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One way in which nonlinear descriptor systems of (index-k) naturally arise is through semiexplicit differential-algebraic
equations. The study considers the nonbilinear dynamical systems which are described by the class of higher-index
differential-algebraic equations (DAEs). Their nature is analysed both quantitatively and qualitatively, and stability character-
istics are presented for their solution. Higher-index differential-algebraic systems seem to show inherent shaky around their
solution manifolds. The often use of logarithmic norms is for the estimation of stability and perturbation bounds in linear ordinary
differential equations (ODEs). The question of how to apply the notation of logarithmic norms to nonlinear DAEs has long been
an open question. Other problem extensions including nonlinear dynamics and nonbilinear DAEs need subtle modification of the
logarithmic norms. The logarithmic norm is combined by conceptual focus with the finite-time stability criterion in order to treat
nonbilinear DAEs with the aim of covering some unbounded operators. This means we obtain the perturbation bounds from
differential inequalities for a norm by the use of the relationship between Dini derivatives and semi-inner products. A numerical
result obtained when tested on the nonbilinear mechanical system with a larger scale showed that the method was highly efficient

and accurate and particularly suitable for nonbilinear DAEs.

1. Introduction

Differential-algebraic (called DAE, descriptor or singular)
systems provide a classical state-space framework general-
ization allowing a simpler description of several physical
phenomena, including mass and flow conservation, envi-
ronmental and topological limits, and thermodynamical
relations. The naturally described engineering applications
by DAE systems include mechanical systems [1-3], a robot
manipulator with a constrained end effector [4], and an
electrical network with a nonlinear element [5].

Bilinear systems are a significant subtype of nonlinear
systems with many applications in engineering, biology, and
economics. There are several studies examining bilinear
control systems [6-8].

The classical approaches to the DAE system stability
study depend on the system index or organise the reduction
techniques, through multiple time differentiations and al-
gebraic manipulations, showing the underlying differential
system depiction in which we can apply the classical results.
A study in [9] was the first contribution to the system where

there is an introduction of state-space equivalent forms for
linear time-invariant DAE systems. A different study [10]
includes a state-space realization for index three nonlinear
DAE systems derived. Also, the feedback stabilization
problem is solved through the techniques of linearization. A
study in [11] has used a similar approach. Yet, the multiple
algebraic equation differentiation and the demand for fur-
ther algebraic manipulations which these methods require
are poorly suitable for the scale of several engineering
problems. Also, nonlinearities in the model equations and
model uncertainties could prevent applying coordinate’s
reduction methods [12]. So, an approach to the stability
analysis problems and a direct control in the DAE formu-
lation are required.

Not similar to the current approaches, our proposed
approach helps in the establishment of stability to the DAE
system class without explicitly calculating the reduced un-
constrained systems. Yet, this method prevents additional
time differentiation and algebraic manipulations which the
classical approaches need for reducing the index to zero. In
contrast, a process broad class where ordinary differential
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equations decreased could be avoided by the model un-
certainties or by nonlinearities [13, 14]. So, we need a direct
approach to the stability analysis problems in the
differential-algebraic formulation.

A singular bilinear system was studied as a special case of
nonlinear descriptor systems [15]. A new set of sufficient
conditions is derived via continuous state feedback that
guarantees the global asymptotic stabilization of the closed-
loop system for singular bilinear systems [16, 17].

This study discusses nonbilinear type of descriptor
systems and techniques to decompose them into their
differential-algebraic equations. Furthermore, it investigates
the concept of the logarithmic norm approach and its ca-
pability to find robust stabilising controllers for uncertain
descriptor bilinear systems.

This bilinear descriptor control system is designed to be
stabilised by finding a robust controller using an exponential
stabilization approach via a logarithmic norm and the finite-
time stability concept. The theory and algorithms are the
focus of this study concentrating on increased system sta-
bilizable. This focus is on testing the problem. Therefore, the
model can be used to solve several complex test problems.

2. Problem Description

Consider the index-k nonbilinear descriptor system (non-
BDs)
Ex(t) = (A+8A)x(t) + (B+ dB)u()x(t) + f (x (1)),
(1)
where x € R, E € R™", with index-k, and A, B € R™", §A
and OB are perturbation matrices with ||A[ <a,||0B| <b,
a,b € Z*, u(t) is the single input control, and finally f (x (t))

is a vector of nonlinear functions which represents the
uncertainty of the system.

