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Heat transfer in fuid mechanisms has a stronghold in everyday activities. To this end, nanofuids take a leading position in the
advent of the betterment of thermal conductivity. Te present study examines numerical investigations of incompressible
magnetohydrodynamic (MHD) fow of Carreau nanofuid by considering nonlinear thermal radiation, Joule heating,
temperature-dependent heat source/sink, and chemical reactions with attached Brownian movement and thermophoresis above
a stretching sheet that saturates the porous medium. Pertaining similarity assumptions are used to change the fow equations into
tractable forms of higher order nonlinear ordinary diferential equations (ODEs). Te continuation technique is adopted in the
MATLAB bvp4c package for the numerical outcomes. Te velocity, temperature, and nanoparticle concentration distributions in
contrast to the leading parameters are availed in graphical and tabular descriptions. Among the many outcomes, increasing the
radiation parameter from 0.2 to 0.8 surged the heat transfer rate by 47.78% at n= 1.5 and lifted it only by 8.5% at n= 0.5. By
boosting the magnetic parameter from 0 to 1.5, respective 37.64% and 20.17% rises in local drag forces are achieved in shear-
thickening and thinning regions. On top of that, chemical reactions and Brownian motion parameters decay the concentration
feld. Te distinctiveness of this method is that a solution is secured for the problem, which is highly sensitive to initial and
boundary conditions. It will be worth mentioning that these fuid fow models will be applicable in various felds, such as
engineering, petroleum, nuclear safety processes, and medical science.

1. Introduction

Despite their complex stress-strain relationships, in recent
years, non-Newtonian fuids have attracted researchers’
attention on account of their multidisciplinary applications
(see Ref. [1–4]). Non-Newtonian fuids are abundant in
several engineering, industrial, and biological activities, such
as in food processing, in arterial blood fow, in mud-drilling
machines, in polymer suspensions, and in heavy oil lubri-
cations.Te notion of improving the thermal conductivity of
nanofuids by dispersing nanoparticles in conventional
fuids was frst initiated by Choi and Eastmann [5].
Nanofuids stand for a mixture of nanosized particles (e.g.,
Cu, Ti, Al2O3, and TiO2 normally with size < 100 nm)
scattered stably in host fuids (e.g., water, blood, ethylene

glycol, and vegetable oil). As compared to host fuids,
nanofuids possess advanced thermophysical properties.
Such fuids being enhanced heat transfer agents, their ap-
plications extend to cancer and hyperthermia treatment,
solar energy collectors, safety management in nuclear re-
actors, and cooling processes of electronics, computer chips,
and transformers. However, the study of nanofuid is still not
at its end, and it seems there is still a need to have an
outweighing theory on how to prepare and use nanoparticles
to culminate the efciency of thermal conductivity. A
nonuniform heat source/sink in the form of surface tem-
perature and wall heat fux was considered by Ramesh et al.
[6] to investigate the stagnation point fow of MHD non-
Newtonian dusty fuid fow. Growth in fuid-particle in-
teraction parameter improves the velocity feld of dusty fuid
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and diminishes this distribution for clean fuid as discussed
by the authors. Bouslimi et al. [7] used the Runge–Kutta-
based shooting method to investigate heat and mass transfer
properties of mixed convection nanofuid under Soret dif-
fusion and nonlinear heating caused by an extending sur-
face.Te thermal behavior of a hybrid nanofuid in a double-
pipe heat exchanger was tested by Jalili et al. [8]. Te result
indicated that water/Al2O3 nanofuid has superior convec-
tive heat transfer than water/TiO2 nanofuid and pure water.
Tey also found that raising nanofuid concentration from
0.4% to 6% increased the heat transfer rate by 12%. Te use
of nanoparticles is also an attractive and promising feld in
the development of diagnostics and treatments for cardio-
vascular disease. Te authors in [9] examined the stenosed
artery heat transfer behavior of hybrid nanofuid in a slanted
orientation. Stenosis is a condition that results from the
narrowing of blood vessels due to the buildup of cholesterol
or any other plaque that blocks the smooth fow of blood in
the artery. Enhancing the Al2O3 nanoparticle volume
fraction decreases the value of the temperature profle, as
elaborated in their work. Additional studies involving the
importance of nanofuids can be taken care of through the
investigations in [10–13].

