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This manuscript aims to highlight the existence and uniqueness results for the following Schrédinger problem in the extended
1/10/0tut (t, x) — Au(t, x) + v(x)u(t,x) = 0,t e R*, x e R”,

Colombeau algebra of generalized functions. { v(x) = 8(x),

where § is the Dirac

1 (0, x) = &(x),
distribution. The proofs of our main results are based on the Gronwall inequality and regularization method. We conclude our

article by establishing the association concept of solutions.

1. Introduction

In the theory of distributions, it is well known that the
multiplication of two distributions is not always well defined;
for more details, see [1]. However, until 1980, this operation
was not used in a rigorous way. Following, Schwarz’s re-
nowned impossibilities relating to the build of a commuta-
tive, associative, and differential algebra in which we can
inject the space of distributions @'. In [2], Colombeau was
able to answer to this question by replacing continuous
functions with indefinitely differentiable functions. The
thing that has allowed us to investigate nonlinear differential
equations formed from natural occurrences with parameters
in the sense of distributions in a rational manner; for that,
see [1]. We are talking about an algebra that is defined as the
quotient of the algebra of moderate functions by the algebra
of negligible functions. So, it should come as no surprise that
the following presentations’ main topic will be to raise
componentwise definitions to the level of equivalence
classes. The derivative operator is one of the most essential
operators, and its description in this context allows us to
investigate differential equations in terms of distributions.
Unfortunately, according to the definition, it does not pose

a difficulty for generalized functions, which is not the case
for the fractional derivative. In [3], Mirjana presents
a method for dealing with fractional derivatives including
singularities based on Colombeau’s idea of algebras of
generalized functions. The Colombeau algebra of general-
ized functions is extended to fractional derivatives by the
same author. It is used to solve ODEs and PDEs with entire
and fractional derivatives in terms of temporal and spacial
variables; see [4-8]. The study of fractional order integral
and derivative operators over real and complex domains, as
well as their applications, is the subject of fractional calculus.
The features of fractional derivatives make them ideal for
modeling complicated systems. The ordinary derivative is
a local operator, whereas fractional operators are nonlocal.
Fractional derivatives exhibit nonlocal dynamics as a result
of this, i.e. the process dynamics have some memory; for
more information, see [9-12]. When the nonlinear term is
a L*loc-function that does not satisfy the Lipschitz con-
dition, the nonlinear Schrédinger equation with singular
potential and initial data is studied in [13]. Recently, in [14],
Benmerrous et al. established the existence and uniqueness
of solutions for the Schrddinger equation with singular
potential and initial data in the Colombeau algebra. The
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reader can consult articles as well [15, 16] and the references
therein for more details on the fractional Schrédinger
equation.

Motivated by the above works precisely by [14], we study
the existence and uniqueness results for the Schrodinger
equation with singular initial data in the extended
Colombeau algebra of generalized functions. Also, we give
the association of solutions.

The present article is organized as follows: In Section 2,
we recall some fundamental properties of the generalized

Z:{ue 2 (R") dy = I,J Y u(y)dy = 0forl< IESr},
r R"

J' Rnﬂ(}’)
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function theory. Section 3 is consecrated for the proofs of the
existence and uniqueness of solutions for the Schrodinger
problem (12) in the Colombeau algebra and the extended
Colombeau algebra. We conclude this article by proving the
association of solutions.

2. Preliminaries

To define the full algebra of Colombeau, for r € N* we define

(1)
r=1,2..,
We denote by
3 ny _ g(Rn) n P _ -m
& (R™) =1 (1) ee oy CW c cR,VYpeN,Ime Nsupl@ u (x) | =0._,(e™)t,
xXEHK
. (2)
3 ny _ f(R) n p — m
R*(R") =4 (4e)eeor) € oz € CR™,Vp € N,Vm € Nsup [DPu (x) | =0,_4(") s
VH xeX
where
1 /x n
pe () = g#(g)ﬁy € 2(R"),
u, (x) = u(y, x)Vu € 2, (3)

C

E(RY) ={u: xR —

The full Colombeau algebra is defined by

u (u, x)is € respect to

the second variable x} .

To solve ODE and DED with integer and fractional
derivatives with initial data distributions, we need to recall

3 n
ef (R") = f“; (R") . (4) the definition of the extension of the fractional derivative in
N*(R") the Colombeau algebra.
We denote the set of all extended moderate functions by
*(R) = B RvBeR",In e Noup|DF =0 - 5
fm( )_ (us)ee(o,l)cﬁc CR, ﬁé »dn € ig£| us(x)_ e—»O(e ) > ( )
and the set of all extended negligible functions by
e _ E(R) + /3 — P
N (R) = (ue)se(m) c2—=c cR,¥BeR",VYp e Nsup |® u.(x) = 0., (e")t. (6)
’ VH xeH
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The extended Colombeau algebra of generalized func-
tions is the factor set.