3. Remark

The set of the following nominal descriptor system:

Ex(t) = Ax(t) + Bu(t), (2)

is solved for desired control input u(¢) and all desired co-
ordinate trajectories. In addition, there is a unique solution
guaranteed for regular descriptor systems.

4. Simple Algorithm to Regulate the Irregular
Nominal Descriptor System

Step 1: consider index-k nominal descriptor system
Ex(t) = Ax(t) + Bu(t)
Step 2: find the finite spectrum eigenvalues g (E, A) and
choose r ¢ p(E, A)
Step 3: set E= (rE-A) 'E,A= (rE- A) 'A,B=
(rE- A)"'B
Step 4: the transfer nominal descriptor system Ex(t) =
Ax (t) + Bu(t) is regular.
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5. An Overview of Dini Derivative and Finite-
Time Stability

In recent years, many significant concepts of nonsmooth
analyses have been extended from the Euclidean space to the
Riemannian manifold setting to explore more optimisation
problems.

Lipchitz and convex functions are crucial for the non-
smooth analysis of linear spaces. The Dini derivative is useful
for analysing these functions.

Owing to the importance of the Dini derivative in the
application, we discuss the Dini derivative and its properties
on Riemannian manifolds, where the upper and lower Dini
derivatives can be defined as follows:

D* = li
f(x)= lim sup

h
(3)
D, f(x) = hli—n:l(ﬁ infw‘

Here, f is the function defined on I = [a,b].

The logarithmic norm (LN) is real-valued functional on
operators. This can be derived from either inner products or
vector norms. This could also be an induced operator norm
(18]

LA =%
; I -hAl-1 (4)
= lim sup———.
h—0* b h
Here, || - || is an induced matrix norm associated with the

square matrix A. For further details, one can read [18-21].

The logarithmic norm name is sourced from the esti-
mation of the solution norm logarithmic to the differential
equation x = Ax, but the Log maximal growth of [x||
is Z(A).

The differential inequality D} Log|lx|| < Z (A) expresses
thus in which D] is upper right Dini derivative.

Logarithmic differentiation is a differential inequality
that is expressed by: Df|x|<Z(A).|xl, which is the
original idea that introduced LN to drive topological (norm)
conditions on A guaranteeing a solution to the linear dy-
namical systems.

Definition 1. A system (2) is finite-time stable (FTS) with
respect to {p,n,, D)}, y<y, if and only if
Vx, € D = {the class of consistent initial condi tion} satisfy-
ing e (1)) < @ (1) and x| <y = I x (D]l <, ¥t € J [22,23].

6. An Algorithm to Find Decomposed
Nonbilinear Differential-Algebraic
Equations

Consider index-k non-BDs (1) with rank #,as
Ex(t) = (A+0A)x(t) + (B+ 0B)u(t)x(t) + f (x(1)).

(5)
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As noted earlier, a centred issue of the descriptor system,
which might be regular or irregular, is crucial yet falls
outside the scope of this work. Therefore, the regularity of
the system was guaranteed.

Step 1: Because the nominal system (2) is regular, there
exist two nonsingular matrices: S,T such that

[2 Eg ] =T 'x with x; € R™,x, € R" ™, and then
(1) can be written as
[951 (t) [xl (t)]
ET =(A+0A)T
X, (t) x, (t)
o)
+(B+ 6B)Tu(t) + f(x(8)).
Xy (1)
(6)
Step 2: Multiply (3) by S to get
[xl (t) X (t)]
SET = S(A+8A)T
)(.32 (1) Xy (1)
o)
+S(B+0B)Tu(t) +Sf (x(t)).
x, (t)
(7)
Step 3: Notice that
SET = diag(I,,,0),
SAT = diag(A,. 1,,.,, ),
[6A, OA, ]
S6AT = )
| §A, JA,
spr-| o B2 ]
L B; B,
(8B, 0B, ]
SO6BT = )
| 6B; 4B,
SFO) =[f1 (0 (0,%:(0)  f2(x (0%, 1)]".
(8)

Step 4: Equation (7) becomes
L, 07[% () A+ 0A, SA, x, (1)
[0 O:H:xz(t) 0A; I, 0+5A4:||:x2(t):|
B, +JB, B,+6B, x, (1)
u(t
B;+0B; B+ 8B4:| [xz (t)]
|:f1 (21 (1), x5 (1)) :|
+ .
fa (xl (£), x, (t))

—1,

+

(9)

3
Formula (9) can be further rewritten as
X, () = (A + 80A))x, (t) + 8A,x, (£) + (By + 8By )u(t)x, (¢)
+(By + 6By)u(t)x, (1) + f1 (x; (1), x, (1)),
(10)

