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In this paper, a fractional order of a modifed Leslie–Gower predator-prey model with disease and the double Allee efect in
predator population is proposed. Ten, we analyze the important mathematical features of the proposed model such as the
existence and uniqueness as well as the non-negativity and boundedness of solutions to the fractional-order system. Moreover, the
local and global asymptotic stability conditions of all possible equilibrium points are investigated using Matignon’s condition and
by constructing a suitable Lyapunov function, respectively. Finally, numerical simulations are presented to verify the theoretical
results.We show numerically the occurrence of two limit cycles simultaneously driven by the order of the derivative, the bistability
phenomenon for both the weak and strong Allee efect cases, and more dynamic behaviors such as the forward, backward, and
saddle-node bifurcations which are driven by the transmission rate.We have found that the risk of extinction for the predator with
a strong Allee efect is much higher when the spread of disease is relatively high.

1. Introduction

Te study of dynamical behavior of the predator-prey model
has been an important theme in mathematical biology; see,
for instance [1–5], and references therein. Te results of
these studies could give us substantial elucidation about the
qualitative behavior of the density of each population in the
future time, such as stability, bifurcations, and chaos,
without having any experimental laboratory. In the last few
decades, special attention has been paid to the merger of the
predator-prey model with the model for transmissible dis-
ease as a new branch of mathematical biology known as the
eco-epidemiological model. It becomes an important tool in
analyzing the efect of infectious diseases on the existence
(extinction) of prey or/and predator populations. Several
researchers have discussed the eco-epidemiological model
incorporating ecological factors, such as harvesting [6], prey
refuge [7, 8], social behavior [9], and the Alee efect [10].

One interesting phenomenon was introduced by [11]
which demonstrated a condition where, at low densities of

population, the presence of conspecifcs could increase the
per capita growth rate of the population. Tis phenomenon
is called the Allee efect. Some population models involving
the Allee efect have been developed to exhibit the important
impact of this phenomenon on many aspects of population
ecology, such as conservation of threatened species [12, 13],
controlling pest species [14], and harvesting management
[15, 16]. In general, there are two types of the Allee efects:
the strong Allee efect and the weak Allee efect. Te strong
Allee efect has a threshold size population which is called
the Allee threshold. When the density of population is under
this threshold then the per capita growth rate of the pop-
ulation becomes negative. On the other hand, the weak Allee
efect gives a reduction in the per capita growth rate when
the population is low. Furthermore, several researchers
investigate the dynamical behavior of a system incorporating
any situation in which two or more components of the Allee
efect can work simultaneously on a single population which
is called the double Allee efect [1, 17]. Tese components
could arrive from the reproduction or/and survival
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mechanisms such as the difculty of fnding a mate, co-
operative breeding dependencies, cooperative antipredator
behavior, and environmental conditioning, as shown in
Table 1 [18].

Nowadays, fractional-order derivative modelling has
become popular in many felds of science, such as physics,
thermodynamics, biology, control theory, and many others
(see, for example, [19–22]). Modeling using a fractional-order
derivative has a major advantage in that it involves memory
which comes from the fact that the fractional-order operators
are nonlocal. More precisely, all of the previous conditions are
captured in defning the fractional-order derivative. It has
some advantages over the integer order derivative, especially
the ability to describe the memory and hereditary properties
which are inherent in various processes [23–25]. Some
scholars had proven that systems with memory are more
consistent and adequate with the real phenomena [26, 27].

Recently, [28] studied a fractional-order predator-prey
model by assuming that the predation follows the Bed-
dington-DeAngelis functional response and the double Allee
efect on the predator population. By the last assumption,
there is always a bistability condition for the strong Allee
efect case. In other words, there is an extinction or existing
condition for the predator depending on the choice of the
initial condition. In this paper, we consider a predator-prey
model in [28] by adding the assumption that there is a
transmission of disease in the predator population. Bio-
logically, the growth rates of a population must depend on
the history of its previous conditions not only on the local
conditions, and for this reason, the proposed model will use
the fractional-order derivative which has a memory efect, to
make it more accurate in predicting the future condition of
the population. To the best of our knowledge, no investi-
gation has been carried out on the dynamics of the proposed
system. An important objective of this paper is to study how
the spread of disease may afect changes in predator densities
over time, where the intrinsic growth rate of the predator is
afected by the double Allee efect.

We have arranged this paper in the following manner.
First, we propose a model and give some useful preliminaries
which are used in our analysis briefy. Next, we prove the
basic properties of solutions. We also study the existence of
the equilibrium points, their local stability, and the Hopf
bifurcation. Te global stability conditions for the equilib-
rium points are also examined. Moreover, some numerical
simulations with a set of hypothetical parameters are
demonstrated to validate the theoretical results and further
explore the role of the disease in the predator-prey inter-
action. Finally, conclusions are given in the last section.

2. FormulationModel and Useful Preliminaries

In [28], the author’s considered a predator-prey model with
memory efect, which is a modifcation of the Leslie–Gower
model using the Caputo fractional derivative. Te model
abandoned the mass conservation principle held by the
Lotka–Volterra model because of the assumption that both
prey and predator obey the logistic law. Tey also assume
that the predation process is governed by the Beddington-

DeAngelis type functional response [29] which is a non-
linear prey-predator-dependent functional response, and
that the intrinsic growth rate of the predator population is
infuenced by the double Allee efect, as given in the fol-
lowing form:

C
D

α
t N � 􏽢r1N 1 −

N

􏽢K
􏼒 􏼓 −

􏽢θNP

1 + 􏽢cN + 􏽢qP
,

C
D

α
t P � P 􏽢s

P − 􏽢p

P + 􏽢q
−

􏽢mP

􏽢k + N
􏼠 􏼡.

(1)

In this paper, we assume that the predator population is split
into two subpopulations, namely the susceptible predator (S)

and infected predator (I) to include the disease transmission
among predator. It is assumed that only susceptible predators
can reproduce according to the logistic law, where the intrinsic
growth rate of the susceptible predator is induced by the double
Allee efect. Te prey is only captured by the susceptible
predator. Tis is reasonable from an ecological view as the
infected predators are physically weak and lose their skill to catch
food [30, 31]. It is also assumed that the susceptible predator has
intraspecifc competitive interactions with both the susceptible
and infected predators. Te transmission of the nonrecoverable
disease in the predator population in the manner of the simple
law of mass action and is vertically transferred from the sus-
ceptible predator to the infected predator compartment with a
constant transmission rate β. Here, we also assume that the
disease does not spread from the predator population to the prey
population.

Considering the above assumptions, we construct a
fractional-order model with the double Allee efect and
disease in predator as follows:

C
D

α
t N � 􏽢r1N 1 −

N

􏽢K
􏼒 􏼓 −

􏽢θNS

􏽢a + 􏽢bN + 􏽢cS
,

C
D

α
t DS � S 􏽢r2

S − 􏽢p

S + 􏽢q
−

􏽢m(S + 􏽢I)

􏽢k + N
􏼠 􏼡 − 􏽢βSI,

C
D

α
t I � 􏽢βSI − 􏽢δI,

(2)

where CDα
t represents the Caputo fractional derivative with

0< α< 1. Te variables N, S, and I denote the density of the
prey, susceptible predator, and infected predator pop-
ulations, respectively, and all parameters are shown in
Table 1.

Since the right hand side of system (2) have time di-
mension (time− 1) which is inconsistent with time dimen-
sion on the left hand side (time− α), we modify the above
system (2) as follows:

C
D

α
t N � 􏽢r

α
1N 1 −

N

􏽢K
􏼒 􏼓 −

􏽢θ
α
NS

􏽢a + 􏽢bN + 􏽢cS
,

C
D

α
t S � S 􏽢r

α
2
S − 􏽢p

S + 􏽢q
−

􏽢m
α
(S + I)

􏽢k + N
􏼠 􏼡 − 􏽢β

α
SI,

C
D

α
t I � 􏽢β

α
SI − 􏽢δ

α
I.

(3)
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For the sake of convenience, we redefne parameters of
the system (3) as r1 � 􏽢rα1 , K � 􏽢K, θ � 􏽢θ

α
, a � 􏽢a, b � 􏽢b, c � 􏽢c, r2

� 􏽢rα2 , p � 􏽢p, q � 􏽢q, m � 􏽢mα, k � 􏽢k, β � 􏽢β
α
, and δ � 􏽢δ

α
.

Terefore, the system (3) with the initial conditions can be
written in the following form:

C
D

α
t N � r1N 1 −

N

K
􏼒 􏼓 −

θNS

a + bN + cS
,

C
D

α
t S � S r2

S − p

S + q
−

m(S + I)

k + N
􏼠 􏼡 − βSI,

C
D

α
t I � βSI − δI,

(4)

where N(0)> 0, S(0)> 0, and I(0)> 0. Next, we briefy in-
troduce defnition and some basic properties of the Caputo
fractional derivative.

Defnition 1 (see [32]). Let α ∈ (0, 1]. Te Caputo fractional
derivative for the real valued function h(t) is defned as
follows:

C
D

α
t h(t) �

1
Γ(1 − α)

􏽚
t

0

h′(s)

(t − s)
αds, (5)

where Γ(·) is the Gamma function, t≥ 0.
To verify the non-negativity and uniform boundedness

of the solutions of the system (4), we require the following
lemma for the fractional derivative.

Lemma 2 (see [33]). Suppose that h(t) is continuous in
[a, b] and its derivatives CDα

t h(t) is continuous in [a, b], for
0< α< 1, then we have

h(t) � h(a) +
1
Γ(α)

C
D

α
t h(τ)(t − a)

α
,

a≤ τ ≤ t,∀t ∈ (a, b].

(6)

Lemma 3 (see [33]). Suppose that h(t) is continuous in
[a, b] and CDα

t h(t) is continuous in [a, b] for 0< α< 1. If
CDα

t h(t)≥ 0,∀t ∈ (a, b), then h(t) is a nondecreasing func-
tion for all t ∈ [a, b]. If CDα

t h(t)≤ 0,∀t ∈ (a, b), then h(t) is a
nonincreasing function for all t ∈ [a, b].

Lemma 4 (comparison lemma [34]). Suppose h(t) is
continuous in [0,∞). If h(t) satisfes

C
D

α
t h(t)≤ − φh(t) + μ, h(0) � h0 ∈ R, (7)

where 0< α< 1, (φ, μ) ∈ R2, andφ≠ 0, then

h(t)≤ h0 −
μ
φ

􏼠 􏼡Eα − φt
α

􏼂 􏼃 +
μ
φ

. (8)

Next, we use the following theorem to determine the
local stability behavior of the equilibrium points of the
system (4).