& (R)

ge(R) = NE(R).

(7)

Now, we give the definitions of the fractional calculus
theory.

Definition 1 (see [17, 18]). The fractional integral is defined
as follows:

S

B = [ (5= f!
dg(S)—r(ﬁ)J- (s— 1) g(r)dr,B>0. (8)

0

The fractional derivative of order 5> 0 in the Caputo
sense is defined as follows:

1 s (P)(T)dT
SF g (s) = J g p-1<B<p peN.
g(s) Tp=p oot B<p.p

(9)

The fractional derivative and the fractional integral are
injected into the extension of the Colombeau algebra &*
which is given by the formulas in the following proposition:

i ot
1 v(x) =8(x);
L 1 (0, x) = §(x).

We shall use the regularization for the initial and Dirac
measure.

Ve (x) = 6. (x) = (pe (x)) =[lne | ““p(x|Ine | ),c>0,
(13)

g (x) =[lne | “u(x|lne|*),a>0, (14)

iot

<

Ve (x) = 6 (x);

[ 1 (0, %) = 8 (x),

where v, and w,, are regularized of v and w,, respectively.

Proposition 1 (see [14]). Let 1 = [(u,).] € €°(R), then
Fu () =[(§u. ()] e & (m),

(10)
D u(s) = [(Du () ] € & (R).
We end this section by recalling the association relation
on the Colombeau algebra ©°. It identifies elements of
u € @ if they coincide in the weak limit.

Definition 2 (see [19]). Let u;,u, € €*(R") such that u,

and u, are their representatives, respectively. We say that

u, and u, are associated in * (R"), and we write 11; = 1,, if

for every y € I (R").

lim j (11, - 15, )t (x)dlx = 0. (11)
R"

e—0

3. Main Results

The nonlinear Schrodinger equation with singular potential
and initial data is considered.

(1 0
S u(t,x)-Ault,x)+v()u(t,x) =0t e R", x e R™;

(12)

where x € R",p € A, u(x)>0,x € R".

3.1. Existence and Uniqueness Results in the Colombeau
Algebra

Theorem 1. Let equation (12) have the regularized equation:

(1 0
- —u,(t,x) — Au,(t, x) + v, (x)u, (t, x) =0,t € R", x € R";

(15)



Then, the problem (12) has a unique solution in
<% (R* x R™).

t

u,(t,x) = kan(t,x =Yg (y)dy + JO

where «,, (¢, x) is the heat kernel.
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Proof. The integral solution of equation (15) (see [13]) is
given by.

jRnKn(t—T,x—y)ve(y)ue(r,y)dydr, (16)

Then,

(TS Y P M

t
+ JO 6, (£ = 70 = Dl |[vell oo (@)

ue (T,.)”Lm(Rn)dT (17)

t
0

< Clutg ey + Cllve oo J e (2, Mo gy

By Gronwall inequality,
e (& ) o @y <C | Ine | " exp(CT | Ine | ). (8)

Then, there exists N >0 such that

0 0
achue (t, X) = JRHKH (t> X = )/) Tuo,e (y)dy

J

t 0
t—1,x-y)| =
+JOJR“Kn( b ”(ay.

J

e (& )] o oy < Ce ™™ (19)

For the first derivative to x;,i € {1,n}, we obtain

(20)
0

Ve Dt (7, ) + v (¥) 5 (7, y))dydr.

ayj

<C| Ine| a(n+l) +Cjt( | Ine| b(n+1)||u€"Lm
0

Then,
d d
|ax-115 (t,) S“Kn (t;x—-)”h” Tyuo)elle(Rn) + I lne | bn | iue (T, d-[
j Lo ®") j 9y, L (R") (21)
t ) <C( | Ine| ™Y 47| Ine | ™V | .
+I ||Kn(t—'r,x—.)||L1<|avEIILm(Rn) e (I Inel | Ine | e,
0 Vi b t| o
) +C| Ine| ™ JO 5yt (7 i
+||V€IILOG(Rn>||a—yu€(T,.)IILw(Rn)>dT ]
! By Gronwall inequality,
0
—u(t,.) <C(IIne|*™+T | Ine| "™ u],~)exp(CT | Ine | ™). (22)
ax]- L (R™)

By the previous step, there exist N >0 such that
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N For the second derivative, for y;, j € {1,n}, we get
<Ce . (23)
Lo (R")

