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Tis paper deals with a class of perturbation planar Keplerian Hamiltonian systems, by exploiting the nondegeneracy properties of
the circular solutions of the planar Keplerian Hamiltonian systems, and by applying the implicit function theorem, we show that
noncollision periodic solutions of such perturbed system bifurcate from the manifold of circular solutions for the Keplerian
Hamiltonian system.

1. Introduction

In this paper, we study a class of Hamiltonian systems
obtained as perturbation of Keplerian Hamiltonian
K(p, q) � 1/2‖p‖2 − ‖q‖− 1. More precisely, we consider the
Hamiltonians of the following form:

H(p, q, ε) �
1
2
‖p‖

2
− ‖q‖

− 1
−
ε
2

〈Aq, p〉 + ε2
Aq

�����

�����
2

4
+ V(ε, q)⎛⎜⎜⎝ ⎞⎟⎟⎠,

(1)

where p, q ∈ R2, ε> 0 is a perturbation parameter, A is a
skew-symmetric matrix A⋆ � − A, and V is even in q. Te
corresponding Hamiltonian system is the following:

€q +
q

‖q‖
3 + ε Aq + Vq

′(ε, q)􏼐 􏼑 � 0. (2)

For ε � 0, equation (2) becomes

€q +
q

‖q‖
3 � 0. (3)

Our aim is to seek noncollision periodic solutions of (2),
and we wish to connect them to the circular solutions of the
unperturbed system (3). Tese types of perturbation systems
have been the focus of interest by a number of authors and
the references therein [1–5]. We mention in particular the

works of Poincaré, regarding the three-body problem (these
orbits were called “frst-view sort solutions”) [6], and the
studies by Ambrosetti et al. [7] and Celletti et al. [8] which
showed the existence of a skew-T/2 periodic solution of the
following problem:

€q +
q

‖q‖
3 + Vq
′(ε, q) � 0. (4)

Te essential difculty in studying this problem is the
free action of the S1-group acting on equation (2) (if q is a
solution of (2), then qs � q(. + s) is also a solution of (2),
for all s ∈ S1). To overcome this difculty, we seek so-
lutions of equation (2) near the circular orbits of the
Keplerian system (3). Tese circular orbits are the more
stable solutions and by exploiting their nondegeneracy
property, we neutralize the free action of the S1-group
([9, 10]). Te degenerate solutions of the Keplerian
problem are the least stable solutions (KAM theory [11]);
we cannot dominate the invariance of the problem under
the action of the group S1 in the neighborhood of these
solutions.

Te proofs rely on the implicit function theorem and the
nondegeneracy of the circular orbits for (3) in the space of
the skew-T/2 periodic functions. LetΩ � R2/ 0{ } and V: R ×

Ω⟶ R satisfy the following:
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V1( 􏼁V ∈ C
2
(R ×Ω,R),

V2( 􏼁V(ε, − q) � V(ε, q).
(5)

For all, q ∈ Ω, ε ∈ R.
We consider the following perturbed system of ordinary

diferential equations:

€q +
q

‖q‖
3 + ε(t + ε, q) � 0,

q(0) � q(T),

_q(0) � _q(T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where A is a skew-symmetric matrix (A⋆ � − A), ε ∈ R, and
T> 0 is a fxed period.

Te unperturbed system corresponding to (2) is the
following:

€q +
q

‖q‖
3 � 0,

q(0) � q(T),

_q(0) � _q(T).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

By a noncollision orbit of (6), we mean a solution of (6)
such that q(t) � 0 for all t. We will say that
q ∈ H1(R/TZ,R2) is skew-T/2 periodic if
q(t + T/2) � − q(t) for every t. Te following result holds.

Theorem 1 (see [7, 8, 12]). Tere exists ε0 > 0 such that
∀|ε|< ε0, the perturbed system (6), has at least one non-
collision symmetric (skew-T/2 periodic) orbit near the circular
orbit of (6).