Magnetohydrodynamic (MHD) explains the study of
dynamic interactions between magnetic felds and con-
ducting fuids. An opposing electric current is induced
owing to liquid motion, which alters mechanical properties
of the fuid. MHD analysis regulates many natural phe-
nomena and engineering and industrial problems on almost
every scale, such as the formation of stars, proper mixing of
alloying parts, electrolysis process, the MHD generator, and
magnetic fltration and separation. Ishak et al. [14] studied
hydromagnetic fow and the transfer of heat energy above
a vertical and expanding surface with a varying magnetic
feld. Tey noticed that strengthening magnetic intensity
brings a reduction of heat energy loss and local skin friction.
Te accounts of heat source/sink, chemical reaction, and
nonlinear thermal radiation on the magnetohydrodynamic
fow ofWilliamson nanofuid was explored by Bouslimi et al.
[15]. Teir result verifed that the heat transfer rate of
Williamson nanofuid is adversely afected by rising values of
temperature ratios, thermal radiation, and heat generation/
absorption parameters.

As a result of the diversity of fow in nature, investigators
have recommended various non-Newtonian models based
on their constitutive rheological variables, such as Casson
fuid, power-law fuid, Williamson fuid, Oldroyd-B fuid,
Maxwell fuid, Carreau fuid, and Eyring–Powell fuid.
Among these models are Carreau fuids, which are realized
as generalized Newtonian fuids having Newtonian (n � 1),
shear-thickening (or dilatant with n> 1), and shear-thinning
(or pseudoplastic with 0< n< 1) characteristics, where n
stands for the power-law index. Examples of these fuids are
detergents, fuid crystals, pulps, blood, and synovial fuids.
Carreau fuids have gained awareness on account of their
importance in the extrusion of polymers, tumor therapy,
cosmetics, capillary electrophoresis, and petrochemical in-
dustries. Te impact of melting and heat source/sink has
been analyzed by Khan et al. [16], taking the Carreau

nanofuid over a wedge. Tey recognized that the rise in the
above parameters deteriorates the nanoparticle concentra-
tion curve in both shear-thinning and thickening regions.
Te Haar wavelet quasilinearization approach was utilized
by Che Ghani and Siri [17], in contemplating the MHD
Carreau nanofuid model with the impact of velocity slip
boundary and suction/injection above an expanding surface.
Babu et al. [18] depicted the nonlinear MHD convective
Carreau nanofuid fow with the efect of viscous dissipation
and Arrhenius activation energy above an exponentially
expanding surface. Many other studies of Carreau nano-
fuids are detailed in [19–22].

According to Buongiorno’s [23] inspection, there exist
various slip mechanisms in nanoparticle-based fuid in-
teractions. He identifed in the laminar fow region that the
prominent dissipative energy sources associated with
a nanoparticle-based fuid slip are Brownian motion and
thermophoretic difusion. Contemplating the Ray-
leigh–Benard problem, the impact of thermophoresis and
Brownian movement on CuO-water nanofuid heat transfer
nature was studied by Haddad et al. [24]. Teir study
revealed the infuence of thermophoresis and Brownian
motion is more amplifed at low-volume fractions of
nanoparticles. Te infuence of thermophoretic difusion
and Brownian movement on the mixed convection fow of
Carreau nanofuid was studied by Irfan [25].Te importance
of thermophoretic and Brownian difusion on MHD
nanofuid fow over a stretching circular cylinder with the
insertion of a variable magnetic feld, free stream velocity,
and multiple slips was examined by Majeed et al. [26].
Termal analysis on the efect of thermophoresis, Brownian
motion, and Hall currents in micropolar nanofuids was
presented by Jalili et al. [27]. Lately, the authors in [28]
considered the fow behavior of micropolar nanofuid
subjected to electromagnetism, thermophoresis, and
Brownian motion in a rotating realm. Further investigations
on Brownian difusion and thermophoresis in light of
various non-Newtonian fuids can be addressed in [29–31].