Theorem 5 (Matignon condition [35]). Consider the fol-
lowing Caputo fractional-order system with initial value

C
D

α
t h
→

(t) � f
→

(t, h
→

), h
→

(0) � h
→

0, (9)

where h
→
∈ Rn and 0< α< 1. If h

→∗
satisfes f

→
(t, h

→∗
) � 0

→
, then

h
→∗

is an equilibrium point. If all eigenvalues λi, i � 1, . . . , n of
the Jacobian matrix J( h

→∗
) satisfy |arg(λi)|> απ/2 then the

equilibrium points h
→∗

is locally asymptotically stable.

To establish the conditions for the global stability of the
equilibrium points of the system (4), we provide the fol-
lowing lemma.

Lemma 6 (Volterra-type Lyapunov function [36]). Let
h(t) ∈ R+ be a continuous and derivable function. Ten, for
t≥ 0,

C
D

α
t h(t) − h

∗
− h
∗ ln

h(t)

h
∗􏼢 􏼣

≤ 1 −
h
∗

h(t)
􏼠 􏼡

C
D

α
t h(t), h

∗ ∈ R+,∀α ∈ (0, 1).

(10)

Lemma 7 (generalized LaSalle invariance principle [37]).
Suppose Ω is a bounded closed set. Every solution of
CDα

t h(t) � f(h(t)) which starts from a point inΩ remains in
Ω for all t≥ 0. If there exists V(h): Ω⟶ R with continuous
frst partial derivatives satisfying

Table 1: Parameter description in system (2).

Parameters Ecological descriptions
􏽢r1 Intrinsic growth rate of prey
􏽢r2 Intrinsic growth rate of susceptible predator
􏽢K Carrying capacity of prey
􏽢θ Capture rate of susceptible predator
􏽢b Prey saturation constant
􏽢a Another saturation constant
􏽢c Te strength of interference between susceptible predators in predation process
􏽢p Te Allee threshold
􏽢q Te auxiliary Allee efect constant
􏽢m Intraspecifc competition rate among predators
􏽢k Alternative food for the predator
􏽢β Transmission rate of the disease
􏽢δ Death rate of infected predator
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C
D

α
t V|CDα

t h(t)�f(h(t)) ≤ 0, (11)

then every solution h(t) starting in Ω tends to M as t⟶∞
where M is the largest invariant set of E with

E ≔ h
C

D
α
t V

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌CDα
t

h(t) � f(h(t)) � 0􏼚 􏼛. (12)

3. Basic Properties of Solutions

In this section, we present some basic properties of solutions
of the system (4) such as the non-negativity, boundedness,
existence, and uniqueness of solutions.

3.1. Non-Negativity and Boundedness of Solutions. From the
biological point of view, we only concern to system (4) in the
non-negative and bounded solutions. We consider
R3

+ ≔ (N, S, I) ∈ R3: N≥ 0, S≥ 0, I≥ 0􏼈 􏼉 as the set of all non-
negative solutions. Te following theorem shows the non-
negativity and boundedness of the solutions of system (4).

Theorem 8. All solutions of the system (4) which initiate in
R3

+ are non-negative and uniformly bounded.

Proof. Let N(0)> 0, S(0)> 0, and I(0)> 0 and assume that
N(t)≥ 0 for t ∈ [0,∞). Suppose the assumption is not true,
then there exists t∗ which satisfes 0≤ t< t∗ such that
N(t)> 0 for t ∈ [0, t∗], N(t∗) � 0, and N(t)< 0 for t> t∗.
From the frst equation of system (4), we have

C
D

α
t N t
∗

( 􏼁|N t∗( )�0 � 0. (13)

According to Lemma 3, we get N(t) � 0 for t> t∗ which
contradicts to N(t)< 0,∀t> t∗. Terefore, we have N(t)≥ 0
for t ∈ [0,∞). Using the similar way, it can be shown that
S(t)≥ 0 and I(t)≥ 0 for t ∈ [0,∞). Hence, all solutions of
the system (4) are non-negative.

Next, we show the boundedness of solutions of the
system (4) by using the fractional comparison lemma. From
the frst equation of system (4), we obtain

C
D

α
t N(t) + N(t) � r1N 1 −

N

K
􏼒 􏼓

−
θNS

a + bN + cS
+ N

≤ − r1
N

2

K
+ r1 + 1( 􏼁N

� −
r1

K
N −

K r1 + 1( 􏼁

2r1
􏼠 􏼡

2

+
K r1 + 1( 􏼁

2

4r1

≤
K r1 + 1( 􏼁

2

4r1
.

(14)

Based on Lemma 4, we have

N(t)≤ N(0) −
K r1 + 1( 􏼁

2

4r1
􏼠 􏼡Eα − t

α
( 􏼁

+
K r1 + 1( 􏼁

2

4r1
,

(15)

where Eα is the Mittag–Lefer function. Lemma 5 and
Corollary 6 in [38] implies that Eα(− tα)⟶ 0 as t⟶∞,
then it follows

0≤N(t)≤
K r1 + 1( 􏼁

2

4r1
� η1, as t⟶∞. (16)

Tus, for any ε> 0, N(t) with initial condition in R3
+ is

uniformly bounded to the region

Θ1 � N(t)≤ η1 + ε, ε> 0􏼈 􏼉. (17)

Defne W(t) � S(t) + I(t) and adding the last two
equations of system (4). Ten, we get

C
D

α
t W(t)≤ r2S − pr2

S

S + q
− m

S
2

k + N
− δI. (18)

For ξ > 0 and N(t)≤ η1 + ε, we have
C

D
α
t W(t) + ξW(t)

≤ −
m

k + η1 + ε
S −

r2 + ξ( 􏼁 k + η1 + ε( 􏼁

2m
􏼠 􏼡

2

+
r2 + ξ( 􏼁

2
k + η1 + ε( 􏼁

4m

+(ξ − δ)I − pr2
S

S + q
.

(19)

If we choose ξ < δ, then

C
D

α
t W(t) + ξW(t) ≤ −

m

k + η1 + ε
S −

r2 + ξ( 􏼁 k + η1 + ε( 􏼁

2m
􏼠 􏼡

2

+
r2 + ξ( 􏼁

2
k + η1 + ε( 􏼁

4m
− pr2

S

S + q
.

≤
r2 + ξ( 􏼁

2
k + η1 + ε( 􏼁

4m
− pr2

S

S + q
.

(20)

Using the same argument as before and letting ε⟶ 0,
then for the weak Alee efect (p< 0) we have the following
equation:

0≤W(t)≤
r2 + ξ( 􏼁

2
k + η1( 􏼁

4ξm
−

pr2

ξq

� η2, as t⟶∞.

(21)

On the other hand, for the strong Alee efect (p> 0) we
have the following equation:
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0≤W(t)≤
r2 + ξ( 􏼁

2
k + η1( 􏼁

4ξm

� η3, as t⟶∞.

(22)

Tus, for any ε> 0, the combination of the solutions S(t)

and I(t) with initial conditions started in R3
+ are uniformly

bounded in the region

Θ2 �
S(t) + I(t)≤ η2 + ε, ε> 0, p< 0,

S(t) + I(t)≤ η3 + ε, ε> 0, p> 0.
􏼨 (23)

□

3.2. Existence and Uniqueness of the Solution. To investigate
the existence and uniqueness of solution of system (4), we
apply the locally Lipschitz condition in the region (0, T] × Υ,
where Υ � (N, S, I) ∈ R3: max(|N|, |S|, |I|)≤ Φ􏼈 􏼉, for suf-
cient large Φ and T<∞.

Theorem  . For each Z(0) � (N(0), S(0), I(0)) ∈ Υ, there
exists a unique solution Z(t) � (N(t), S(t), I(t)) ∈ Υ of
system (4) with initial condition Z(0), which is defned for all
t≥ 0.

Proof. For any Z, Z∈ Υ, we consider a mapping of a con-
tinuous function F(Z) � (F1(Z), F2(Z), F3(Z)) where

F1(Z) � r1N −
r1N

2

K
−

θNS

a + bN + cS
,

F2(Z) �
r2S

2

S + q
−

pr2S

S + q
−

mS
2

k + N
−

mSI

k + N
− βSI,

F3(Z) � βSI − δI.

(24)

It follows that

‖F(Z) − F(Z)‖

� F1(Z) − F1(Z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + F2(Z) − F2(Z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ F3(Z) − F3(Z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� |r1N −
r1N

2

K
−

θNS

a + bN + cS

− r1N −
r1N

2

K
−

θNS

a + bN + cS
⎛⎝ ⎞⎠|

+ |
r2S

2

S + q
−

pr2S

S + q
−

mS
2

k + N
−

mSI

k + N

− βSI −
r2S

2

S + q
−

pr2S

S + q
−

mS
2

k + N
⎛⎝

−
mSI

k + N
− βSI􏼡|

+|βSI − δI − (βSI − δI)|

≤ r1|N − N| +
r1

K
N

2
− N

2􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ θ
NS

a + bN + cS
−

NS

a + bN + cS

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ r2
S
2

S + q
−

S
2

S + q

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ pr2
S

S + q
−

S

S + q
| + m

S
2

k + N
−

S
2

k + N

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ m

SI

k + N
−

SI

k + N

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+β|SI − SI|

International Journal of Diferential Equations 5



+ β|SI − SI| + δ|I − I|

≤ r1|N − N| +
r1

K
(N + N)|N − N|

+
θ(aN + bNN)

a
2 |S − S|

+
θ(aS + cSS)

a
2 |N − N|

+
r2

q
2SS|S − S| +

r2

q
(S + S)|S − S|

+
pr2

q
|S − S| +

m(k + N)(S + S)

k
2 |S − S|

+
mS

2

k
2 |N − N| +

m(k + N)I

k
2 |S − S|

+
mNS

k
2 |I − I| +

mSI

k
2 |N − N|

+ 2βS|I − I| + 2βI|S − S| + δ|I − I|

≤M1|N − N| + M2|S − S| + M3|I − I|

≤M|Z − Z|,

(25)

where

M1 � r1 +
2r1

K
+
θ
a

􏼠 􏼡Φ +
θc

a
2 +

2m

k
2􏼠 􏼡Φ2,

M2 �
pr2

q
+

θ
a

+
2r2

q
+
3m

k
+ 2β􏼠 􏼡Φ

+
θb

a
2 +

r2

q
2 +

3m

k
2􏼠 􏼡Φ2,

M3 � δ + 2βΦ +
m

k
2Φ

2
,

M � max M1, M2, M3􏼈 􏼉.

(26)

Since F(Z) satisfes the Lipschitz condition with respect
to Z, then system (4) with initial condition Z(0) has a
unique solution Z(t) ∈ Υ for all t≥ 0. Te proof is
completed. □

3.3. Existence and Stability of Equilibrium Points. To study
the dynamical behaviors of system (4), we frst investigate
the equilibrium points of the system (4) which are the
constant solutions to the following system:

r1N 1 −
N

K
􏼒 􏼓 −

θNS

a + bN + cS
� 0,

S r2
S − p

S + q
−

m(S + I)

k + N
􏼠 􏼡 − βSI � 0,

βSI − δI � 0.