1.1. Bifurcation in the Nondegenerate Case. Actually, we
wish to relate the skew-T/2 periodic solutions of (6) to the
T-periodic circular solutions of (7). Let

S
1

�
R

Z, H
1
1 � S

1
,R

2
􏼐 􏼑

, (8)

and

E1 � u ∈ H
1
1 such that u t +

1
2

􏼒 􏼓 � − u(t), ∀t ∈ S
1

􏼚 􏼛. (9)

We consider the open subset of E1 defned by

Λ1 � u ∈ E1 such that u(t)≠ 0,∀t ∈ S
1

􏽮 􏽯. (10)

On Λ × R × R⋆+, we defne a functional Φ by setting

Φ(u, ε, T) � 􏽚
1

0

‖u(t)‖
2

2T
+

1
T
2
‖u(t)‖

−
ε
2
<A _u(t), u(t)> − ε

V(ε, Tu(t))

T
􏼨 􏼩dt. (11)

Lemma 1. Te functions Φ belongs to C2(Λ1 × R × R⋆+,R)

and for all h, k ∈ E1, we have

(a) ϕu
′(u, ε, T)h � − 􏽚

1

0
〈

€u(t)

T
+

u(t)

T
2
‖u(t)‖

3 + ε A _u(t) + Vu
′(ε, Tu(t))( 􏼁, h(t)〉􏼨 􏼩dt,

(b) ϕT
′ (u, ε, T) � − 􏽚

1

0
〈

‖ _u(t)‖
2

2T
2 +

2
T
3
‖u(t)‖

+ ε
Vu
′(ε, Tu)

T
, u(t)〉 −

V(ε, Tu)

T
2􏼠 􏼡􏼨 􏼩dt,

(c) ϕε′(u, ε, T) � − 􏽚
1

0

1
2

(A _u, u) +
V(ε, Tu)

T
+ εVε′(ε, Tu)􏼨 􏼩dt,

(d) ϕuu
″ (u, ε, T) � − 􏽚

1

0
<

€h(t)

T
+

u(t)

T
2
‖u(t)‖

3 + h(t) − 3
u(t)〈u(t), h(t)〉

‖u(t)‖
2􏼢 􏼣� +ε A _t + TVuu

″ (ε, Tu)h, k( 􏼁〉􏼨 􏼩dt,

(e) ϕTu
′ (T, ε, u)h � 􏽚

1

0
〈

€u(t)

T
2 +

2u(t)

T
3
‖u(t)‖

3 − εVuu
″ (ε, Tu)u, h(t)〉􏼨 􏼩dt,

(f) ϕεu′ (T, ε, u)h � − 􏽚
1

0
〈V′εu′ (ε, Tu) + A _u(t), h(t)〉􏼈 􏼉dt.

(12)
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Proof. Te proof is left to the reader.
We now show the following lemma. □

Lemma  . Te following statements are equivalent:

(i) Φu
′(u, ε, T) � 0

(ii) q(t) � Tu(tT− 1) is a noncollision skew −

T/2 periodic solution of (6)

Proof. We prove the lemma in two steps: □

Step 1. q ∈ C2(ST,R2). Te equation, ϕu
′(u, ε, T) � 0, means

for every h ∈ E1,

􏽚
1

0
〈

€u(t)

T
+

u(t)

T
2
‖u(t)‖

3 + ε A _u(t) + Vu
′(ε, Tu(t))( 􏼁, h(t)〉dt.

(13)

Terefore,

􏽚
1

0
〈

€u(t)

T
, h(t)〉dt � − 􏽚

1

0
〈

u(t)

T
2
‖u(t)‖

3 + ε A _u(t) + Vu
′(ε, Tu(t))( 􏼁, h(t)〉dt. (14)

Let

h � h1 + h2, (15)

where

h1 �
h(t) + h(t + 1/2)

2
, h1 is

1
2
periodic, (16)

and

h2 �
h(t) − h(t + 1/2)

2
, h2 is skew

1
2
periodic. (17)

Hence,

􏽚
1

0
〈

€u(t)

T
, h(t)〉dt � 􏽚

1

0
〈

€u(t)

T
, h1(t)〉dt + 􏽚

1

0
〈

€u(t)

T
, h2(t)〉dt.

(18)

It is clear that

􏽚
1

0
〈

€u(t)

T
, h1(t)〉dt � 0. (19)

Terefore,

􏽚
1

0
〈

€u(t)

T
, h(t)〉dt � 􏽚

1

0
〈

€u(t)

T
, h2(t)〉dt,

� − 􏽚
1

0
〈

u(t)

T
2
‖u(t)‖

3 + ε A _u(t)(

+Vu
′(ε, Tu(t))􏼁, h(t)〉dt,

< +∞.

(20)

Tis implies q ∈ H2(sT,R2) and q ∈ C2(ST,R2).

Step 2. q is a noncollision skew − 1/2 periodic solution. Since
u ∈ Λ1, it is skew-T/2 periodic.