0 = 8Azx, (£) +(I,,_,,, + 0A,)x, (£) + (Bs + 8By )u(t)x, (t)

+ (B, + 6B, )u(t)x, (1) + £, (x1 (1), x, (1)).
(11)

7. Assumption

In this section, we assume that

|64, 0 | B, O _
1) SSAT—[O O],SBT—[B3 0], and SOBT =
gBl 8 as a special case with [|0A;[|<a; and
6B, ]l <b,, for some a,,b, positive constants
(2) Sf(x(1) = [ f1(x,(8), x, (1)) O]T, and  there
exist  positive  constants k  such  that
llf1 (xq (), 25 (D) < Kllxy ()]
3) lul <2 ().
Then, (10) and (11) can be formulated as
X, () = (A; + 8A))x, (t) + (By + 0By )u(t)x, (£) 1)
+ f1 (% (8), x5 (1)),
0 = x, () + Byu (t)x, (1). (13)

The system defined on the space of consistent initial
condition (C.I.C) is as follows:

D= {(x1 (1), x, (1)) l xg = -Byu (O)X? and ||x?|| < y}. (14)

8. Finite-Time Stability Technique for
Stabilizability of Nonbilinear Differential-
Algebraic Equations

In the following, we recall equations (12) and (13) with C.I.C
(14):

X () = (A + 8A))x, (t) + (By + 0By )u(t)x, ()
+ f1(x (1), %, (1)), (15)
x, () = =Bsu(t)x, (1),
with t € J,J = {t|0<t <1}

By using the concept of Dini derivative for state x, (¢),
one can get



> Hxl (t+h) —x (t)”

D} |x, (1)] < hle(r su ;

[, () + Bty (8) = x, )]

Dl 0] im

h

< lim [T - R (A +84,)| -1
h—0* h

By taking
hlimm (IT = h.(A; + 8A,)| - 1/h),

D} |x, ()] < Z.||]x; ()|

+|(By + 8By )u(t)x; (1) + f1 (31 (1), x, (1)
(17)

LA +0A) =F =

ey @l O] < [ B, + 8B)u (91, 9+ £ (3, (9w () e ",

t
0

Jx, (0] <™

Since the nominal system is regular and from (17) and by
choosing §A; in a away such that e?(AitdA)t<
(n/y),Vy <nandy,y are positive integers, then

‘2
b @l L1 +6)2 s ] s 0l

t 2

[ <n+ | 0’;_2 (1B, + £,)2 () + K], (9)]ds:

(19)

Using the generalised Bellman-Gronwall lemma
[24, 25], (19) became

t 2
e, )] <7 exp(Jo% (1B +8.)2(5) + k])ds, (20)

whereas when applying equation (20) to (13), we obtain
that
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(16)

||x1 (t)" +||(B1 + 0B )u(t)x; (t) + f1 (x; (), x, (t))”.

By multiplying both sides of (17) by e~ " and integrating

from 0 to t, one can obtain

(18)

% O]+ " JOH(Bl + 0By Ju(s)x, () + f1 (%1 (), %, (5))||e_gsds.

t 2
s 0] < ~|Bs|. (001 exp<j0% (IB.] + b)2 (9) + k])ds.

(21)

Now, ICxy (£), 2, )N < [1 - I1B5 .2
O).n.exp (o (P 1y) [(IB, ]| + b)) (s) + k])ds.
The aim is to have the control u stabilizing the dynamics

X1 (1)
X, ® |
Hence, dynamics (20) and (21) introduce stabilizable
X1 (1)
Xy (1)
X1 (1)

x, (1)
with respect to {y,n, @ (t)}.

dynamics [ which is FTS with respect to {y, 1, @ (¢)}.

Because [ =T !x, then x is finite-time stable

9. An Application Point of View

Figure 1 shows the mechanical system, which consists of
one-mass oscillators linked by a dashpot part, described in
its final form as follows:
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Ex(t) =(A+6A)x(t) + (B+6Bu(t)x(t) + f(x(t)),

1 0 0 0 O %x1 (0 o0 1 0
o1 0 0 o0 ||=x 0 0 0 1
00 1 0 o0 |lx]|=[|l-=2 o -1 -
0 0 0 1 0 ||% 0o -1 -1 -1

Lo o o o ollx) L1 1 o 0

m-1 -1 0 1

(1) Notice that rank (E) =4 = ny,n—ny = 1.