(27)

Next, the local stability of equilibrium points of system
(4) is evaluated by computing the eigenvalues of the Jacobian
matrix of system (4) at the equilibrium point (N∗, S∗, I∗)

which is given as follows:

J N
∗
, S
∗
, I
∗

( 􏼁 �

J1,1 J1,2 0

J2,1 J2,2 J2,3

0 J3,2 J3,3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

where

J1,1 � r1 1 −
N
∗

K
􏼠 􏼡 −

r1N
∗

K

−
θS
∗

a + bN
∗

+ cS
∗ +

bθN
∗
S
∗

a + bN
∗

+ cS
∗

( 􏼁
2,

J1,2 � −
θN
∗

a + bN
∗

+ cS
∗ +

cθN
∗
S
∗

a + bN
∗

+ cS
∗

( 􏼁
2

J2,1 �
mS
∗

S
∗

+ I
∗

( 􏼁

k + N
∗

( 􏼁
2

J2,2 � r2
S
∗

− p

S
∗

+ q
−

m S
∗

+ I
∗

( 􏼁

k + N
∗ +

S
∗ r2

S
∗

+ q
−

r2 S
∗

− p( 􏼁

S
∗

+ q( 􏼁
2 −

m

k + N
∗⎛⎝ ⎞⎠ − βI

∗

J2,3 � −
mS
∗

k + N
∗ + βS

∗
􏼠 􏼡

J3,2 � βI
∗

J3,3 � βS
∗

− δ.

(29)
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3.4.EquilibriumAnalysis in theCaseof theWeakAlleeEfect in
Predator. In this subsection, the existence and stability of
the equilibrium points of the system (4) for the weak Alee
efect (p< 0) are given. By solving system (9) simulta-
neously, all positive equilibrium points of system (4) are
obtained as follows:

(a) Trivial equilibrium point: E0 � (0, 0, 0), which al-
ways exists.

(b) Axial equilibrium point: EN � (K, 0, 0), which al-
ways exists; and ES � (0, Sw, 0), where

Sw � kr2 − mq/2m +

����������������������

(kr2 − mq/2m)2 − kpr2/m
􏽱

,
which always exists.

(c) Planar equilibrium point: ESI � (0, Sw, Iw) where
Sw � δ/β and Iw � (1/m + βk)(βkr2
(δ − βp) − δm(δ + βq)/β(δ + βq)) exists if
p<min 0, δ/β(1 − (m(δ + βq)/βkr2))􏼈 􏼉; and
ENS � ( 􏽥Nw, 􏽥Sw, 0) exists if p> 􏽥Sw

(1 − (m(􏽥Sw + q)/kr2)), where 􏽥Nw � (m􏽥Sw

(􏽥Sw + q)/r2(􏽥Sw − p)) − k and 􏽥Sw are all positive roots
of the following quartic equation:

l1S
4

+ l2S
3

+ l3S
2

+ l4S + l5 � 0, (30)

where

l1 � mb + cr2( 􏼁mr1,

l2 � (− bk − cp + a)r2 + mbq( 􏼁mr1

− mb + cr2( 􏼁 (k + K)r2 − mq( 􏼁r1 + θKr
2
2,

l3 � − p(− bk + a)mr1r2 − (− bk − cp + a)r2(

+ mbq) (k + K)r2 − mq( 􏼁r1

+ mb + cr2( 􏼁 p(k + K)r2( 􏼁r1 − 2θKr
2
2p,

l4 � pr2 (k + K)r2 − mq( 􏼁(− bk + a)r1

+(− bk − cp + a)r2 + mbq􏼁

p(k + K)r2( 􏼁r1 + θKr
2
2p

2
,

l5 � − p(− bk + a) p(k + K)r2( 􏼁r2r1.

(31)

(d) Interior equilibrium point: E∗ � (N∗w, S∗w, I∗w), where

N
∗
w �

bK − a + cS
∗
w( 􏼁

2b
±

���
Δw

􏽰
, S
∗
w �

δ
β

,

I
∗
w �

r2 S
∗
w − p( 􏼁 k + N

∗
w( 􏼁 − mS

∗
w S
∗
w + q( 􏼁

S
∗
w + q( 􏼁 m + β k + N

∗
w( 􏼁( 􏼁

,

Δw �
bK − a + cS∗w( 􏼁

2b
􏼠 􏼡

2

+
K r1 a + cS

∗
w( 􏼁 − θS

∗
w( 􏼁

br1
.

(32)

Assume that k + N∗w > (δm(δ + βq)/βr2(δ − βp)), then
we have the following results:

(a) If Δw < 0, then system (4) has no interior equilibrium
point.

(b) If Δw � 0 and aβ + cδ < bKβ, then system (4) has a
unique interior equilibrium point
E∗ � (N∗w, (δ/β), I∗w) where N∗w � (bKβ
− (aβ + cδ)/2bβ) and I∗w � (βr2(δ − βp) (k + N∗w) −

δm(δ + βq)/β(δ + βq)(m + β(k + N∗w))).
(c) If Δw > 0 and aβ + cδ <min bKβ, (δθ/r1)􏼈 􏼉, then

system (4) has two positive interior equilibrium
points E∗1,2 � (N∗wi, (δ/β), I∗wi), i � 1, 2, where

N
∗
w1,2

�
bKβ − (aβ + cδ)

2bβ
±

���
Δw

􏽰
,

I
∗
w1,2

�
βr2(δ − βp) k + 􏽢Nw1,2

􏼐 􏼑 − δm(δ + βq)

β(δ + βq) m + β k + 􏽢Nw1,2
􏼐 􏼑􏼐 􏼑

,

Δw �
bKβ − (aβ + cδ)

2bβ
􏼠 􏼡

2

+
K r1(aβ + cδ) − δθ( 􏼁

br1β
.

(33)

Theorem 10. Te local stability of trivial, axial, and planar
equilibrium points of system (4) for the weak Alee efect
(p< 0) are summarized as follows.

(a) E0 � (0, 0, 0) is always a saddle point.
(b) EN � (K, 0, 0) is always a saddle point.
(c) ES � (0, Sw, 0) is locally asymptotically stable if

r1 < (θSw/a + cSw), p + q< (m/kr2)(Sw + q)2, and
Sw < (δ/β).

(d) Let 􏽢Δw � ((βδr2(p + q)/(δ + βq)2)

− (mδ/βk))2 − 4((δ/βk)(βkr2(δ − βp) − mδ(δ +

βq)/δ + βq)). ESI � (0, Sw, Iw) is locally asymptoti-
cally stable if r1 < (δθ/aβ + cδ) and one of the fol-
lowing conditions holds:

(i) (βr2(p + q)/(δ + βq)2)< (m/βk) < (r2(δ −

βp)/δ(δ + βq)), or
(ii) (βr2(p + q)/(δ + βq)2)> (m/βk), 􏽢Δw < 0, and

α< α∗ � (2/π)tan− 1((

����

|􏽢Δw|

􏽱

/(βr2(p +

q)/(δ + βq)2) − (m/βk))).

(e) Suppose that
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ω1 � −
r1

􏽥Nw

K
1 −

br1 K − 􏽥Nw( 􏼁

θK􏽥Sw

􏼠 􏼡 +
r2

􏽥Sw − p􏼐 􏼑
2

− p(p + q)􏼒 􏼓

􏽥Sw + q􏼐 􏼑
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ω2 �
r1

􏽥Nw

K
1 −

br1 K − 􏽥Nw( 􏼁

θK􏽥Sw

􏼠 􏼡

r2
􏽥Sw − p􏼐 􏼑

2
− p(p + q)􏼒 􏼓

􏽥Sw + q􏼐 􏼑
2 +

θ 􏽥Nw a + b 􏽥Nw( 􏼁

a + b 􏽥Nw + c􏽥Sw􏼐 􏼑
2

m􏽥S
2
w

k + 􏽥Nw( 􏼁
2.

(34)

ENS � ( 􏽥Nw, 􏽥Sw, 0) is locally asymptotically stable if
􏽥Sw < (δ/β) and

(i) ω1 < 0 and ω2 > 0, or
(ii) ω1 > 0, ω2

1 − 4ω2 < 0 and
α< α∗ � (2/π)tan− 1(

���������

|ω2
1 − 4ω2|

􏽱

/ω1)

Proof. (a) In view of (28), around E0 � (0, 0, 0) we have

J E0( 􏼁 �

r1 0 0

0 −
r2 p

q
0

0 0 − δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Te corresponding eigenvalues of (35) are
λ1 � r1 > 0, λ2 � − (r2p/q)> 0, and λ3 � − δ < 0. Tus,
|arg(λ1,2)| � 0< (απ/2) and |arg(λ3)| � π > (απ/2).
Terefore, E0 is always a saddle point.

(b) Te Jacobian matrix in (28) around EN � (K, 0, 0) is

J EN( 􏼁 �

− r1 −
θK

a + bK
0

0 −
r2p

q
0

0 0 − δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Ten, the corresponding eigenvalues of (36) are λ1 �

− r1 < 0, λ2 � − (r2p/q)> 0, and λ3 � − δ < 0. Since
|arg(λ2)| � 0< (απ/2) and |arg(λ1,3)| � π > (απ/2),
therefore, EN is a saddle point.

(c) By substituting ES � (0, Sw, 0) to the Jacobian matrix
in (28), we have

J ES( 􏼁 �

a11 0 0

a21 a22 a23

0 0 a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (37)

where

a11 � r1 −
θSw

a + cSw

,

a21 �
mS

2
w

k
2 ,

a22 �
kr2Sw(p + q) − mSw Sw + q( 􏼁

2

k Sw + q( 􏼁
2 ,

a23 � − Sw

m

k
+ β􏼒 􏼓,

a33 � βSw − δ.

(38)

Te corresponding eigenvalues of (37) are λ1 � r1 −

(θSw/a + cSw), λ2 � (kr2Sw(p + q) − mSw(Sw + q)2

/k(Sw + q)2), and λ3 � βSw − δ. Terefore,
|arg(λ1,2,3)| � π > (απ/2), whenever r1 < (θSw/a
+cSw), p + q< (m/kr2)(Sw + q)2, and δ > βSw.

(d) Te Jacobian matrix in (28) around ESI � (0, Sw, Iw)

is as follows:

J ESI( 􏼁 �

b11 0 0

b21 b22 b23

0 b32 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (39)

where

b11 � r1 −
δθ

aβ + cδ
,

b21 �
mδ
βk

δ2 + βq + r2( 􏼁δ − βr2p

(m + βk)(δ + βq)
,

b22 �
βδr2(p + q)

(δ + βq)
2 −

mδ
βk

,

b23 � − δ
m

βk
+ 1􏼠 􏼡,

b32 �
βkr2(δ − βp) − mδ(δ + βq)

(m + βk)(δ + βq)
.