Many scientists are motivated to understand heat and
mass transfer phenomena associated with chemical reactions
and chemical transportation processes by considering their
industrial applications in combustion, catalysis, and bio-
chemical systems. Tese chemically reacting systems involve
homogeneous (or bulk) and heterogeneous (or surface)
reactions. Representing homogeneous reactions by cubic
autocatalysis and heterogeneous reactions by a frst-order
process, Merkin [32] studied the boundary-layer fow of
homogeneous-heterogeneous reactions. Te author has in-
dicated that the surface reaction is the most infuential
mechanism near the front edge of a uniform stream fow
over a fat surface. In [33], Khan et al. picked the MHD fow
of the Powell–Eyring fuid model to elaborate on the
Newtonian heating impact on homogeneous and hetero-
geneous reactions. Tey observed that the skin friction
coefcient advances for large values of magnetic and fuid
parameters. In contrast, the mass transfer rate dampens for
a homogeneous reaction parameter. Additional furtherance
on chemical reactions for various non-Newtonian fuids is
reported in [34–37].
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High-temperature gradient MHD convective fow
problems are remarkably infuenced by thermal radiation.
Its signifcance can be seen in nuclear power plants,
electrical power generators, solar power collectors, glass-
blowing, and manufacturing of plastic and rubber sheets.
To analyze the energy production feature of fow between
two circular plates, Jalili et al. [38] studied the thermal
radiation infuence of unsteady compressing fow of
magnetohydrodynamic Casson fuid. Tey identifed that
non-Newtonian fuid temperature improves by 20%,
responding to a surge in the squeezing factor value. In light
of the 2D cavity and 3D cavity, the impact of magnetic feld
and thermal radiation on the transport process of mag-
netohydrodynamic convection fow was exploited by
Zhang et al. [39]. Te study unfolded when strong thermal
radiation and weak magnetic feld are set forth, and the
diference in fow and thermal radiation between 2D and
3D cavities is notable as compared to weak thermal radi-
ation and strong magnetic feld combination efects. Shaw
et al. [40] investigated MHD hybrid nanofuid fow exposed
to quadratic and nonlinear thermal radiations. By con-
sidering radiation properties and convective phenomena,
the infuence of Joule heating on magnetic Carreau
nanofuid has been explored in [41]. Recently, employing
hybrid analytical and numerical techniques, the authors in
[42] presented the heat and mass transport features of
axisymmetric micropolar fuid constricted to the magnetic
feld in a cylindrical polar system. Teir work showed that
increasing the radiation parameter from 0 to 8% changes
the shape of the temperature profle while keeping the
maximum and minimum temperatures unaltered.

Te transport process of non-Newtonian fuid via porous
media is an attractive area of research owing to its vast
applications, such as packed bed reactors, geothermal in-
dustries, enhanced oil recovery, drying of paper pulp, gel
chromatography, and soil structures. A pioneering work
regarding the fow of fuid in a porous medium was initiated
by Darcy in 1856. A mixed convection power-law fuid fow
drenching the porous space was discussed by authors in [43].
Te nanofuid fow in a Darcy–Forchheimer porous medium
was studied by Rasool and Zhang [44], taking into account
the Cattaneo–Christov heat and mass fux model. Tey
disclosed that resistive force resulting from the porosity
factor increases the temperature feld. Conversely, the
concentration feld of nanoparticles decays in response to an
increase in the inertial force. Te efect of using diferent
hybrid nanofuids as solar energy absorbers in a Dar-
cy–Forchheimer porous medium was studied by Alzahrani
et al. [45]. Te account of the non-Darcy–Forchheimer law
on MHD Carreau fuid fow subjected to a heat source/sink
and thermal radiation above a stretching sheet was antici-
pated by Siddiq et al. [46].

We have surveyed the above literature and many more
not listed here and found that there does not exist a study
that demonstrates the combined impacts of nonlinear
thermal radiation, Ohmic heating, heat source/sink,
chemical reaction, and Darcy–Forchheimer inertial efect on
MHD fow of Carreau nanofuid embedding linearly
stretching porous surface with Brownian motion and
thermophoretic events.