(2) Because the nominal system is irregular, suppose

31 ¢ {set of all finite spectrum eigenvalues},
such that E=(E-A)'E=
0 0 1 0 0
0 0 0 1 0
-2 0 -1 -1 1 |
0 -1 -1 -1 1
1 1 0 0 0
i 1 0 0 7
0 1 0
A=(E-AT"A=| 2 -1 -1 1|
0 -1 -1 -1 1
L 1 0 0
- 0 0
0 0 1 0
A= 2 0 -1 -1 1|
0 -1 -1 -1 1
L 1 1 0 0 0

0

0

1

oS O O

1 r 0.1 0.1
0.2 0.1
+] -0.2 0.3
01 0.1
1 L 01 0.1
1 0.7 0.7
0.2 0
+| -0.2 0.1
0.4 -0.1
] L 0.1 0.1
r 0
~ 0
B=| =2
0
| -1
-0
N 0
8B=| -2
0
B!
r0
0
F=| -1
2% +1
L 0

-0.3
0.2
0.2
0.2

-0.1

0.2

0.2

-0.3

0

0.1

=T lx, and

0.4
0.1
0.1
0.1
0.2
-0.3
0.2
0.2
0.2

-0.1

0
1
-1
-1

-1
-1
0

-0.1
0.2
-0.2
-0.1
-0.1
0.1
0.1
0.1
0
0

O HFHFE O OO —= K- O O

X1
X2
X3

Xy

X5

sin (t)

X1
X2
X3

Xy

L X5

(22)

(23)
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1 0 0 07[ %, r 25  -001  -0.02 03
0 02 0 0ffx, 001 0.1 -0.7  -0.1
00 1 0|lxs]| || 01 07 ~0.08  0.08
00 o 1]lx, [ 02 01 ~0.002 -0.5
3.1 0 -2.9 0
0.5 0.2 0.3 0.3
+
-0.7 -1.1 0.3 0.3
0.2 0.3 -0.7 -0.7
[ 0.7 cos xy5 (t) + 0.3 sin x, (t)
0
+ >
0
L 0
0=x,+[-13 1.8 -0.6 -0.6]|cost
1 0 0 0
. 0 02 0 O
-1 -
Multiply (24) by a~' where a = 0 0 1 0
0 0 0 1
%y T 25 -001  —0.02 0.3 1.1
%1, 0.05 05 -03  -05 0.25
= +
X5 0.1 0.7 ~0.08  0.08 0.06
X1 [ —02 o1 -0.002  -0.5 0.05
3.1 0 -2.9 0 0
2.1 1 1.5 1.5 -0.2
+
-0.7  -1.1 0.3 0.3 0.04
0.2 0.3 -0.7 =07 0.009
[ 0.7 cos x5 (£) + 0.3 sin x, (t)
0
+ >
0
L 0
X1
x
0=2x, +[-13 1.8 -0.6 -0.6 Jcost| '
X13

1.1 -0.4
0.05 0.1
+
0.06 0.1
0.05 0.04
0 -0.2
-0.4 -0.02
0.04 0.2
0.009 -0.03
X11
X12
X13
X14
-0.4 -0.9
0.5 1
0.1 0.1
0.04 —-0.02
-0.2 0.9
-0.1 -0.1
0.2 —-0.03
—-0.03 —-0.7

-0.9
0.2
0.1

-0.02
0.9
-0.2
-0.03
-0.7

0.4
0.035
-0.04

0.06
-0.07
0.1
-0.1

-0.01

(24)

(25)

0.4 X11
0.07 X1z
~0.04 X3
0.06 X4
-0.07 X1
0.2 X1
cost
-0.1 X3
—-0.01 X1y
X1
X12
X13
X14
1
cost iz
X13
X14

(27)

(26)
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dashpot
rigid connected : k §

FIGURE 1: Representations of two connected one-mass oscillators.

— N W R Y

=

FIGURE 2: Stability space.

From (27), one can find the space of consistent initial
conditions.