(40)
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Te corresponding eigenvalues of (39) are λ1 � r1 −

(δθ/aβ + cδ) and roots of the following equation:

λ2 −
βδr2(p + q)

(δ + βq)
2 −

mδ
βk

􏼠 􏼡λ

+
δ
βk

βkr2(δ − βp) − mδ(δ + βq)

δ + βq
􏼠 􏼡 � 0.

(41)

Equation (41) has the following eigenvalues:

λ2,3 �
1
2

βδr2(p + q)

(δ + βq)
2 −

mδ
βk
±

���
􏽢Δw

􏽱

􏼠 􏼡, (42)

where

􏽢Δw �
βδr2(p + q)

(δ + βq)2
−

mδ
βk

􏼠 􏼡

2

−

4
δ
βk

βkr2(δ − βp) − mδ(δ + βq)

δ + βq
􏼠 􏼡.

(43)

Notice that if r1 < (δθ/aβ + cδ), then
|arg(λ1)| � π > (απ/2). Terefore, the stability of ESI

depends on λ2,3. If
(βr2(p + q)/(δ + βq)2)< (m/βk)< (r2(δ −

βp)/δ(δ + βq)), then |arg(λ2,3)|> (απ/2). Further-
more, if (βr2(p + q)/(δ + βq)2)> (m/βk) and 􏽢Δw < 0,
then λ2,3 is a pair of complex conjugate
eigenvalues with positive real parts. Tus,
|arg(λ2,3)|> απ/2 is achieved only if
α< α∗ � (2/π)tan− 1((

����

|􏽢Δw|

􏽱

/((βr2(p + q)/
(δ + βq)2) − (m/βk)))). Using the Matignon’s con-
dition (see Teorem 5), the theorem is completely
proven.

(e) Te Jacobian matrix (10) calculated at
ENS � ( 􏽥Nw, 􏽥Sw, 0) is given by

J ENS( 􏼁 �

c11 c12 0

c21 c22 c23

0 0 c33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (44)

where

c11 � −
r1

􏽥Nw

K
1 −

br1 K − 􏽥Nw( 􏼁

θK􏽥Sw

􏼠 􏼡,

c12 � −
θ 􏽥Nw a + b 􏽥Nw( 􏼁

a + b 􏽥Nw + c􏽥Sw􏼐 􏼑
2,

c21 �
m􏽥S

2
w

k + 􏽥Nw( 􏼁
2,

c22 � −
r2

􏽥Sw − p􏼐 􏼑
2

− p(p + q)􏼒 􏼓

􏽥Sw + q􏼐 􏼑
2 ,

c23 � − 􏽥Sw

m

k + 􏽥Nw

+ β􏼠 􏼡,

c33 � β􏽥Sw − δ.

(45)

Te eigenvalues of (44) are λ1 � β􏽥Sw − δ and the roots of
the quadratic equation λ2 − ω1 λ + ω2 � 0 where

ω1 � −
r1

􏽥Nw

K
1 −

br1 K − 􏽥Nw( 􏼁

θK􏽥Sw

􏼠 􏼡􏼢

+
r2

􏽥Sw − p􏼐 􏼑
2

− p(p + q)􏼒 􏼓

􏽥Sw + q􏼐 􏼑
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ω2 �
r1

􏽥Nw

K
1 −

br1 K − 􏽥Nw( 􏼁

θK􏽥Sw

􏼠 􏼡

r2
􏽥Sw − p􏼐 􏼑

2
− p(p + q)􏼒 􏼓

􏽥Sw + q􏼐 􏼑
2

+
θ 􏽥Nw a + b 􏽥Nw( 􏼁

a + b 􏽥Nw + c􏽥Sw􏼐 􏼑
2

m􏽥S
2
w

k + 􏽥Nw( 􏼁
2.

(46)

If 􏽥Sw < (δ/β), then |arg(λ1)| � π > (απ/2). Terefore, the
stability of ENS depends on λ2,3. If ω1 < 0 and ω2 > 0 then
|arg(λ2,3)|> (απ/2). Furthermore, if ω1 > 0 and ω2

1 < 4ω2,
then λ2,3 is a pair of complex conjugate eigenvalues. Tus,
|arg(λ2,3)|> (απ/2) is attained if

α< α∗ � (2/π)tan− 1(

���������

|ω2
1 − 4ω2|

􏽱

/ω1). So, by the
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Matignon’s condition (see Teorem 5) system (4) exhibits
locally asymptotically stable behavior around ENS. □

Theorem 11. Stability condition of interior equilibrium
point for weak Alee efect (p< 0). Suppose that

η1 �
r1N
∗
w

K
1 −

br1 K − N
∗
w( 􏼁

2

θKS
∗
w

􏼠 􏼡

− S
∗
w

r2 p( +q􏼁

S
∗
w + q( 􏼁

2 −
m

k + N
∗
w

⎛⎝ ⎞⎠,

η2 � − S
∗
w

r1N
∗
w

K
1 −

br1 K − N
∗
w( 􏼁

2

θKS
∗
w

􏼠 􏼡􏼢

r2(p + q)

S
∗
w + q( 􏼁

2 −
m

k + N
∗
w

⎛⎝ ⎞⎠

+ βI
∗
w

m

k + N
∗
w

+ β􏼠 􏼡

−
mθN
∗
w a( + bN

∗
w􏼁 S
∗
w( +I
∗
w􏼁

a + bN
∗
w + cS

∗
w( 􏼁

2
k + N

∗
w( 􏼁

2
⎤⎦,

η3 �
βr1N
∗
wS
∗
wI
∗
w

K
1 −

br1 K − N
∗
w( 􏼁

2

θKS
∗
w

􏼠 􏼡

m

k + N
∗
w

+ β􏼠 􏼡,

Dw(P) � 18η1η2η3 + η1η2( 􏼁
2

− 4η3η
3
1

− 4η32 − 27η23.

(47)

E∗ � (N∗w, S∗w, I∗w) is locally asymptotically stable if

(i) Dw(P)> 0, η1 > 0, η3 > 0, and η1η2 > η3.
(ii) Dw(P)< 0, η1 ≥ 0, η2 ≥ 0, η3 > 0, and 0< α< 2/3.
(iii) Dw(P)< 0, η1 < 0, η2 < 0, and 2/3< α< 1.
(iv) Dw(P)< 0, η1 > 0, η2 > 0, η1η2 � η3, and 0< α< 1.

Proof. Te Jacobian matrix (10) evaluated at interior
equilibrium point E∗ � (N∗w, S∗w, I∗w) is given by

J E
∗

( 􏼁 �

d11 d12 0

d21 d22 d23

0 d32 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (48)

where

d11 � −
r1N
∗
w

K
1 −

br1 K − N
∗
w( 􏼁

2

θKS
∗
w

􏼠 􏼡,

d12 � −
θN
∗
w a + bN

∗
w( 􏼁

a + bN
∗
w + cS

∗
w( 􏼁

2,

d21 �
mS
∗
w S
∗
w + I
∗
w( 􏼁

k + N
∗
w( 􏼁

2 ,

d22 � S
∗
w

r2(p + q)

S
∗
w + q( 􏼁

2 −
m

k + N
∗
w

⎛⎝ ⎞⎠,

d23 � − S
∗
w

m

k + N
∗
w

+ β􏼠 􏼡

d32 � βI
∗
w.

(49)

Te corresponding eigenvalues of (48) are the roots of
the cubic equation P(λ) � λ3 + η1λ

2 + η2 λ + η3 � 0 where
the discriminant Dw(P) of the cubic equation P(λ) is as
follows:

Dw(P) � 18η1η2η3 + η1η2( 􏼁
2

− 4η3η
3
1 − 4η32 − 27η23. (50)

If Dw(P)> 0, all the roots of the cubic equation are real;
and there is only one real root and two complex conjugate
roots if Dw(P)< 0. Terefore, the Routh-Hurwitz criterion
for Caputo fractional-order [39] completes the proof of the
stability condition for E∗. □

3.5. EquilibriumAnalysis in the StrongAllee Efect inPredator.
In this subsection, the existence and stability of the equi-
librium points of system (4) for the strong Alee efect (p> 0)

are given. All positive equilibrium points of system (4) are as
follows.

(a) Trivial equilibrium point: Ξ0 � (0, 0, 0), which al-
ways exists,

(b) Axial equilibrium point: ΞN � (K, 0, 0), which al-
ways exists; and ΞS � (0, Ss, 0)where

Ss1,2
� kr2 − mq/2m ±

����������������������

(kr2 − mq/2m)2 − kpr2/m
􏽱

.
Assume that kr2 >mq, the existence of ΞS is de-
scribed as follows.

(i) If (kr2 − mq/2m)2 < kpr2/m, then ΞS does not
exist.

(ii) If (kr2 − mq/2m)2 < kpr2/m, then there exists a
unique ΞS � (0, kr2 − mq/2m, 0)

(iii) If (kr2 − mq/2m)2 < kpr2/m, then there exists
twoΞS � (0, kr2 − mq/2m ±����������������������

(kr2 − mq/2m)2 − kpr2/m
􏽱

, 0)

(c) Planar equilibrium point: ΞSI � (0, Ss, Is) exists if
p< Ss(1 − m(δ + βq)/βkr2), where
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Ss �
δ
β

, and

Iw �
1

m + βk

βkr2(δ − βp) − δm(δ + βq)

β(δ + βq)
;

(51)

and ΞNS � ( 􏽥Ns,
􏽥Ss, 0) exists if

􏽥Ss(1 − m(􏽥Ss + q)/kr2)<p< 􏽥Ss, where 􏽥Ns � m􏽥Ss(
􏽥Ss +

q)/r2(􏽥Ss − p) − k and 􏽥Ss are also all positive roots of
quartic (30).

(d) Interior equilibrium point: Ξ∗ � (N∗s , S∗s , I∗s ), where

N
∗
s1,2

�
bK − a + cS

∗
s( 􏼁

2b
±

��
Δs

􏽰
,

S
∗
s �

δ
β

,

I
∗
s �

r2 S
∗
s − p( 􏼁 k + N

∗
s( 􏼁 − mS

∗
s S
∗
s + q( 􏼁

S
∗
s + q( 􏼁 m + β k + N

∗
s( 􏼁( 􏼁

,

Δs �
bK − a + cS∗s( 􏼁

2b
􏼠 􏼡

2

+
K r1 a + cS

∗
s( 􏼁 − θS

∗
s( 􏼁

br1
.