2. Problem Formulation

Temathematical model of the present study is developed by
assuming a steady, 2D, viscous, and incompressible non-
linear radiative fow of magneto Carreau nanofuid above
a stretching sheet. Te sheet is expanding with the velocity
uw � a0x, where a0 is a stretching constant. A constant
magnetic intensity B0 is administered orthogonal to the
surface. We suppose a small magnetic Reynolds number in
order to detach the infuence of the induced magnetic feld.
Furthermore, the efects of Hall current and ion slip are
ignored. Te porous sheet is kept at a temperature Tw, and
the fuid’s free stream temperature is T∞ with Tw >T∞. Te
x-axis is aligned in the direction of extension of the sheet,
while the y-axis is normal to it. Te physical sketch of the
fow is represented in Figure 1.

Te Cauchy stress tensor τ for Carreau model rheology
and its corresponding shear rate c′ are premeditated as
follows (see [47–49]):

τ � −pI + μA1, (1)
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Here, I, p, μ∞, μ0, A1 � (gradV) + (gradV)T, n, and λ
denote the identity tensor, pressure, infnite shear rate
viscosity, zero-shear rate viscosity, frst Rivlin–Ericksen
tensor, power-law index, and time material parameter,
respectively.

In two-dimensional steady fow, the velocity, tempera-
ture, and concentration felds take the following form:

V � [u(x, y), v(x, y)], T � T(x, y), C � C(x, y), (4)

where u and v represent the respective x-and y-direction
velocities.

Depending on the above assumptions, we execute the
boundary-layer analysis that leads us to the set of equations
governing the conservation of continuity, momentum, en-
ergy, and nanoparticle concentration expressed, re-
spectively, as follows:
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Here, τ � ((ρcp)p/(ρcp)f) denotes the efective heat
capacity ratio of nanoparticles to base fuid. All the other
notations are indicated in nomenclature. As in [17], the
boundary conditions suitable for the current problem are as
follows:

u � uw � a0x, v � vw, −k
zT

zy
� ht Tw − T( ,

DB

zC

zy
+

DT
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zT

zy
� 0 aty � 0,

u⟶ 0, v⟶ 0, T⟶ T∞, C⟶ C∞ asy⟶∞,

(9)

where vw, ht, Tw are the mass transfer velocity, heat
transfer coefcient, and wall temperature of the fuid,
respectively.

For an optically thick medium, the Rosseland approxi-
mation for the radiative heat fux provides
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where ke is the coefcient of the mean absorption and σ⋆ is
the Stefan–Boltzmann constant. For nonlinear radiation,
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We adopt the following similarity transformations:
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Figure 1: Geometry of the fow problem.
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where η is the similarity variable and ψ(x, y) denotes the
stream function satisfying the equation of continuity
u � zψ/zy, v � −zψ/zx.

Using equations (1)–(3), (11), and (12), the transformed
nondimensional form of governing equations (5)–(8) and
corresponding boundary conditions (9) are expressed as
follows:

1 + nw
2
ef
″2

  1 + w
2
ef
″2

 
n− 3/2

f
‴

+ ff
″

− f
′2

− M
2
f
′
− Pf
′
− αf
′2

� 0, (13)

θ″ + Rd 1 + θw − 1( θ 
3θ″ + 3Rd θw − 1(  1 + θw − 1( θ 

2θ′
2

+ PrEcM
2
f
′2

+ Prfθ′ + PrNbθ
′ϕ′ + Prωθ + PrNt θ′ 

2
� 0,

(14)

ϕ″ + Scfϕ′ +
Nt

Nb

θ″ − Sccϕ � 0. (15)
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is the magnetic parameter, Rd �

16σ⋆T3
∞/3kke is the thermal radiation parameter,

θw � Tw/T∞ is the ratio temperature parameter,
Nb � τDB/](Cw − C∞) is the Brownian motion parameter,
Nt � τDT/]T∞(Tw − T∞) is the thermophoresis parameter,
ω � Qa/a0ρcp is the heat source/sink parameter, Sc � ]/DB is
the Schmidt number, c � k0/a0 is the chemical reaction
parameter, and ζ1 � −ht/k

����
]/a0


is the Biot number.

