to
compute additional coefcients at a later time. Subsequently,
we will compare the exact solution with the estimated so-
lution derived from this series and closely scrutinize any
discrepancies. Tis will enable us to evaluate the accuracy
and dependability of the computed solution.

Te outcomes obtained from applying the LRPS method
to solve the FRLW equation (69) for various ţ and ξ values,
in addition to diferent α values (specifcally, α � 0.6, 0.75
and 1), are presented in Table 5. We notice from the results
of the tables a convergence of solutions at diferent values of
α.

5. Graphical Illustrations

To illustrate the relationship between the various parameters
of a solution, graphs are a powerful method. Hence, this
section uses 2D and 3D graphs to show the solution φ(ξ, ţ)
with diferent values of α and ţ. Te approximate solution of
(25) is shown in Figures 1(a) and 1(b) for various values of α
and ţ. We notice convergence of results despite the difer-
ence in values between α and ţ. Figures 1(c) and 1(d) show
that for α � 1, the approximate solution converges to the
exact solution as α increases. Similarly, the solutions ob-
tained through approximation for (35) are presented in
Figures 2(a) and 2(b), depicting diferent values of α and ţ.
Figures 2(c) and 2(d) demonstrate that as α increases, the
accuracy of the approximate solution improves, approaching
the exact solution for the case where α equals 1. Also, the
approximate solutions of (45) are shown in Figures 3(a) and
3(b) for various values of α and ţ. We notice convergence of
results despite the diference in values between α and ţ.
Figures 3(c) and 3(d) show that for α � 1, the approximate
solution converges to the exact solution as α increases.
Additionally, in order to provide a more accurate repre-
sentation of the method’s efciency, we calculated the re-
sidual errors for the results of equations (25), (35), and (45)
at diferent values of α. Tis is depicted in Figures 4(a)–4(c).

Finally, Figures 5(a), 5(b), 6(a), and 6(b) show the ap-
proximate solution to the RLWE (52) and the MRLWE (69)
for diferent values of α and ţ, illustrating a two-dimensional
graph that displays the soliton wave solution. Te graph
plots φ(ξ, ţ) against ξ and traces the wave trajectory for
diferent α values. Te results show that the outcomes ob-
tained through fractional-order analysis converge to those
obtained via integer-order analysis. Additionally, the second
2D graph presents the wave solutions for α � 1 at diferent
values of ţ, revealing that the soliton’s amplitude remains
constant while it moves to the right. Furthermore, in
Figures 5(c), 5(d), 6(c), and 6(d), the shape of both the
approximate and the exact solutions is represented, high-
lighting the convergence of the two solutions. Additionally,
in order to provide a more accurate representation of the
method’s efciency, we calculated the residual errors for the
results of (59) and (69) at diferent values of α. Tis is
depicted in Figures 7(a) and 7(b).

6. Discussion

In this section, we will review the results we have obtained in
solving a set of nonlinear fractional partial diferential
equations using the LRPS method and compare these results
with other methods used to solve the same applications. In
Tables 6–8, we compare the solutions obtained using the
LRPS method with those obtained using q-HATM [16]
method for the frst application, which represents the FKSE
in its three cases. Te results showed a convergence between
the two methods for diferent values of α, as well as a con-
vergence to the exact solution. Furthermore, in Table 9,
which represents the absolute error results for RLWE
equation (59), a comparison was made with the q-HATM
method [28]. Te results showed that the method used in
this study provided much better solutions than the other
method. Finally, a comparison was made between the ab-
solute error results obtained using the proposed method and
the HPSTM [27] method in Table 10, which represents the
results of solving equationMRLWE (69).Te results showed

Table 4: Numerical results for FRLW equation (59) at
c � 0.03, ξ0 � 0, μ � 1.