(52)

Assume that S∗s >p and k + N∗s >mS∗s (S∗s + q)/r2(S∗s −

p), then we have the following results.

(a) If Δs < 0, then system (4) has no interior equilibrium
point.

(b) If Δs � 0 and aβ + cδ < bKβ, then system (4) has a
unique interior equilibrium point Ξ∗1 � (N∗s , δ/β, I∗s )

where N∗s � bKβ − (aβ + cδ)/2bβ and I∗s � βr2(δ −

βp)(k + N∗s ) − δm(δ + βq)/β(δ + βq)(m + β(k +

N∗s )).
(c) If Δs > 0 and aβ + cδ <min bKβ, δθ/r1􏼈 􏼉, then system

(4) has two positive interior equilibrium points
Ξ∗1,2 � (N∗si, δ/β, I∗si) for i � 1, 2, where

N
∗
s1,2

�
bKβ − (aβ + cδ)

2bβ
±

��
Δs

􏽰
,

I
∗
s1,2

�
βr2(δ − βp) k + N

∗
s1,2

􏼒 􏼓 − δm(δ + βq)

β(δ + βq) m + β kN
∗
s1,2

􏼒 􏼓􏼒 􏼓

,

Δs � (bKβ − (aβ + cδ)/2bβ)
2

+ K r1(aβ + cδ) − δθ( 􏼁/br1β.

(53)

Theorem 12. Te local stability of all equilibrium points of
system (4) for the strong Alee efect (p> 0) is summarized as
follows.

(a) Ξ0 � (0, 0, 0) is a saddle point.
(b) ΞN � (K, 0, 0) is always locally asymptotically stable.
(c) ΞS � (0, Ss, 0) is locally asymptotically stable if

r1 < θSs/a + cSs, p + q<m/kr2(Ss + q)2, and Ss < δ/β.
(d) Let Ss >p and 􏽢Δs � (βδr2(p + q)/(δ + βq)2

− mδ/βk)2 − 4(δ/βkβkr2(δ − βp) − mδ(δ +

βq)/δ + βq). ΞSI � (0, Ss, Is) is locally asymptotically
stable if r1 < δθ/aβ + cδ and

(i) βr2(p + q)/(δ + βq)2 <m/βk< r2(δ −

βp)/δ(δ + βq), or
(ii) βr2(p + q)/(δ + βq)2 >m/βk, 􏽢Δs < 0, and

α< α∗ � 2/πtan− 1(

���

|􏽢Δs|

􏽱

/βr2(p +

q)/(δ + βq)2 − m/βk).
(e) Suppose that

ωs1
� −

r1
􏽥Ns

K
1 −

br1 K − 􏽥Ns( 􏼁

θK􏽥Ss

􏼠 􏼡􏼢

+
r2

􏽥Ss − p􏼐 􏼑
2

− p(p + q)􏼒 􏼓

􏽥Ss + q􏼐 􏼑
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ωs2
�

r1
􏽥Ns

K
1 −

br1 K( − 􏽥Ns􏼁

θK􏽥Ss

􏼠 􏼡

r2
􏽥Ss − p􏼐 􏼑

2
− p(p + q)􏼒 􏼓

􏽥Ss + q􏼐 􏼑
2

+
θ 􏽥Ns a + b 􏽥Ns( 􏼁

a + b 􏽥Ns + c􏽥Ss􏼐 􏼑
2

m􏽥S
2
s

k + 􏽥Ns( 􏼁
2.

(54)

ΞNS � ( 􏽥Ns,
􏽥Ss, 0) is locally asymptotically stable if

􏽥Ss < δ/β and

(i) ωs1
< 0, or

(ii) ωs2
> 0,ω2

s1
− 4ωs2
< 0,

and α< α∗ � 2/πtan− 1
���������
|ω2

s1
− 4ωs2

|
􏽱

/ωs1
.

(f ) Suppose that
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ξ1 �
r1N
∗
s

K
1 −

br1 K − N
∗
s( 􏼁

2

θKS
∗
s

􏼠 􏼡

− S
∗
s

r2(p + q)

S
∗
s + q( 􏼁

2 −
m

k + N
∗
s

⎛⎝ ⎞⎠,

ξ2 � − S
∗
s

r1N
∗
s

K
1 −

br1 K − N
∗
s( 􏼁

2

θKS
∗
s

􏼠 􏼡􏼢

r2(p + q)

S
∗
s + q( 􏼁

2 −
m

k + N
∗
s

⎛⎝ ⎞⎠

+ βI
∗
s

m

k + N
∗
s

+ β􏼠 􏼡

−
mθN
∗
s a + bN

∗
s( 􏼁 S
∗
s + I
∗
s( 􏼁

a + bN
∗
s + cS

∗
s( 􏼁

2
k + N

∗
s( 􏼁

2
⎤⎦

ξ3 �
βr1N
∗
s S
∗
s I
∗
s

K
1 −

br1 K − N
∗
s( 􏼁

2

θKS
∗
s

􏼠 􏼡

m

k + N
∗
s

+ β􏼠 􏼡

Ds(P) � 18ξ1ξ2ξ3 + ξ1ξ2( 􏼁
2

− 4ξ3 ξ1( 􏼁
3

− 4 ξ2( 􏼁
3

− 27 ξ3( 􏼁
2
.

(55)

Ξ∗ � (N∗s , S∗s , I∗s ) is locally asymptotically stable if

(i) Ds(P)> 0, ξ1 > 0, ξ3 > 0, and ξ1ξ2 > ξ3.
(ii) Ds(P)< 0, ξ1 ≥ 0, ξ2 ≥ 0, ξ3 > 0, and 0< α< 2/3.
(iii) Ds(P)< 0, ξ1 < 0, ξ2 < 0, and 2/3< α< 1.
(iv) Ds(P)< 0, ξ1 > 0, ξ2 > 0, ξ1ξ2 � ξ3, and 0< α< 1.

Teorem 12 has similar proof to Teorem 10 and
Teorem 11.

3.6. Hopf Bifurcation. In this subsection, we study the
conditions of a Hopf bifurcation around the equilibrium
point of system (4) when a parameter is varied. Tis bi-
furcation ensures a stability change when system (4) passes
the critical value which coincides with the emergence of the
limit cycle. Hopf bifurcation can occur both in the frst-order
systems and fractional-order systems. Te fundamental
diference between the two is the convergence of the limit set
of solutions, known as the limit cycle, to the solution of the
system. In the frst-order systems, the limit cycle converges
to the periodic solution; in the fractional-order systems,
instead of converging to the periodic solution, the limit cycle
converges to the periodic signal [40, 41].

Let us consider the following three-dimensional frac-
tional order system:

C
D

α
t x � g(x), 0< α≤ 1, x ∈ R3

. (56)

According to Teorem 5, the stability of the system dy-
namics is signifcantly afected by the order of the derivative α.
Suppose thatE∗ is an equilibriumpoint of system (19) and α∗ is
the critical value of bifurcation parameter. Te conditions
under which system (19) undergoes a Hopf bifurcation driven
by α near the equilibrium point E∗ are given in [42].

(1) Te Jacobian matrix at E∗ has one real negative eigen
value λ1 < 0 and a pair of complex conjugate eigen
values λ2,3 � ψ ± iϕ (where ψ > 0),

(2) χ(α∗) � α∗ π/2 − |arg(λ2,3(α))| � 0, and
(3) Te transversality condition: zχ(α)/zα|α�α∗ ≠ 0.

Note that the critical value of α∗ is the solution of
χ(α∗) � α∗π/2 − |arg(λ2,3(α))| � 0, i.e., α∗ � 2/πtan− 1|ϕ/ψ|.
Terefore, we have the following theorem.

Theorem 13. Existence of Hopf bifurcation driven by α
around ESI, ENS, or E∗ for the weak Allee efect case.

(i) Suppose that r1 < δθ/aβ + cδ,
βr2(p + q)/(δ + βq)2 >m/βk, and 􏽥Δw < 0. System (4)
undergoes a Hopf bifurcation around ESI when α
passes through

α∗ �
2
π
tan− 1

����
􏽥Δw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

βr2(p + q)/(δ + βq)
2

− m/βk

⎛⎜⎜⎝ ⎞⎟⎟⎠. (57)

(ii) If 􏽥S< δ/β, ω1 > 0, and ω2
1 − 4ω2 < 0. Ten, system (4)

undergoes a Hopf bifurcation around ENS when
parameter bifurcation α passes through

α∗ �
2
π
tan− 1

���������

ω2
1 − 4ω2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

ω1

⎛⎜⎜⎝ ⎞⎟⎟⎠. (58)

(iii) Suppose that characteristic equation
P(λ) � λ3 + η1λ

2 + η2 λ + η3 � 0 has one real neg-
ative eigen value and a pair of complex conjugate
eigen values λ2,3 � ζ1 ± iζ2 where ζ1 > 0. System (4)
undergoes a Hopf bifurcation around the interior
equilibrium point E∗ � (N∗w, S∗w, I∗w) when α passes
through

α∗ � 2π tan− 1

��������

ζ21 − 4ζ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽱

ζ1
⎛⎜⎜⎝ ⎞⎟⎟⎠. (59)

Remark 14. In addition to the existence of Hopf bifurcation
driven by order of the fractional derivative (α), the trans-
mission rate (β) also can be considered as a parameter
bifurcation. Teorem 4 in [42] gives the existence condition
for Hopf bifurcation by varying β. Since it is difcult to fnd
out the exact critical values of β � β∗, therefore we nu-
merically investigated the existence of Hopf bifurcation in
system (4) driven by parameter β.
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4. Global Stability

By using the appropriate Lyapunov function, we investigate
the global stability of the stable equilibrium points of system
(4), both for the weak Allee efect and the strong Allee efect
cases in the predator.

4.1. For the Weak Allee Efect in Predator

Theorem 15. ES � (0, Sw, 0) is globally asymptotically sta-
ble, if

− q
Sw

η2 + q
− 1􏼠 􏼡≤p≤ −

η2 + q

r2Sw

r1 K

4
+ mS

2
w􏼒 􏼓,

Sw <
δ
β

,

(60)

hold.

Proof. Let (N(t), S(t), I(t)) be any positive solution of
system (4). From (20), an ε> 0 can be chosen such that

pr2Sw

η2 + ε + q
≤ −

r1K

4
+ mS

2
w􏼒 􏼓,

p

q
≥ 1 −

Sw

η2 + ε + q
􏼠 􏼡,

Sw <
δ

m + β
<
δ
β

.