3. Numerical Approaches

Bvp4c is a residual error-based mesh adaptive fnite dif-
ference program that executes the three-stage Lobatto IIIa
formula. Te conventional method in Bvp4c provides
a guess to the missed initial conditions. However, we found
our problem very sensitive to the initial conditions and

boundary values. Terefore, we adopted the continuation
technique to resolve this problem. It is a tactic developed by
Robert and Shipman [50]. Tey used the method to solve
boundary value problems that cannot be addressed by
conventional shooting methods. Introducing variable χi for
i � 1, 2, . . . 7, we reduce the order of equations (13)–(15) into
a system of 7 ODEs:

f � χ1, f
′

� χ2, f
″

� χ3, f
‴

� χ3′, θ � χ4,

θ′ � χ5, θ
″

� χ5′, ϕ � χ6,ϕ
′

� χ7,ϕ
″

� χ7′.

⎧⎪⎨

⎪⎩
(17)

For numerical computation, we have used the tolerance
error, RelTol � 1e − 8. Next, to implement the continuation
method, the following steps are taken in the Bvp4cMATLAB
program:

(1) Using a dummy parameter δ, write the system as
a sum of its linear and nonlinear parts

(2) Using normal guess and transformed boundary
conditions (19), approximate the solution for (18) by
the linear part

(3) Employing computed values of step 2 and taking
a small positive fraction of δ as a coefcient of
nonlinear part, approximate the solution

(4) Repeat step 3 with small increment in δ until we
come up with approximate solution to the problem
with in the prescribed error tolerance
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,

(18)

χ1(0) � S, χ2(0) � 1, χ5(0) � −ζ1 1 − χ4(0)( , Nbχ7(0) + Ntχ5(0) � 0 at η � 0,

χ2(η)⟶ 0, χ4(η)⟶ 0, χ6(η)⟶ 0 as η⟶∞.
 (19)

To examine the surface drag force, heat, and mass
transfer rate, we have determined the skin friction,
Nusselt number, and Sherwood number for Carreau fuid
as follows:

Cfx �
2τw

ρu
2
w

, τw � μ
zu

zy
1 + λ2

zu

zy
 

2
⎡⎣ ⎤⎦

n− 1/2y�0

,

Nux �
xqw

k Tw − T∞( 
, qw � −k

zT

zy

y�0
+ qr( w,

Shx �
xmw

DB Cw − C∞( 
, mw � −DB

zC

zy

y�0
.

(20)

In a dimensionless form, the local Reynolds number is
Re � uwx/]; the local skin friction, Nusselt, and Sherwood
number, respectively, take the following form:

Re1/2Cfx � −2f
″
(0) 1 + W

2
ef
″
(0)

2
 

n− 1/2
,

Re− 1/2
Nux � − 1 + Rdθw

3
 θ′(0),

Re− 1/2
Shx � −ϕ′(0).

(21)

 . Results and Discussion

Te transformed frst-order ODE (18), along with the cor-
responding boundary conditions (19), has been solved using
the continuation technique implemented on MATLAB
package bvp4c. Te infuence of leading parameters on
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dimensionless fuid velocity, temperature, and nanoparticle
concentration is discussed for both shearing cases in
graphical and tabular forms. For the accuracy and verif-
cation of the method, a comparison in local shear stress has
been made for the present and published results in [46]
under some restricted conditions.

Te Lorentz force efect resulting from the presence of
applied magnetic feld is noticed in Figures 2–4. Tis force
regulates the way of fuid fow. Figure 2 indicates for both
dilatant and pseudoplastic fuids, an increase in the magnetic
parameter value deteriorates the velocity feld. Here, the
velocity curve downturn in the latter fuid type is higher than
in the former one. Across the boundary layer, a sharp surge
in the temperature feld is achieved in response to increasing
values of M. A similar behavior is noticed in the nanoparticle
concentration at the free stream, and it follows the reverse
direction near the wall (see Figures 3 and 4). Tese results
coincide with the physical meaning of increasing magnetic
feld that intensifes the Lorentz force, which in turn has the
capability of increasing the nanoparticle volume fraction in
the motion of nanofuid and fuid temperature as well.
Figures 5–7 illustrate the Weissenberg number (We) efect.
Practically, We measures the time taken by the fuid to relax
before regaining its original shape. An increase in We

amplifes the gap between shear-thinning and thickening
regions of velocity, temperature, and concentration felds.
Enhancing We stimulates velocity in shear-thickening cases
and declines it in shear-thinning regions. Te opposite
scenario is demonstrated in temperature and concentration
felds.