ţ ξ α � 0.6 α � 0.75 α � 1

2

− 10 0.0373920 0.0366146 0.0354844
− 6 0.0584020 0.0575194 0.0565096
4 0.0872298 0.0878587 0.0889732
6 0.0801849 0.0810171 0.0821916
10 0.0579237 0.0587628 0.0596913

3

− 10 0.0356337 0.0337866 0.0304144
− 6 0.0545287 0.0524388 0.0492871
4 0.0872796 0.0887794 0.0920030
6 0.0823111 0.0842877 0.0878101
10 0.0618204 0.0638063 0.0667248

5

− 10 0.0343591 0.0303239 0.0214523
− 6 0.0467514 0.0421084 0.0338796
4 0.0836812 0.0869010 0.0954274
6 0.0844980 0.0888261 0.0980846
10 0.0699378 0.0743583 0.0819697

Table 5: Numerical results for FRLW equation (69) at
c � 0.03, ξ0 � 0, μ � 1.

ţ ξ α � 0.6 α � 0.75 α � 1

2

− 10 0.0608639 0.0608641 0.0608645
− 6 0.1102270 0.1102300 0.1102320
4 0.1394740 0.1394770 0.1394810
6 0.1102270 0.1102300 0.1102320
10 0.0608639 0.0608641 0.0608645

3

− 10 0.0608648 0.0608655 0.0608666
− 6 0.1102350 0.1102390 0.1102470
4 0.1394840 0.1394920 0.1395040
6 0.1102350 0.1102390 0.1102470
10 0.0608648 0.0608655 0.0608666

5

− 10 0.0608665 0.0608679 0.0608708
− 6 0.1102470 0.1102570 0.1102780
4 0.1395020 0.1395190 0.1395500
6 0.1102470 0.1102570 0.1102780
10 0.0608665 0.0608679 0.0608708
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Figure 2: Te solution of FKS (25) for μ � 1, ϑ � 0, δ � 1. (a) Approx-solutions of (25) at diferent values of α. (b) Approx-solutions of (25)
at diferent values of ţ. (c) LRPSM results at α � 1. (d) Analytical results.
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√
, v � − 25. (b) Residual error for equation (35) at β � 5, κ � 0.5

�����
11/19

√
, v � − 25. (c) Residual error for equation (46)

at β � 5, κ � 0.5, v � − 13.
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that the proposed method outperformed the HPSTM [27]
method in terms of accuracy. In general, this approach is
highly efective and can be easily utilized for various non-
linear fractional partial diferential equations along with
their initial conditions. Furthermore, it ofers a compre-
hensive framework that can be employed for diferent
physical systems. Nevertheless, one drawback of this method
is that it may not be suitable for all types of NFPDEs and the

accuracy of the outcomes might rely on the specifc system
that is being modeled. Additionally, the method’s con-
straints in terms of the fractional derivative order and time
range should be taken into account. Despite these limita-
tions, this proposed method is a signifcant contribution to
the feld of NFPDEs and opens up promising avenues for
future research.
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Figure 6: Te solution of the MRLWE (69) for c � 0.3, p � 2, μ � 1, ξ0 � 0. (a) Approx-solutions of equation (69) at diferent values of α.
(b) Approx-solutions of equation (69) at diferent values of ţ. (c) LRPSM results at α � 1. (d) Analytical results.
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Table 6: Comparison between |Error| of q-HPTM [16] and LRPSM
for equation (25) at β � 5, κ � 1/2

��
19

√
, v � − 25, α � 1.

ξ ţ |Error| LRPSM |Error| q-HATM [16]

2

0.2 1.102592× 10− 6 1.785730× 10− 8

0.4 5.226914× 10− 6 3.154480× 10− 7

0.8 3.049480× 10− 5 6.268760× 10− 6

1 5.866110× 10− 5 1.722960× 10− 5

5

0.2 2.802116× 10− 7 4.513880× 10− 9

0.4 1.329286× 10− 6 8.086679× 10− 8

0.8 7.771472× 10− 6 3.610840× 10− 7

1 1.497230× 10− 5 4.434620× 10− 7

Table 7: Comparison between |Error| of q-HPTM [16] and LRPSM
for equation (35) at β � 5, κ � 0.5

�����
11/19

√
, v � − 25, α � 1.