Denote by E⊥1 the orthogonal subspace in H1
1 to E1 and

φ(t) �
€u(t)

T
+

u(t)

T
2
‖u(t)‖

3 + ε A _u(t) + Vu
′(ε, Tu(t))( 􏼁. (21)

From (13), it follows that

φ ∈ E
⊥
1 . (22)

Using (V2), one fnds that

φ t +
1
2

􏼒 􏼓 � − φ(t). (23)

Hence,

φ ∈ E1 ∩E
⊥
1 , (24)

and thus, φ � 0,

q(t) � Tu tT
− 1

􏼐 􏼑. (25)

Ten,

_q � _u tT
− 1

􏼐 􏼑,

€q(t) �
€u tT

− 1
􏼐 􏼑

T

. (26)

By substituting in ϕ � 0, we obtain

€q +
q

‖q‖
3 + ε A _q + Vq

′(ε, q)􏼐 􏼑 � 0. (27)

Moreover,

q
T

2
􏼒 􏼓 � − q(0),

_q
T

2
􏼒 􏼓 � − _q(0).

(28)

Tis completes the proof.

1.2. Finding Critical Points for ϕ(·, ε, T). Let T0 > 0, and

Y � u ∈ Λ1, u(t) �
r

T0
ξe

2iπt
+ ξe

− 2iπt
􏼐 􏼑, ξ ∈ C2

, 〈ξ, ξ〉 �
1
2
and 〈ξ, ξ〉 � 0􏼨 􏼩, (29)

where
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1
r
3 � ω2

0 ω0 �
2π
T0

􏼠 􏼡, (30)

is a manifold of critical points for ϕ(·, 0, T0) (that is,
ϕu
′(u, 0, T0) � 0, for every u ∈ Y 0). Using Lemma 2, we fnd

that

Z0 � q ∈ ΛT0
: q(t) � r ξe

iε0t
􏼐 􏼑, ξ ∈ C2

〈ξ, ξ〉 �
1
2
and 〈ξ, ξ〉 � 0􏼚 􏼛,

(31)

is a manifold of circular solutions for the unperturbed
system,

€q +
q

‖q‖
3 � 0,

q(0) � q T0( 􏼁,

_q(0) � _q(T).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

We wish to investigate the situation around
(q0, 0, T0), q0 ∈ Z0 by applying the inverse function theo-
rem. For this, we need to know more about the derivative of
ϕu
′ and ϕuu

″ .

Lemma 3. ϕuu
″ (u, 0, T0) is the Fredholm operator of index

zero, ∀u ∈ Y 0.

Proof. Letting u ∈ Y 0, for all h and k in E1, we have

ϕuu
″ u, 0, T0( 􏼁h, k( 􏼁 �

1
T0

􏽚
1

0
〈h(t), k(t)〉dt

+
3

r
5
T
2
0

􏽚
1

0
〈u(t), k(t)〉〈u(t), k(t)〉dt.

(33)

Ten,

ϕuu
″ u, 0, T0( 􏼁h, k, h, k( 􏼁 � (h, k)H1

1
− 1 +

1
r
3
T
2
0

􏼠 􏼡 􏽚
T

0
〈h(t), k(t)〉dt +

3
r
5
T
5
0

􏽚
1

0
〈u(t), h(t)〉〈u(t), k(t)〉dt. (34)

Hence,
ϕuu
″ u, 0, T0( 􏼁 � IEr

− I, (35)
where I is a linear operator from E1 into E1 and defned by

(I(h), k) � 1 +
1

r
3
T
2
0

􏼠 􏼡 􏽚
T

0
〈h(t), k(t)〉dt −

3
r
5
T
5
0

􏼠 􏼡 􏽚
1

0
〈u(t), h(t)〉〈u(t), k(t)〉dt. (36)

It is easy to verify that I is a compact operator.
S°ϕuu
″ (u, 0, T0) is the Fredholm operator of index zero.
Tus, the proof is complete.
Te preceding lemma implies

E1 � Kerϕuu
″ u, 0, T0( 􏼁 ⊕ Imgϕuu

″ u, 0, T0( 􏼁,∀u ∈ Y 0. (37)

We deduce that, ϕuu
″ (u, 0, T0) cannot be an onto

function. Te ultimate reason for this lies in the fact that the
function ϕ is invariant by the S1− action which sends u(t)

into u(t + θ) ∈ S1 and this induces degeneracy in the de-
rivatives. We can estimate Kerϕuu

″ (u, 0, T0) by relating ϕuu
″

to the linearized equation (32) around u. Tis is done as in
the following lemma. □

Lemma 4. Let u0 ∈ Y 0. Te following two conditions are
equivalent:

(a) ϕuu
″(u0, 0, T0)k � 0.