Te local inertia coefcient and porosity parameter in-
fuence on the momentum boundary layer are realized in
Figures 8 and 9, respectively. For both regions, strengthening
these parameters discouraged momentum thickness.

Temperature distribution responses to porosity, ther-
mophoresis, and temperature ratio parameter values are
demonstrated in Figures 10–12. Te increment in these
parameters augmented the temperature feld and its cor-
responding thermal thickness. Te result in Figure 11 agrees
with the fact that an increase in the thermophoresis pa-
rameter results in extra particles pushing away from the
stretchable wall. As a result, the temperature distribution is
facilitated. In Figure 12, the improvement of θw initiates the
conductivity of the fuid fow. Consequently, θ uplifts.
However, as noticed in the fgures, shear-thinning fuids are
more infuenced than shear-thickening fuids for the men-
tioned parameters. Te behavior of the temperature feld
corresponding to variations in the Eckert number is cap-
tured in Figure 13. Te rise in Ec imparts excess viscous
heating to the fuid. Following this, kinetic energy is
transformed into internal energy, which in turn pushes up
the temperature curve. Figures 14–16 display the impacts of
other pertinent parameters on temperature boundary layer
thickness. Figure 14 describes that θ decreases with a rise in
the value of the Prandtl number in the two fuid regions.
Figure 15 shows us that a signifcant rise in temperature
distribution can be achieved by a small increment in the Biot
number, ζ1. Te efect of thermal radiation is analyzed in
Figure 16. Here, the temperature distribution and its

corresponding thermal thickness are escalated by the rise of
Rd. Substantially, the growth in radiation ray transports
more heat energy to the running fuid, and in turn, a rise in
thermal boundary layer thickness ensues. Here, we bear in
mind that thermal boundary layer thickness is higher in the
case of shear thinning than in shear-thickening behavior.
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Figure 2: Velocity variations contrasted with M.
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Figure 3: Temperature variations contrasted with M.
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Te temperature feld response for variations in the heat
source/sink parameter is illustrated in Figure 17. Te rise in
values of ω causes temperature distribution growth.

Figures 18–20 portray the twofold infuence of pa-
rameter thermophoresis (Nt), Brownian motion (Nb), and
the Schmidt number (Sc) in nanoparticle concentration.

Near the wall and in the free stream, their variation brings
reversed efects. Figure 18 displays a growing behavior of
the concentration feld for the rise in Nt. Amplifying the
thermophoretic parameter causes the microscopic
transfer of nanoparticles from warmer to cooler regions,
which in turn grows the nanoparticle concentration. An
increase in the Brownian motion parameter declines the
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Figure 4: Concentration variations contrasted with M.

we=0.5,1,2,3

n=1.5
n=0.5

4321 50
η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f' 
(η
)

M=0.5, Ec=0.3, α=1, ω=0.2, γ=0.3, S=0.5
Rd=0.4, pr=1.5, p=1, Sc=0.5, Nb=0.2
Nt=0.1, θw=1.2, ζ1=0.3

Figure 5: Velocity variations contrasted with We.
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Figure 6: Temperature variations contrasted with We.
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Figure 7: Concentration variations contrasted with We.
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nanoparticle concentration feld, as witnessed in Fig-
ure 19. Boundary layer difusion of nanoparticles is
strengthened as the value in Brownian parameter surges.
Consequently, nanoparticle concentration downturns.
Figure 20 shows the expected response of nanoparticle
concentration for an increase in the Schmidt number
value. Te coefcient of mass difusion is inversely related

to the Schmidt number. As a result, a decline in the
distribution of nanoparticle concentration and its cor-
responding solutal thickness is realized. Figure 21 presents
the nanoparticle concentration distribution to deliberate
the infuence of variations of the chemical reaction pa-
rameter. It reveals a decaying nature in the nanoparticle
concentration feld for the rise in c.
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Figure 8: Velocity variations contrasted with α.
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Figure 10: Temperature variations contrasted with p.
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Figure 11: Temperature variations contrasted with Nt.
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Table 1 compares the shear stress values of the present
result with the work of Siddiq et al. [46], under certain
restricted conditions. It can be concluded that an excellent
agreement is achieved. From Table 1, we notice that in-
creases in parameters M, p, and α infated wall shear stress.
On the contrary, an increase in n and We defated it.