ξ ţ |Error| LRPSM |Error| q-HATM [16]

2

0.2 1.578621× 10− 9 1.785730× 10− 8

0.4 2.499211× 10− 8 3.154480× 10− 8

0.8 4.001540× 10− 7 6.268760× 10− 6

1 1.095539× 10− 6 1.722960× 10− 5

5

0.2 1.610400× 10− 10 4.573880× 10− 9

0.4 2.549514× 10− 9 8.086670× 10− 8

0.6 1.238159× 10− 8 4.552490× 10− 8

0.8 4.082080× 10− 8 3.610840× 10− 7

1 1.117589× 10− 7 4.434620× 10− 7
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7. Conclusion

In this paper, we have presented a new analytical method for
solving nonlinear fractional partial diferential equations,
namely, the LRPS method. Te LRPS method is based on the
Laplace transform and the residual power series technique.
We have applied the LRPSmethod to two nonlinear fractional
partial diferential equations: the fractional GRLWE and
FKSE. We have shown that the LRPS method can provide
accurate and efcient approximate solutions for these
equations. We have also compared the LRPS method with
some existing methods and found that the LRPS method has
some advantages over them.Te LRPSmethod is a simple and

powerful mathematical tool that can be used to solve various
nonlinear fractional partial diferential equations arising in
diferent felds of science and engineering.

Data Availability

Data sharing is not applicable to this article as no data sets
were generated or analyzed during the current study.

Disclosure

Te authors confrm that all the results they obtained
are new.

Table 8: Comparison between |Error| of q-HPTM [16] and LRPSM for equation (45)at β � 3, κ � 0.5, v � − 13, α � 1.

ξ ţ |Error| LRPSM |Error| q-HATM [16]

2

0.2 9.006129× 10− 13 5.078550× 10− 10

0.4 3.170086× 10− 11 1.104840× 10− 8

0.6 2.380371× 10− 10 3.883960× 10− 7

0.8 1.083714× 10− 9 1.550600× 10− 6

1 4.114596× 10− 9 6.873440× 10− 11

5

0.2 3.552713× 10− 15 2.738790× 10− 11

0.4 7.638334× 10− 14 1.992290× 10− 10

0.6 5.915268× 10− 13 9.629790× 10− 10

0.8 2.684075× 10− 12 3.845100× 10− 9

1 1.019984× 10− 11 3.751850× 10− 9

Table 9: Comparison between |Error| of q-HATM [28] and LRPSM for equation (59) at c � 0.03, α � 1, p � 1.

ţ ξ Exact solution LRPS solution |Error| LRPSM |Error| q-HATM
[28]

0.001

− 25 0.00491095 0.00491097 1.6442× 10− 8 4.2203× 10− 6

− 20 0.01111010 0.01111010 1.3804× 10− 8 9.5909× 10− 6

− 15 0.02397620 0.02397620 6.2941× 10− 8 2.0907× 10− 5

15 0.02398340 0.02398350 3.1500× 10− 7 2.7845× 10− 5

25 0.00491263 0.00491262 1.6447× 10− 8 5.8658× 10− 6

0.005

− 25 0.00490760 0.00490768 8.2159× 10− 8 2.1051× 10− 5

− 20 0.01110280 0.01110290 6.8985× 10− 8 4.7840× 10− 5

− 15 0.02396180 0.02396150 3.14505× 10− 7 1.0429× 10− 4

15 0.02399790 0.02399820 3.15005× 10− 7 1.3898× 10− 4

25 0.00491599 0.00491591 8.2293× 10− 8 2.9279× 10− 5

Table 10: Comparison between |Error| of HPSTM [27] and LRPSM for equation (69) at c � 0.001, α � 1, p � 2.

ţ ξ Exact solution LRPSM solution |Error| LRPSM |Error| HPSTM
[27]

0.01

0 0.0316228 0.0316228 1.582721× 10− 9 1.169755× 10− 9

0.1 0.0316226 0.0316226 3.003982× 10− 8 1.161434× 10− 8

0.2 0.0316222 0.0316221 6.166087× 10− 8 1.153139× 10− 8

0.3 0.0316214 0.0316214 9.327884× 10− 8 1.143950× 10− 8

0.4 0.0316204 0.0316202 1.248921× 10− 7 1.134949× 10− 8

0.5 0.0316190 0.0316188 1.564992× 10− 7 1.126218× 10− 8
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