(61)

Further, from Teorem 8, we have 0≤ S(t)≤ η2 + ε. We
now defne a positive defnite Lyapunov function at ES �

(0, Sw, 0) as follows:

L1(N, S, I) � N + S − Sw − Swln
S

Sw

􏼠 􏼡 + I. (62)

By using Lemma 6, the fractional time derivative of
L1(N, S, I) along the solutions of system (4) is given by

C
D

α
t L1(N, S, I)

≤ C
D

α
t N +

S − Sw

S

C
D

α
t S +

C
D

α
t I

� r1 1 −
N

K
􏼒 􏼓 −

θS

a + bN + cS
􏼢 􏼣N

+ S − Sw( 􏼁
r2(S − p)

S + q
−

m(S + I)

k + N
− βI􏼢 􏼣

+ βSI − δI

� −
r1

K
N −

K

2
􏼒 􏼓

2
+

r1K

4
−

θNS

a + bN + cS

+
r2S

2

S + q
−

pr2S

S + q
−

r2SwS

S + q
+

pr2Sw

S + q

−
mSwS

k + N
+

mS
2
w

k + N
−

m

k + N
S − Sw( 􏼁

2

−
mSI

k + N
+

mSwI

k + N
+ βSwI − δI.

≤
r1K

4
+

pr2Sw

η2 + ε + q
+ mS

2
w􏼠 􏼡

+ r2 1 −
p

q
−

Sw

η2 + ε + q
􏼠 􏼡S

−
m

k + N
S − Sw( 􏼁

2
+ mSw + βSw − δ( 􏼁I.

(63)

If condition in (61) is satisfed then we obtain the
following:

C
D

α
t L1(N, S, I)≤ −

m

k + N
S − Sw( 􏼁

2
. (64)

In this case, CDα
t L1(N, S, I)≤ 0, ∀(N, S, I) ∈ R3

+, and
CDα

t L1(N, S, I) � 0 at ES. Based on that, the only invariant
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set on which CDα
t L1(N, S, I) � 0 is the singleton ES􏼈 􏼉. Using

Lemma 7, the sufcient condition for the global asymptotic
stability of ES is achieved. □

Theorem 16. Te planar equilibrium point ESI � (0, Sw, Iw)

is globally asymptotically stable, if

−
β η2 + q( 􏼁

δp

r1K

4
+
δ2m
β2k

+ δIw +
δmη2
βk

􏼠 􏼡

≤ r2 ≤
pr2
q

+
δr2

β η2 + q( 􏼁
+

δm

β η1 + k( 􏼁
+ βIw,

(65)

holds.

Proof. Assume that (N(t), S(t), I(t)) be the positive solu-
tion of system (4), so we can choose ε> 0 such that

δpr2
β η2 + ε + q( 􏼁

≤

−
r1K

4
+
δ2m
β2k

+ δIw +
δm

βk
η2 + ε( 􏼁􏼠 􏼡

r2 ≤
pr2
q

+
δr2

β η2 + ε + q( 􏼁

+
δm

β k + η1 + ε( 􏼁
+ βIw.

(66)

From Teorem 8, we also have that N(t) and S(t) are
bounded, i.e., 0≤N(t)≤ η1 + ε and 0≤ S(t)≤ η2 + ε. Now,
we defne a positive defnite Lyapunov function at ESI �

(0, Sw, Iw) as

L2(N, S, I) � N + S −
δ
β

−
δ
β
ln
βS

δ
􏼠 􏼡

+ I − Iw − Iwln
I

Iw

􏼠 􏼡.

(67)

As before, we have the fractional time derivative of
L2(N, S, I) along the solutions of system (4) as follows:

C
D

α
t L2(N, S, I)

≤ C
D

α
t N +

S − δ/β
S

C
D

α
t S +

I − Iw

I

C
D

α
t I

� r1 1 −
N

K
􏼒 􏼓 −

θS

a + bN + cS
􏼠 􏼡N

+ S −
δ
β

􏼠 􏼡
r2(S − p)

S + q
−

m(S + I)

k + N
− βI􏼠 􏼡

≤
r1K

4
+

r2S
2

S + q
−

pr2S

S + q
−

r2δ/βS

S + q
+

pr2δ/β
S + q

−
mδ/βS

k + N
+

m(δ/β)
2

k + N
−

m(S − δ/β)
2

k + N
−

mSI

k + N

+
mδ/βI

k + N
− βIwS + Iwδ

≤
r1K

4
+

δpr2

β η2 + ε + q( 􏼁
+
δ2m
β2k

+ δIw􏼠

+
δm

βk
η2 + ε( 􏼁􏼡 + r2 −

pr2

q
􏼠

−
δr2

β η2 + ε + q( 􏼁
−

δm

β k + η1 + ε( 􏼁
− βIw􏼡S

−
m

k + N
S −

δ
β

􏼠 􏼡

2

−
m

k + N
SI.

(68)

Observe that when the condition of (66) is fulflled, then
we have the following:

C
D

α
t L2(N, S, I)≤ −

m

k + N
S −

δ
β

􏼠 􏼡

2

−
m

k + N
SI. (69)

One can easily show that
CDα

t L2(N, S, I)≤ 0, ∀(N, S, I) ∈ R3
+, and

CDα
t L2(N, S, I) �

0 at ESI. Terefore, the only invariant set on which
CDα

t L2(N, S, I) � 0 is the singleton ESI􏼈 􏼉. Following Lemma
7, whenever ESI exists and
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−
β η2 + q( 􏼁

δp

r1K

4
+
δ2m
β2k

+ δIw +
δmη2
βk

􏼠 􏼡

≤ r2 ≤
pr2

q
+

δr2

β η2 + q( 􏼁
+

δm

β η1 + k( 􏼁
+ βIw,

(70)

then it is globally asymptotically stable. □

Theorem 17. Te planar equilibrium point of system (4)
ENS � ( 􏽥Nw, 􏽥Sw, 0) is globally asymptotically stable if

􏽥Nw ≥K, r1 ≤
􏽥Sw − pr2/η2 + q − m􏽥Sw/k􏼐 􏼑

􏽥Nw
􏽥Nw/K − 1( 􏼁

,

r2 ≤
m􏽥Sw/k + η1 − θ 􏽥Nw/a
1 − 􏽥Sw/η2 + q − p/q􏼐 􏼑

, δ ≥
m􏽥Sw

k
+ β􏽥Sw.

(71)

Proof. Let (N(t), S(t), I(t) be any positive solution of
system (4). Ten, from (24), an ε> 0 can be chosen such that

1 −
􏽥Nw

K
< 0,

r1
􏽥N
2
w

K
− r1

􏽥Nw < −
pr2

􏽥Sw

η2 + ε + q
+

m􏽥S
2
w

k
⎛⎝ ⎞⎠,

m􏽥Sw

k
+ β􏽥Sw < δ

θ 􏽥Nw

a
+ r2 <

r2
􏽥Sw

η2 + ε + q
+

pr2
q

+
m􏽥Sw

k + η1 + ε
.

(72)

Also, from Teorem 8, we have that N(t) and S(t) are
bounded such that 0≤N(t)≤ η1 + ε and 0≤ S(t)≤ η2 + ε. Let
us consider a positive defnite Lyapunov function at ENS �

( 􏽥Nw, 􏽥Sw, 0) as follows:

L3(N, S, I) � N − 􏽥Nw − 􏽥Nwln
N

􏽥Nw

􏼠 􏼡

+ S − 􏽥Sw − 􏽥Swln
N

􏽥Sw

􏼠 􏼡 + I.

(73)

Based on Lemma 6 and by calculating the fractional time
derivative of L3(N, S, I) along the solutions of system (4),

C
D

α
t L3(N, S, I)

≤
N − 􏽥Nw

N

C
D

α
t N +

S − 􏽥Sw

S

C
D

α
t S +

C
D

α
t I

�
N − 􏽥Nw

N
r1 1 −

N

K
􏼒 􏼓 −

θS

a + bN + cS
􏼠 􏼡N

+
S − 􏽥Sw

S

r2(S − p)

S + q
−

m(S + I)

k + N
− βI􏼠 􏼡S

+ βSI − δI

� −
r1

K
N − 􏽥Nw( 􏼁

2
+ r1N −

r1
􏽥Nw

K
N − r1

􏽥Nw

+
r1

􏽥N
2
w

K
−

θNS

a + bN + cS
+

θ 􏽥NwS

a + bN + cS

+
r2S

2

S + q
−

r2S
􏽥Sw

S + q
−

pr2S

S + q
+

pr2
􏽥Sw

S + q

−
m

k + N
S − 􏽥Sw􏼐 􏼑

2
−

m􏽥Sw

k + N
S +

m􏽥S
2
w

k + N

−
mIS

k + N
+

mI􏽥Sw

k + N
+ β􏽥SwI − δI

≤ −
r1

K
N − 􏽥Nw( 􏼁

2
+ r1 1 −

􏽥Nw

K
􏼠 􏼡N

+
r1 􏽥N

2
w

K
− r1

􏽥Nw +
pr2

􏽥Sw

η2 + ε + q
+

m􏽥S
2
w

k
⎛⎝ ⎞⎠

+
θ 􏽥Nw

a
+ r2 −

r2
􏽥Sw

η2 + ε + q
−

pr2

q
􏼠

−
m􏽥Sw

k + η1 + ε
􏼡S −

m

k + N
S − 􏽥Sw􏼐 􏼑

2

−
m

k + N
SI +

m􏽥Sw

k
+ β􏽥Sw − δ􏼠 􏼡I.

(74)
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If condition in (72) is achieved, then we have the
following:

C
D

α
t L3(N, S, I)≤ −

r1
K

N − 􏽥Nw( 􏼁
2

−
m

k + N
S − 􏽥Sw􏼐 􏼑

2
−

m

k + N
SI.

(75)

It is obvious that CDα
t L3(N, S, I)≤ 0, ∀(N, S, I) ∈ R3

+,
and CDα

t L3(N, S, I) � 0 at ENS. Hence, the singleton ENS􏼈 􏼉 is
the only invariant set on which CDα

t L3(N, S, I) � 0.Tus, we
can conclude that ENS is globally asymptotically stable which
allowed by Lemma 7. □ □

Theorem 18. Suppose that

Ω1 �
2ar1

K

aβ + bN
∗
wβ − cδ

aβ + bN
∗
wβ + 2bδ

􏼠 􏼡

Ω2 �
2am

k + η1( 􏼁 a + bN
∗
w( 􏼁

Ω3 �
βI
∗
wq

r2
− q

Ω4 �
δm + βmη2 + β2kI

∗
w􏼐 􏼑 η2 + q( 􏼁

βkr2
.

(76)

If θ ≤min Ω1,Ω2􏼈 􏼉 and Ω3 ≤ − p≤Ω4, then
E∗ � (N∗w, S∗w, I∗w) is globally asymptotically stable.