Table 2 executes the local heat transfer rate against
various values of listed parameters. Except for the Eckert
number, the surge in the heat transfer rate occurred with the
rise in parameters Pr, Rd, θw, and ζ1 for both shear-thinning
and thickening behaviors. Here, we perceive that the heat
transfer rate in the shear-thickening region is better than in
the shear-thinning region.
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Figure 12: Temperature variations contrasted with θw.
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Figure 15: Temperature variations contrasted with ζ1.
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Figure 16: Temperature variations contrasted with Rd.
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Figure 17: Temperature variations contrasted with ω.
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Figure 19: Concentration variations contrasted with Nb.
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Figure 20: Concentration variations contrasted with Sc.
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Figure 21: Concentration variations contrasted with c.
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Table 1: Comparison of shear stress −f″(0) of the present result with the work in [46] for diferent values of M, pr, α, p, and We fxing
θw � 1, Nb �Nt � 0.1.

Parameters −f″(0)

M p α n We [46] P r. result

0 1 1 1.5 3 1.214344 1.214344
0.7 1.288215 1.288216
1 1.358280 1.358280
1.2 1.414282 1.414282
1.5 1.508864 1.508864
0.5 1 1.252943 1.252945

2 1.390551 1.390552
4 1.613836 1.613836
6 1.796208 1.796208
1 2 1.343451 1.343452

5 1.570936 1.570939
8 1.756682 1.756685
10 1.865437 1.865442
1 0.5 5.340793 5.340800

1 1.963674 1.963678
1.5 1.252943 1.252945
2 0.954249 0.954249
2.5 0.789781 0.789781
1.5 0.5 1.763376 1.763372

2 1.366178 1.366179
4 1.177725 1.177725
6 1.079264 1.079264
8 1.014608 1.014608

Table 2: Variations of local heat transfer rate Re− 1/2Nux for various values of pr, Rd, Ec, θw, and ζ1 at n � 0.5 and n � 1.5.

Parameters Re− 1/2Nux

pr Rd Ec θw ζ1 n � 0.5 n � 1.5

0.5 0.4 0.3 1.2 0.3 0.102894 0.189184
1 0.168418 0.292977
1.5 0.284903 0.347547
2 0.344818 0.376245
1.5 0.2 0.257973 0.290954

0.6 0.291301 0.396726
0.8 0.279894 0.438540
0.4 0.2 0.287578 0.352154

0.4 0.282224 0.342942
0.8 0.271514 0.324540
0.3 0.8 0.219971 0.254794

1 0.246961 0.292226
1.4 0.331077 0.423023
1.2 0.2 0.223443 0.257210

0.4 0.328880 0.420800
0.6 0.386372 0.531350

Table 3: Variations of local mass transfer rate Re− 1/2Shx for various values of Nb, Nt, c, Sc, and pr at n � 0.5 and n � 1.5

Parameters Re− 1/2Shx

Nb Nt c Sc pr n � 0.5 n � 1.5

0.1 0.1 0.3 0.5 1.5 0.168461 0.205503
0.2 0.084231 0.102752
0.3 0.056153 0.068501
0.2 0.2 0.166745 0.205073

0.3 0.247369 0.306952
0.4 0.325899 0.403757
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Table 3 demonstrates the mass transfer rate response for
various values of parameters Nb, Nt, c, Sc, and pr. For both
behaviors, the rise in Nt and pr encouraged the mass transfer
rate, as opposed to the parameters Nb, c, and Sc.

5. Conclusion and Future Directions

In the present work, we have numerically analyzed the
boundary layer incompressible MHD Carreau nanofuid
fow above an extending sheet under the efect of nonlinear
thermal radiation, Joule heating, heat absorption/genera-
tion, chemical reaction, and Darcy–Forchheimer law with
the incorporation of thermophoresis and Brownian motion,
issuing shear-thinning and thickening behavior. Te con-
tinuation technique in the MATLAB bvp4c algorithm has
been utilized to obtain numerical results.Te fndings of this
study are summarized as follows:

(1) IncreasingM strengthens thermal and concentration
boundary layers, while in contrast, the momentum
boundary layer is decayed.