(b) h(t) � T0k(tT− 1) is a skew − T0/2 periodic solution of

€h +
1

q0
����

����
3 h −

3q0〈q0, h〉
q0

����
����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0, (38)

where

q0(t) � T0u0 tT
− 1
0􏼐 􏼑. (39)

Proof. Let k ∈ E1, such that ϕuu
″ (u0, 0, T0)k � 0. By rea-

soning as in the proof of Lemma 2, we obtain

k ∈ C
2

S
1
,R

2
􏼐 􏼑, (40)

and

€k

T0
+

1

T
2
0 u0
����

����
3 k −

3u0〈q0, k〉
u0

����
����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0. (41)

Set
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h(t) � T0u tT
− 1
0􏼐 􏼑,

q0(t) � T0u0 tT
− 1
0􏼐 􏼑.

(42)

By substituting (42) in (41), we obtain,

€h +
1

q0
����

����
3 q −

3q0〈q0, h〉
q0

����
����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0. (43)

Tis completes the proof.
More precisely, we have the following lemma. □

Lemma 5

Kerϕuu
″ u0, 0, T0( 􏼁 � Tu0

Y 0 � 〈 _u〉,∀u0 ∈ Y 0. (44)

Proof. According to the above lemma, the dimension of
Kerϕuu
″ (u0, 0, T0) is equal to that of the set of the solutions for

equation (38). Let h be the solution of (38), and by using the
fact that ‖q0‖ � r, equation (38) reduces to

− €h � ω2
0 h −

3q0〈q0, h〉
‖r‖

2􏼠 􏼡. (45)

Set

h(t) � 􏽘
k∈Z

cke
ikωt

, ck ∈ C
2
, (46)

since k ∈ E1, then c2k � 0,∀k ∈ Z. By substituting, we fnd

􏽘
k∈Z

k
2

− 1􏼐 􏼑cke
ikωt

� − 3 􏽘
k∈Z
〈ck, ξ〉ξ +〈ck+2, ξ〉 ξ +〈ck− 2, ξ〉ξ +〈ck, ξ〉 ξ􏽮 􏽯e

ikωt
, (47)

from which we deduce the following equation for ck, where
k ∈ Z,

(a) for all k≠ ± 1,

(b) 〈c1, ξ > + < c− 1, ξ〉 � 0,

(c) 〈c1, ξ〉 � 0.

(48)

It is easy to see that conditions (a) − (c) defne the
tangent manifold to Y 0. According to the defnition of a
nondegenerate critical manifold, this means that Z0 is a
nondegenerate critical:

Kerϕuu
″ u0, 0, T0( 􏼁 � Tq0

Y 0,

_u0 ∈ Kerϕuu
″ u0, 0, T0( 􏼁 and dimTu0

Y 0 � 1.
(49)

Terefore,

Kerϕuu
″ u0, 0, T0( 􏼁 �〈 _u0〉. (50)

Tis completes the proof.
We denote

Nu0
� Kerϕuu

″ u0, 0, T0( 􏼁, u0 ∈ Y 0,

Ru0
� Imϕuu
″ u0, 0, T0( 􏼁, u0 ∈ Y 0.

(51)

Tis is a fact that Nu0
� 〈 _u0〉 gives us a considerable

simplifcation. □

Lemma 6. For (u, ε, T) close to (u0, 0, T0), the following
statements are equivalent:

(i) ϕu
′(u, ε, T) � 0.

(ii) ϕu
′(u, ε, T) ∈ Nu0.

(52)

Proof. Kerϕuu
″ (u0, 0, T0) is spanned by _u0. Te equation

Kerϕu
′(u, 0, T) ∈ Kerϕuu

″(u0, 0, T0),

€u(t)

T
+

u(t)

T
2
‖u(t)‖

3 + ε A _u(t) + Vu
′(ε, Tu(t))( 􏼁 � α _u0. (53)

Multiplying both sides by _u and integrating, we get

􏽚
1

0
〈

€u(t)

T
, _u(t)〉 +

〈u(t), _u(t)

T
2
‖u(t)‖

3 + ε〈(A _u(t), _u(t)〉 + Vu
′(ε, Tu(t), _u(t)〉)􏼨 􏼩dt � α􏽚

1

0
〈 _u0, _u(t)〉dt. (54)

〈A _u, _u〉 � 0 and if we integrate the frst and second
terms on the left by parts, we get zero. In the last term, we
recognize the time derivative of V(ε, Tu), which integrates
away to zero. Finally, we get,

α􏽚
1

0
〈 _u0, _u(t)〉dt � 0. (55)

If u is close to u0, in E1, the integral is strictly positive,
and, hence, α must be zero.