Proof. Let (N(t), S(t), I(t)) be any positive solution of
system (4), where N(t) and S(t) are bounded byTeorem 8.
Further, one can use the following positive defnite Lya-
punov function to study the global stability of
E∗ � (N∗w, S∗w, I∗w):

L5(N, S, I)

� a + bN
∗
w + c

δ
β

􏼠 􏼡 N − N
∗
w − N

∗
w ln

N

N
∗
w

􏼠 􏼡

+ S −
δ
β

−
δ
β
ln

N

δ/β
􏼠 􏼡 + I − I

∗
w − I
∗
w ln

I

I
∗
w

􏼠 􏼡.

(77)

Again, using Lemma 6, we have the following equation:

C
D

α
t L5(N, S, I)

≤ a + bN
∗
w + c

δ
β

􏼠 􏼡
N − N

∗
w

N

C
D

α
t N

+
S − δ/β

S

C
D

α
t S +

I − I
∗
w

I

C
D

α
t I

� a + bN
∗
w + c

δ
β

􏼠 􏼡 N − N
∗
w( 􏼁

r1 1 −
N

K
􏼒 􏼓 −

θS

a + bN + cS
􏼠 􏼡

+ S −
δ
β

􏼠 􏼡
r2(S − p)

S + q
−

m(S + I)

k + N
− βI􏼠 􏼡

+ I − I
∗
w( 􏼁(βS − δ)

≤ −
r1

K
a + bN

∗
w + c

δ
β

􏼠 􏼡 N − N
∗
w( 􏼁

2

+
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∗
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a + bN + cS

N − N
∗
w( 􏼁

2
+(S − δ/β)

2

2

+
bθδ

β(a + bN + cS)
N − N

∗
w( 􏼁

2

−
m

k + N
S −

δ
β

􏼠 􏼡

2

+
r2S

2

S + q
−

pr2S

S + q

−
δ
β

r2S

S + q
+
δ
β

pr2

S + q
−

mδ
β(k + N)

S

+
δ2

β2
m

k + N
−

m

k + N
SI +

δ
β

m

k + N
I

− βSI
∗
w + δI

∗
w

≤ −
r1

K
a + bN

∗
w − c

δ
β

􏼠 􏼡 −
θ a + bN

∗
w( 􏼁

2a
􏼠

−
bθδ
aβ

􏼡 N − N
∗
w( 􏼁

2
+

θ a + bN
∗
w( 􏼁

2a
􏼠

−
m

k + η1 + ε
􏼡 S −

δ
β

􏼠 􏼡

2

+ r2(

−
pr2

q
− βI
∗
w􏼡S +

δpr2

β η2 + ε + q( 􏼁
􏼠

+
δ2m
β2k

+
δm η2 + ε( 􏼁

βk
+ δI
∗
w􏼡.

(78)
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Since we have θ≤min Ω1,Ω2􏼈 􏼉 and Ω3 ≤ − p≤Ω4, then
for an ε> 0, we can choose the following condition:

r1

K
a + bN

∗
w − c

δ
β

􏼠 􏼡≥
θ a + bN

∗
w( 􏼁

2a
+

bθδ
aβ

,

θ a + bN
∗
w( 􏼁

2a
≤

m

k + η1 + ε
,

r2 <
pr2

q
+ βI
∗
w, and

δpr2

β η2 + ε + q( 􏼁
≤ −

δ2m
β2k

+
δm η2 + ε( 􏼁

βk
􏼠

+δI
∗
w􏼁,

(79)

which implies CDα
t L5(N, S, I)≤ 0, ∀(N, S, I) ∈ R3

+, and
CDα

t L5(N, S, I) � 0 at E∗. Based on that, the only invariant
set on which CDα

t L5(N, S, I) � 0 is the singleton E∗{ }.
Employing the same argument, it follows that E∗ is globally
asymptotically stable. □

4.2. For the Strong Allee Efect in Predator

Theorem 1 . If p≥ (θK + r2)(η3 + q)/r2, then
ΞN � (K, 0, 0) is globally asymptotically stable.

Proof. Let (N(t), S(t), I(t)) be any positive solution of
system (4). From the hypothesis of Teorem 12, an ε> 0 can
be chosen such that θK + r2 ≤ r2p/η3 + ε + q. In the strong
Allee efect in predator, we have 0≤ S(t)≤ η3 + ε. Let us
consider a positive defnite Lyapunov function at
ΞN � (K, 0, 0) as follows:

L6(N, S, I) � N − K − K ln
N

K
􏼒 􏼓 + S + I. (80)

By taking the fractional time derivative of L6(N, S, I)

along the solutions of system (4) and using Lemma 6, one
has the following equation:

C
D

α
t L6(N, S, I)≤

N − K

N

C
D

α
t N +

C
D

α
t S +

C
D

α
t

I �
N − K

N
r1 1 −

N

K
􏼒 􏼓 −

θS

a + bN + cS
􏼠 􏼡N

+ S r2
S − p

S + q
−

m(S + I)

k + N
􏼠 􏼡 − δI

≤ −
r1

K
(N − K)

2
+ θK + r2 −

r2p

η3 + q
􏼠 􏼡S

− δI.

(81)

Regarding that θK + r2 ≤ r2p/η3 + ε + q, we have
CDα

t L6(N, S, I)≤ 0 for all (N, S, I) ∈ R3
+. Further,

CDα
t L6(N, S, I) � 0 implies that (N, S, I) � (K, 0, 0). Using

Lemma 7, we conclude that E∗ is globally asymptotically
stable. □

5. Numerical Simulations

In this section, we demonstrate the numerical simulations
based on the Adams–Bashforth–Moulton predictor-cor-
rector method provided by Diethelm et al. [43] to verify the
theoretical results established in the previous section. In
addition, we also present the complex dynamics of system
(4) such as the existence of bistability, forward, backward,
saddle-node, and Hopf bifurcations as the efects of the
disease and the fractional derivative.

Te frst simulation is given to observe the role of the
transmission rate (β) to the dynamics of system (4) for the
weak Allee efect case. We consider a set of hypothetical
parameters in (26), where some of the parameters are taken
from [28].

r1 � 0.5, K � 5, θ � 0.65, a � 1, b � 1,

c � 0.1, r2 � 0.1, k � 1, m � 0.01, p � − 0.46,

δ � 0.2, q � 3.

(82)

In view of the existence conditions of the equilibrium
points, Teorem 10 and Teorem 11, we plot a bifurcation
diagram for the weak Allee efect case as shown in Figure 1.
Here, α is set at α � 0.952 and varies the value of β in the
range of [0, 0.4]. With these parameter values, system (4)
always has the equilibrium points E0 and EN which is
unstable according to Teorem 10 (a) and (b) and does not
have a positive planar equilibrium point ENS. Terefore, we
only observe the dynamics of system (4) around ES (the solid
and dash black curve), ESI (the solid and dash green curve),
and E∗ (the solid and dash blue curve).

In Figure 1, when β< β∗1 � 0.0263, the axial equilibrium
point ES is the only local asymptotically stable equilibrium
point of system (4). A phase portrait of this behavior is
shown in Figure 2(a), for example, β � 0.01. One can easily
confrm that 0.5 � r1 < θSw/a + cSw � 2.8078,
2.54 � p + q<m/kr2(Sw + q)2 � 11.2463, and
7.6049 ≈ Sw < δ/β � 20, which satisfy the locally asymptot-
ically stable condition for ES � (0, 7.60487, 0) as stated in
Teorem 10(c). If we increase the value of parameter β such
that β> β∗1 � 0.0263, ES loses its stability and the stable
planar equilibrium point ESI arises via forward bifurcation.
We confrm this behavior by numerical solutions in
Figure 2(b). For β � 0.05, we have the following conditions:
0.5 � r1 < δθ/aβ + cδ � 1.8571 and 0.10367 � βr2
(p + q)/(δ + βq)2 <m/βk � 0.2< r2(δ − βp)/δ(δ + βq) �

0.31857 that fulfll the stability conditions of
ESI � (0, 4, 0.39524) in Teorem 10(d)(i) but do not satisfy
the stability conditions of ES in Teorem 10(c). Since our
numerical simulation set α � 0.952, the stability of ESI is
only attained at interval β ∈ [β∗1 , β∗4 ], where β∗4 ≈ 0.24. From
the existence conditions of the interior point, we observe
that when 0< β< β∗2 ≈ 0.1377, the interior equilibrium point
E∗ does not exist. Next, based on the existence condition of
the interior equilibrium point, two positive interior equi-
librium points E∗1 and E∗2 which have diferent sign appear
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Figure 1: Bifurcation diagram of system (4) driven by β with parameter values (26) and α � 0.952.
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Figure 2: Continued.
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simultaneously after β across the critical value β∗2 ≈ 0.1377
via saddle-node bifurcation. Notice that for the set of pa-
rameters and β∗2 < β< β

∗
3 , the stability conditions of ESI and

E∗ are satisfed. We plot a phase portrait for β � 0.14 in
Figure 2(c) to present the behavior, where
E∗1 � (2.31322, 1.42857, 0.26803) and ESI � (0, 1.42857
1429, 0.1890629800) are stable equilibrium points and E∗2 �

(1.54392, 1.42857, 0.25727) is the unstable equilibrium
point. It means system (4) experiences the bistability phe-
nomenon in that interval.

A further investigation shows that the stable branch
interior point E∗1 experiences a Hopf bifurcation when we
increase β passes through β∗3 ≈ 0.17475. If we check the
transversality condition through Figure 3(a), then we have
dχ(β)/dββ�β∗3 ≈ 0.15602π ≠ 0. To confrm Hopf bifurcation,
we choose β � 0.20 (see Figure 2(d)). One can easily check
that the interior point E∗1 � (3.62407, 1, 0.16985) has one
real negative eigen value, a pair of complex conjugate
eigen values with positive real part and α> α∗ � 0.95044.
Terefore, E∗1 fail to keep its stability which is indicated by
the existence of limit cycle enclosing the interior point E∗1 .
Similar behavior around the interior point E∗1 still occur
until β reaches β∗5 ≈ 0.26407 where the interior equilib-
rium point E∗1 retrieves again its stability via Hopf bi-
furcation for β larger than β∗5 ≈ 0.26407. Here, we verify
the transversality condition using Figure 3(b) which
satisfes dχ(β)/dββ�β∗5 ≈ 0.01915π ≠ 0. Terefore, to illus-
trate this behavior, we depict a phase portrait of system (4)
for β � 0.4 in Figure 2(f ). On the other hand, the unstable
branch interior point E∗2 collides with the stable planar
equilibrium point ESI when β attains β∗4 via backward
bifurcation. Hence, the planar equilibrium point ESI also
loses its stability, as shown in Figure 2(e). In this case, all
existing equilibrium points of system (4) lose their sta-
bility. However, as we can see in Figure 2(e), all solutions
of system (4) converge to a limit cycle around the interior
point E∗1 .