WimﬁJ
8xj

3 0 3 0
ggue(t,x)zj K, (% - y)(a 5 g, (y)dy

T
f o 2
+L“Rn( (t—7x - y)(a oy V()

(24)
b () st (1) o, () o, (5,)
Toy, Yoy, dy; <oy
+v,( ) 9 u (r,y) |d
So,
0 0
3 e (t,.) S“Kn(t,x—y)lly n——uo)e(.)lle(Rn)
H Lo (R™) 0y; 9y;
t 0
+JO||Kn(t—T,x—.)||L1 3 3y el el
0 0
+ aveHLm(W) ay]” el + FIG Vellzoo (rmy a_yjue"Lm
(25)
+”V ()”Loon = (T, )l o (r7) )dT
9y;
C(1 el *™?+ | Ine|*™V|u| .
0 0
b(n+1)|| 9 b(n+1)|| _©
+ | Ine | ayiuellLoo + | Ine | ayju(_:IILoo)
bn !
+C| Ine| J 3y 3y e (Pl
Using Gronwall inequality, we obtain the following
equation:
0 9 () <Cexp(CT | Ine |")( | Ine [“™? + | Ine | "7 |u]
ax 0x; Lo ([R")_ ellLe=
(26)
0 0
1 bn+1)|| © . 1 b(n+))|| Y o)
+ | Ine | ayiuellL + | lne€ | ayjuEIIL
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By the previous step, there exist N >0 such that Let us prove the uniqueness. Suppose that there exist two
3 3 solutions 1,1, to problem (12), then we obtain the fol-
I a—u6 (t,.) <ce V. (27) lowing equation:
Xj 0X; L (R™)

% %(ul,e(t, ) =y (6%)) = A1y (8, %) = 1y, (%)) = v () (1 (%) — 1, (X)),

(28)
ul,g (0) X) = uz,g (0) x) + NO,e (x))
where N (t,x) € R*(R" x R"), N (x) € X*(R"). Then,
wy, (£,%) — 1y, (1, %) = wan(t,x )Ny, (9)dy
t
+ Jo J-R"K" (t-7,x =Y. (¥) (1. (7, y) = uy (1, y))dydr (29)
t
+ J J k,(t —7,x— y)N. (7, y)dydr,
0 Jmrr
and thus
”ul,g (tr ) — Uy, (ta ')|lL°°(R") < “Kn (t) X = -)"Ll "I\]O,e”L00 (R™)
t
1 (B = Dl JO 1Vell oo g 216 (75 ) = e (7 oo ey
+||Kn(t,x—.)||L1||N€||L00 (30)
< C([No el gy +INell )
t
Vel oo (n . (7,.) =y (7,. dr.
[ RIS
By Gronwall inequality,
i1 = 33 () S (N o+ 1Nl exp( €T ) G
Then, 3.2. Existence and Uniqueness Results in the Extension of the
Colombeau Algebra. In a framework of extended algebra of
||u1,5(t,.) - uzye(t,.)" Lm(RW)SCeq,‘v’q e N. (32) generalized functions, we prove the existence uniqueness

result for nonlinear Schrédinger equations with singular
Then, the problem (12) has a unique solution in  potential and initial data and an equation driven by the
2% (R* x R™). O fractional derivative of the delta distribution. It means that
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we prove the moderateness and the negligibility for entire
and fractional derivatives to the spatial variable x.

i ot

<

Ve (x) = 6 (x),

[ 1 (0, %) = 8 (x),

be the regularized equation of (12) such that v, and u,, are
regularizations of v and w, respectively. Then, the problem
(12) has a unique solution in &°(R* x R").

Proof. We prove only the fractional part since the entire part
is already proved in Theorem 1. The fractional derivative,

Theorem 2. Let the following problem

10
- —u,(t,x) — Au,(t, x) + v, (x)u, (t, x) =0,t € R", x € R",

(33)

D (u,(t,x)) = wan(t,x - )y, (y)dy
+ Jt J K, (t—1T,x— y)@ﬂve (Mu, (7, y)dydr
0JR"

t
+ J J K, (t —7,x - y)ve(y)‘l)ﬂue(‘r, y)dydr.
oJmre

34
DF,0<B<1, is considered. Without loss of generality, the (34)
same holds for m —1<f<m,m € N. The fractional de- Then,
rivative is taken to the spatial variable to equation (12). We
have
|2 (1t (& Moo oy < o (8 2 = DM [ D st o ey
t
e, (t =7, x = )l JO |2Fv. o g |12 (T oy
t
=l Jo [l gy D (5 Do (35)
B B
<Ol 0] o gy + T Vel e Lm)
t
vl o e | [DPe (2. dr.
A N T
By Gronwall inequality, we get
D (u (t,.)] <Cexp( CT||v |
u, (¢, )l mry < Cexp Vel oo (mry
(36)
(|>f B
(“@ o] o gy + T2 Vel Lm).
From Theorem 1 and hypothesis (13), we obtain
[ (et Moy < Cexp( T o) .
(Cpr I Ine | *" +TChr | Ine | ", ).
|2 (et )l oy < G, (38)