We now state our main result. □

Theorem  . Let q0 ∈ Z0. If

􏽚
1

0
q0(t)e

iω0tdt≠ 0 in C
2
, (56)

then there are positive numbers r0, ε, a neighborhood V of the
path q0 in R2, and a C2 map,

v : S1 × − ε0, ε0􏼂 􏼃 × T0 − r0, T0 + r0􏼂 􏼃⟶ R
2
, (57)

such that
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q0(t) � T0v tT
− 1

, 0, T0􏼐 􏼑, (58)

and for any ε ∈ [− ε0, ε0] and T such |T − T0‖< r0 the curve,

q(t) � Tv tT
− 1

, ε, T􏼐 􏼑, (59)

is a skew-T/2 periodic solution of equation (6). Conversely,
whenever q is a skew − T/2 periodic solution of (6), with
ε ∈ [− ε, ε], |T − T0|< r0, and q(t) remaining in V for all t,
then some θ ∈ R can be found such that

q(t) � T0v tT
− 1

􏼐 􏼑 +(θ, ε, T). (60)

Proof. Set u0(·) � tT− 1
0 q0(·T0). It is known that

ϕuu(u0, 0, T0) is a Fredholm map of index zero. Split E1 into
Nu0
⊕ Ru0

; then, ϕ′uu
′ is an isomorphism of Ru0

onto itself. By
the implicit function theorem, the equation

ϕu
′(u, ε, T) ∈ Nu0

, (61)

determines u ∈ Ru0
in terms of the remaining variables.

Tese are (ε, T) and the component α of u in Nu0
. By this, we

mean

u1 � u0 + α _u0,

∀u1 ∈ u0 + α _u0( 􏼁.
(62)

By Lemma 6, this means that the equation ϕu
′(u, ε, T) � 0

can be solved in E1 as follows in neighborhood of (u0, 0, T0),

u � v1(α, ε, T). (63)

We now replace α by more convenient variables.
For any s ∈ S1, set us(t) � u(t + s). If ϕu

′(u, ε, T) � 0, we
also have ϕu

′ (us, ε, T) � 0. We, thus, have an S1-action which
leaves our equations invariants, and we wish to fnd a co-
ordinate system adapted to this group-invariance. For u near
u0 ∈ E1, the complex number,

􏽚
1

0
u0(t)e

2iπt
􏼠 􏼡

1
􏽚
1

0
u0(t)e

− 2iπt
􏼠 􏼡

1
, (64)

has a well-defned argument θ(u), called the phase of u with
respect to u0. In the subsequent paragraphs, we will verify
that

θ u
s

( 􏼁 � θ(u) + 2πs,∀s ∈ S
1
, (See [7]). (65)

I now claim that we can use (θ, ε, T) as a local coordinate
system for (u0 + NuO

) × R × RT near (uo, 0, To). Computing
the Jacobian at this point gives

D(θ, ε, T)

D(α, ε, T)
�

D(θ)

D(α)
� θ′(u − 0), _u0􏼒 􏼓, (See [6]). (66)

Since

θ′ u0( 􏼁, _u0􏼒 􏼓 �
d
ds

(θ(u) + 2πs) � 2π, (67)

so the Jacobian does not vanish. Te equation now becomes

u � v2(α, ε, T). (68)

Using Lemma 4 to translate in terms of q and q0, we get
the desired result. v is at least a C2 map fromR × R⋆+ into the
space C2(S1,R2); it will then have a Taylor expansion. □

2. Conclusion

We can conclude that the class of planar perturbations are
Keplerian Hamiltonian systems, as we have shown that the
noncollision periodic solutions of this perturbed system
radiate from the complex of circular solutions of the Kep-
lerian Hamiltonian system. We have studied a class of
Hamiltonian systems obtained as perturbation in the
Keplerian Hamiltonian

K(p, q) �
1
2
‖p‖

2
− ‖q‖

− 1
. (69)

Our goal was to search for noncollision periodic solu-
tions of (2), and we wish to relate them to circular solutions
for the nonperturbed system (3). Tese kinds of systems
were restless focus of a number of authors and the references
therein [1–5]. We mention in particular, the work of
Poincaré, on the three-body problem (these orbitals are
called “frst-view sort solutions”).

In an efort to organize another piece of work into a
paper, we determine the coefcients of the Taylor expansion
up to the second order of the noncollision periodic solutions
for the perturbed planar Keplerian Hamiltonian system,
which is connected to Kepler Hamiltonian systems by a
perturbation parameter. Tis Taylor expansion is made with
respect to a perturbation term ε and the period T of the
solution.
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