(2) As the Weissenberg number scales up, the velocity
feld for shear-thickening, the temperature and
concentration felds for the shear-thinning case
advance. On the other hand, the rise in this pa-
rameter results in a reverse efect on the velocity
curve for the shear-thinning case and on the tem-
perature and concentration profles for the shear-
thickening case.

(3) Te rise in porosity and local inertia coefcient
parameter penalizes the velocity feld.

(4) An increment in Rd from 0.1 to 0.4 lifted wall
temperature by 20.62% at n � 1.5 and by 46.76% at
n � 0.5.

(5) Increasing the values of p, θw, ζ1, and ω uplifts
temperature distribution. On the contrary, an in-
crease in Pr diminishes this profle.

(6) Te concentration feld is decayed by the rising value
on Nb, Sc, and c, whereas a rise in Nt encouraged this
profle.

(7) It is witnessed that increasing Ec from 0 to 1.5, the
average rise in temperature is 70.1% for shear-
thickening fuid and 21.76% for shear-thinning fuid.

(8) By increasing thermophoresis from 0.1 to 0.4, the
average rise in boundary layer temperature is 1.46%
at n � 1.5 and 21.84% at n � 0.5.

(9) When the values of M, p, and α are uplifted, wall
friction aggravates.Te opposite result is achieved by
surging the values of n and We.

In our current work, we have employed the Fourier heat
fux model and ignored the induced magnetic feld. None-
theless, in numerous empirical endeavors, such as high-
temperature plasma, power generation, and purifcation of
crude oil, the inducedmagnetic feld efect plays a vital role. In
future investigation, this problem can be extended for hybrid
and trihybrid Carreau nanofuid convection and bio-
convection by considering the induced magnetic feld as well
as the Cattaneo–Christov heat fux model.

Nomenclature

u, v: Velocity components (ms− 1)

x, y: Space coordinates (m)

a: Stretching constant
n: Power-law index
B0: Magnetic feld (kgk− 1s− 1)

C: Nanoparticle concentration
T: Fluid temperature (k)

Tw: Wall temperature of the fuid (k)

DB: Brownian difusion coefcient (m2s− 1)

Qa: Uniform volumetric heat source/sink
Nb: Brownian motion parameter
T∞: Free stream temperature (k)

fc: Forchheimer coefcient
pm: Permeability of porous medium
Nt: Termophoresis parameter
Rex: Local Reynolds number
Rd: Radiation parameter
DT: Termophoresis difusion coefcient (m2s− 1)

θw: Temperature ratio

Table 3: Continued.

Parameters Re− 1/2Shx

Nb Nt c Sc pr n � 0.5 n � 1.5

0.1 0.5 0.084212 0.102746
0.8 0.084176 0.102735
1 0.084153 0.102727
0.3 0.8 0.084080 0.102689

1 0.084014 0.102658
1.2 0.083962 0.102633
0.5 0.5 0.030420 0.055932

1 0.049792 0.086618
2 0.101942 0.111276
3 0.117134 0.121000
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Nux: Local Nusselt number
Sc: Schmidt number
k: Termal conductivity (Wm− 1k− 1)

Pr: Prandtl number
We: Weissenberg number
Ec: Eckert number
qr: Radiative heat fux (Wm− 2)

Shx: Local Sherwood number.

Greek Letters

]: Kinematic viscosity (m2s− 1)

α: Local inertia coefcient (m2s− 1)

η: Similarity variable
λ: Time constant
τ: Heat capacity ratio
ρf: Fluid density (kgm− 3)

β1: Porosity of the medium (m2)

c: Chemical reaction parameter
ω: Heat source/sink parameter
ψ: Stream function (m2s− 1)

ζ1: Heat transfer Biot number
σ⋆: Stefan–Boltzmann constant (Wm− 2k− 4)

θ: Dimensionless temperature
ϕ: Dimensionless concentration
σe: Electrical conductivity.

Abbreviations

ODE: Ordinary diferential equation
MHD: Magnetohydrodynamics
Eq: Equation
Ref: Reference
2D, 3D: Two dimension, three dimension
Pr: Present
e.g.: Example.
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