Then, there exist N >0 such that
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It follows moderateness for the fractional derivatives in
the space €°(R* x R"). For uniqueness, let 0 < § < 1, and
apply D to (29) we get:

g/;(ul,e (t’ x) - uZ,e (t’ x)) = J nKn (t’ X = y)QBNO,e (y)dy

s, (£ = 7, % = D () (11 (7, ) = 1. (7, ) dydr

0JR"

N
.
N

0

(39)

€, (t—7,x — )/)QBNE (1, y)dydr.

[t = mx = 97 (I (e (1) = e ()
Joe

So,

|2 (11 (8) = 15,0 (1) < e (856 = ) 1 | DF NG

LOO
PN
+ 1l x, (t -7, %=l JO | D vellpeo | 11 (7,.) — 1y, (7, )|l p0dT

t
+ 1, (-7, x =)l I I vllpeo i‘)ﬁ(ule(r,.) = U, (7, || eodT
0 (40)

t
i, (E—1x— )l IO | DN, (1, d
<C[Nyellpo + T Il Dl Il 1y = tpellodt+ | DNl o0 ]

t
+C Vell oo (mr) JO I DF (110 (7,.) = e (7, oo ey .

By Gronwall inequality,

Hgﬁ(uu () - uz,e(t> oy <C eXp<CT||Vs||L°°(R”)> (No,e ||L°° (R™)
(41)

+T||$ﬂve u,, - 112€||L00+||§)ﬁN6

)

w, (t, x) — Aw, (t,x) + v(x)w, (t,x) = 0,

L (R™)

10
Using Theorem 1, we obtain 75t
(44)

f ) - o @n <Cel, Vg € N 42
[P (et ~wa(t oy <Celvg N, (42) v(x) = 8(x),w, (0,x) = 0,

which completes the proof. O

3.3. Association of Solutions. Let w, be the solution of the ~ Proposition2. The generalized solution u of the problem (12)

problem. is associated with w, + w,.
10 w, (£, %) — Aw, (£ x) = 0 Proof. Let w,, be the classical solution to the problem.
iot 7 1 ’ 13
(43) <= t,x) - A t,x)=0
i atwl,s( >x) wl)g( 3x) — YU
wl (0) X) = 8(9{:), (45)

and w, be a solution of the problem. wy (0, x) =6, (x),
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and w,, be the classical solution to the problem.

10
= 5 W (6:0) = Awy (62) + v, () (wae (£,2) + m(t, %)) = 0,

(46)
Ve (x) = 6(x),w,,(0,x) = 0.
Then,
10
; g(us Wy~ wZ,s) - A[us Wy~ wZ,s] + Ve[us Wy — m] =0,
(47)
u, (0, x) —w, (0, x) —w,,(0,x) = 0.
The integral solution is
t
u, (¢, x) —w, (£, x) —w,,(t x)) = ,[o JRK” (t-1,x-y)v.(y)
. [uS(T, y)—w,, (1, y) -m(T, y)] -dydr
t
= t— X — .
IOJR""( BXmI) (48)
e y) —wy (1) —w, (7, y)]dy dr
t
+ J J K, (t—17,x = y)v.(y)
oJr
. [wl,‘E (1, y) - m(T,y)]dy dr.
So,
t
e () = w1 (6. = Wy, (6, o < jo ey (£ = 7 = s [ o
Nwie () - m(z,)| .de
t
n I o (& = 7, =l [ o
0
(49)

e (1) —wy (1) — w, (15| LodT

< C||v£||Lm[J; "(wu (1,.) —m(z, -))"Lde

+j e (5,.) —wy, (,2) - wy, (1, .)IILw]dT.
0

Thanks to the Gronwall lemma, we get
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1t (8,) = w (8,.) = W (8, oo < Cf1 | e Mol

by passing to the limit, and we obtain
U= w +w,, (51)

which completes the proof. O

4. Conclusion

In this article, we studied the existence and uniqueness
results for the Schrodinger equation with distribution type
initial conditions in the extended Colombeau algebra of
generalized functions. The existence theorem is proved by
using some regularizations of the proposed problem and
Gronwall inequality.
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