Next, we discuss the contribution of transmission rate
(β) to the dynamics of system (4) under the strong Alee
efect case (p � 0.4> 0) with the same set of parameter
values as in [28] subsection 6.2.

r1 � 0.5, K � 5, θ � 0.4, a � 1, b � 1,

c � 0.1, r2 � 0.1, k � 1, m � 0.05, p � 0.4,

δ � 0.2, q � 3, α � 0.98.

(83)

Notice that, for the strong Alee efect case (p> 0), ΞN �

(5, 0, 0) is always locally asymptotically stable according to
Teorem 12(b) and Ξ0 � (0, 0, 0) is always a saddle point
as stated in Teorem 12(a). In Figure 4(a), we portray a
phase portrait of system (4) for β � 0.073. System (4) has
the following equilibrium points:
Ξ0 � (0, 0, 0), ΞN � (5, 0, 0), ΞNS1

� (4.58193, 0.58956, 0),
and ΞNS2

� (2.2404, 2.40121, 0). Since ΞNS1
satisfes the

stability conditions in Teorem 12(e) (i), then system (4)
has bistability phenomenon. When we increase β to β �

0.10, the planar equilibrium point
ΞNS2

� (2.2404, 2.40121, 0) becomes a saddle point along
with the emergence of the locally asymptotically stable
interior point Ξ∗ � (3.16886, 2, 0.07154). In this case, we
still have bistability condition, as we can see in
Figure 4(b). Further, when we keep increasing β until β �

0.73, the interior point Ξ∗ of system (4) does not exists
anymore and the equilibrium point ΞN � (5, 0, 0) becomes
a unique stable equilibrium point of system (4), as shown
in Figure 4(c).

Remark 20. According to Figures 1, 2, and 4, the trans-
mission rate of disease (β) has a great impact to the dy-
namics of system (4). Te numerical simulations indicate
that system (4) could exhibit the forward, backward, saddle-
node, and Hopf bifurcations driven by β. System (4) also
performs a bi-stability phenomenon both for weak and
strong Alee efects which suggest that solutions of system (4)
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Figure 2: Phase portrait of system (4) with parameter values (26) and α � 0.952. (a) β � 0.01, (b) β � 0.05, (c) β � 0.14, (d) β � 0.20,
(e) β � 0.25, and (f) β � 0.40.
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are sensitive enough to the initial conditions. Figures 2(a),
2(b), and 2(f ) confrm the global behavior of system (4) for
the weak Allee efect.

Remark 21. From an ecological point of view, as the
transmission rate of disease (β) increases in the predator
population, the number of susceptible predator population
decreases; on the contrary, the prey population increases.
When the Allee efect is weak, there is no possibility of
extinction for the predator, and conversely when the Allee
efect is strong, there is always a possibility of extinction for
the predator. We also found for the same Allee threshold,
models with disease would have a higher risk of predator
extinction when compared to models without disease. Tis
result suggests that to save all of the species from extinction
with disease threatening one of the population, one should
control the transmission rate of disease.

In the next simulation, we will show the infuence of the
order of fractional derivative α on the dynamics of system (4)
using the following parameter values:

r1 � 0.5, K � 5, θ � 0.4, a � 1, b � 1,

c � 0.1, r2 � 0.1, k � 1, m � 0.05, p � − 0.46,

δ � 0.2, β � 0.073

q � 3.

(84)

For the above parameter values, it is found that system
(4) has four equilibrium points, where E0 � (0, 0, 0), EN �

(5, 0, 0), ES � (0, 0.58166, 0) are saddle points, respectively,
and ENS � (1.21751, 2.31593, 0) is a conditionally locally
asymptotically stable equilibrium point. It can be observed
that system (4) undergoes a Hopf bifurcation at
α∗ � 0.84124, as shown in Figure 5(a). We also can examine
for α � α∗ the transversality condition is holds, i.e.,
zχ(α)/zα|α�α∗ � π/2≠ 0. Ten, we can observe that when
α< α∗ � 0.84124, the planar equilibrium point
ENS � (1.21751, 2.31593, 0) is locally asymptotically stable
as exhibited in Figure 5(b) for α � 0.82. Otherwise, when
α> α∗, there exists a limit cycle around
ENS � (1.21751, 2.31593, 0) which shows that both prey and

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008
X 

(β
)

0.18 0.190.17 0.200.16
β

0.17475

(a)

-0.0010

-0.0005

0

0.0005

0.0010

X 
(β

)

0.28 0.29 0.300.26 0.270.25
β

0.26407

(b)

Figure 3: Evolution of χ(β) versus β with parameter values (26) and α � 0.952.
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Figure 4: Phase portrait of system (4) for the strong Allee efect case with parameter values (27). (a) β � 0.073, (b) β � 0.10, and (c) β � 0.73.
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susceptible predator populations are fuctuating, as shown in
Figure 5(c).

We next exhibit the existence of two limit cycles as the
solutions of system (4) by varying the order of the derivative
α at α � 0.85, 0.96, and 0.98. Using the set of parameters in
(26), except parameter β fxed at β � 0.22, system (4) has six
equilibrium points, i.e., E0 � (0, 0, 0), EN � (5, 0, 0), ES �

(0, 7.60487, 0), ESI � (0, 0.90909, 0.11275), E∗1 � (3.78913,

0.90909, 0.14915), and E∗2 � (0.11996, 0.90909, 0.11753).
One can easily check that E0, EN, ES, and E∗2 are unstable,
while the stability of ESI and E∗1 depends on the order of the
derivative α. When α � 0.85, system (4) undergoes the
bistability phenomenon which occurs around the interior
equilibrium point E∗1 and the planar equilibrium point ESI as
we can see in Figure 6(a). Tis is confrmed by the real

negative eigen value of E∗1 and ESI, also the critical value of
the equilibrium points α∗ are 0.9505 and 0.9729, respec-
tively, which are greater than α � 0.85. Te solutions of
system (4) with two close enough initial conditions converge
to diferent equilibrium points. When we increase α to 0.96,
ESI is still locally asymptotically stable
(since 0.9729 � α∗ > α � 0.96), while E∗1 becomes unstable
via a Hopf bifurcation and limit cycle appears enclosing the
interior point E∗1 , as shown in Figure 6(b). When we con-
tinue to increase α at α � 0.98, followingE∗1 , thenESI loses its
stability too through a Hopf bifurcation and two stable limit
cycles appear instead in system (4), see Figure 6(c). Tese
numerical simulations show that system (4) could exhibit
two Hopf bifurcations simultaneously which is controlled by
the order of the derivative α.
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Figure 5: Dynamics of system (4) for the weak Allee efect case with parameter values (28). (a) Bifurcation diagram, (b) α� 0.82, and (c)
α� 0.98.
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Remark 22. From the ecological point of view, a phe-
nomenon which is given in Figure 6(c) show that if the initial
value of prey population is relatively small then the sus-
ceptible and infected predators will oscillate even in the
absence of prey population. On the other side, when the
initial prey population is relatively large, all populations may
oscillate for a long period of time.

Remark 23. Te analytical results and numerical simula-
tions of the model in the absence of disease in predator
population (system (1)) had been found by Rahmi et al. [28].
Numerically, the recent model with disease in predator
population has more rich dynamical behaviors than the
former model. One of the reasons comes from varying the
transmission rate of disease parameter. When there is no
disease, there is only bistability, forward and Hopf bifur-
cations, meanwhile there is bistability, saddle-node, back-
ward, forward, and Hopf bifurcations for the model with
disease. More specifcally, the proposed model exhibits a
new phenomenon in the fractional order system, which is
the existence of two limit cycles driven by the order of
derivative as given in Figure 6(c).

6. Conclusion

In this paper, we have merged a predator-prey model and
epidemiology model into the eco-epidemiological model. In
ecological literature, there is much evidence that the double
Allee efect may be acting on a single population. Moreover,
it is natural to assume that there is a deadly infectious disease
spreading within the population. Tus, we have developed
an eco-epidemiological model incorporating the double
Allee efect and disease spread on the predator population.
Tis eco-epidemiological model has been modelled by a
system with fractional-order diferential equations in
Caputo sense. We have split the predator population into
two subpopulations: the susceptible predator and the in-
fected predator. We proved that the solution of system (4)
exists uniquely and whenever we started with a positive
initial condition then all solutions remain non-negative and
bounded. We showed that our system (4) has four types of

equilibrium points, i.e., the trivial, two axial, two planar, and
the interior equilibrium points. Te trivial equilibrium point
for both the strong and weak Allee efect cases is always
unstable, which means that there is no condition of ex-
tinction of all populations in the future. Te frst axial
equilibrium point (the predator extinction point) is always
unstable for the weak Allee efect case, while for the strong
Alee efect case, it is always stable. It means that the predator
population can go to extinction in the strong Allee efect,
which is contrary to the weak Allee efect case. Te second
axial equilibrium point (the prey and infected predator
extinction point) is conditionally stable. We have observed
that the dynamics of the axial equilibrium point do not
depend on the order of the fractional derivative. Ten, we
have two planar equilibrium points (the prey extinction
point and the infected predator extinction point) which are
conditionally stable. Te interior equilibrium point is also
conditionally stable for both weak and strong Allee efects.
Te stability conditions of the last two types of equilibrium
points show that the order of the fractional derivative (α)

could afect its stability. By choosing an order α which is
smaller than the critical value of α∗, then the equilibrium
point may be stabilized. Numerical simulations show that
the dynamics of system (4) have corresponded well with our
theoretical results. It has been observed numerically that the
transmission rate (β) takes a vital role to control the dy-
namical behavior of system (4). Te combination of disease
and double Allee efects on predators may accelerate the
decline in predator populations which ultimately increases
the risk of extinction. We also show numerically the exis-
tence of the Hopf, forward, backward, and saddle-node
bifurcations driven by the transmission rate (β). Further, the
bistability phenomenon also appears in both the strong and
weak Allee efect cases. All numerical results indicate that
each population in system (4) could be extinct or survive or
oscillate depending on the parameter values and initial
conditions. In [28], the authors studied the dynamics of the
model with no disease in the predator. Tey also carried out
some numerical simulations to show how the capturing rate,
Allee threshold, and the order of the derivative afect the
dynamics of the model. Te comparative results of these two
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Figure 6: Te existence of two limit cycles for the weak Allee efect case with parameter values (26) and β � 0.22. (a) α � 0.85, (b) α � 0.96,
and (c) α � 0.98.
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models, with and without disease in the predator population
are given in Remark 23. However, it could be interesting if
the eco-epidemiological model with the double Allee efect
and disease in predators also considered vaccination strat-
egies as the approach to reduce population extinction risks.
For example, there are African wild dogs that are endan-
gered carnivores which get vaccination coverage for rabies
virus and canine distemper virus (CDV) [44].
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