X1
X9
D =4 (o)1, X120 X3, X1 4o X1 ) | X5y = [ -1.3 1.8 0.6 —0.6 ]cost (1)2 (28)
13
0
X14
) ||x2 (t)" <17.2¢"",
By setting (x,, x15, X3, %14) = (0.5,0,0,0),
D ={(211> %120 %13, X140 X51) = (0.5,0,0,0,0.65)}. (29) ||(x (1), x (t))" <212 <a=t<In M
e - 17 )
Now, getting the LN of (A + JA), Z(A, +5A)=Z = (1)
lim, o (I = h. (A + AN - 1/h) = limy,__,
3.6 -0.41  -0.092 0.7 The stability region and the state of the oscillator dy-
1-n| 0075 1 0.7 —0.15 4l namic model are shown in Figures 2 and 3.
‘1 0.16 0.8 0.02 0.04 ’
-0.15 0.14 -0.022 -0.44 . .
then set =4,y = 3 and B, | = 7, 6B, ]| <2 10. Result and Discussion

t16 17t This work shows the manipulation of the features of the

%1 (0] <4 exp<J0 9 (7+2).1+ 1])d5 =4e”.  (30)  olution manifold of nonbilinear. This bilinear descriptor
control system is designed to be stabilised by finding

From (27), a robust controller using an exponential stabilization
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Oscillator dynamic system State

10 12 14 16 18 20

Time (seconds)

FIGURE 3: State response of the oscillator dynamic system that can be modelled with differential-algebraic equations.

approach via a logarithmic norm and the finite-time sta-
bility concept.

In contrast, the proposed approach helps in finding the
decomposition of nonbilinear differential-algebraic equa-
tions. On the other hand, such a modified functional
(logarithmic norm) can be defined by a suitable selection of
the Dini derivative as a bound in finite-time stability.

An example of two connected one-mass oscillators, the
analysis of the nonlinear mechanical system motives, has
been utilized for the validation of the technique. The stability
region and the state of the oscillator dynamic model are
shown in Figures 2 and 3.

11. Conclusions

This study first reviewed the classical theory, concerned with
matrix bounds in which we define the logarithmic norm.
Then, this work developed a general theory to establish the
logarithmic norms in a nonbilinear functional analysis
framework. To answer the question of “how to apply the
notation of logarithmic norms to nonlinear DAEs,” we
modified the definition of the logarithmic norm and in-
troduced it as a more general concept through the extension of
the functional to nonbilinear maps and unbounded operators.
In this study, we have shown that the new notation of
logarithmic norm can be used to cover nonbilinear DAEs;
this analysis is possible by mixing this concept with finite-
time stability. The theory also reveals details about how
perturbations in the algebraic equations affect the stability of
the entire system in the nonbilinear case and provides
quantitate bounds of perturbation nonbilinear DAEs.

Data Availability

The data used in the article can be made available upon
request.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

I express my deep gratitude to Mustansiriyah University
(https://www.uomustansiriyah.edu.iq), Baghdad, Iraq, for its
moral support in the present work.

References

[1] F. Soltanian, M. Dehghan, and S. M. Karbassi, “Solution of the
differential algebraic equations via homotopy perturbation
method and their engineering applications,” International
Journal of Computer Mathematics, vol. 87, no. 9, pp. 1950-
1974, 2010.

[2] G.K. Edessa, “Existence and uniqueness solution of the model
of enzyme kinetics in the sense of caputo—fabrizio fractional
derivative,” International Journal of Differential Equations,
vol. 2022, Article ID 1345919, 13 pages, 2022.

[3] S. H. Salih, N. Al-Saidi, and R. A. Zboon, “A reliable nu-
merical algorithm for stabilizing of the 2-dimensional logistic
hyperchaotic trajectory,” Al-Mustansiriyah Journal of Science,
vol. 33, no. 1, pp. 51-56, 2022.

[4] G.F. Abd, “Functional approach for solving reduced order of
index-four hessenberg differential-algebraic control system,”
Journal of Mathematics, vol. 2022, Article ID 9621026,
12 pages, 2022.

[5] M. Golchian, M. Gachpazan, and S. H. tabasi, “A new ap-

proach for computing the exact solutions of DAEs in gen-

eralized Hessenberg forms,” International Journal of

Nonlinear Analysis and Applications, vol. 11, no. 1, pp. 199-

206, 2020.

L. Bhogaraju, M. Farasat, M. Malisoftf, and M. Kirstic, “Se-

quential predictors for delay-compensating feedback stabili-

zation of bilinear systems with uncertainties,” Systems &

Control Letters, vol. 152, Article ID 104933, 2021.

[7] G. Michael and Y. Wagner, “Index concepts for linear mixed
systems of differential-algebraic and hyperbolic-type equa-
tions,” SIAM Journal on Scientific Computing, vol. 22, no. 5,
pp. 1610-1622, 2001.

[8] E. H. Zerrik and A. A. Aadi, “On the stabilization for a class of
distributed bilinear systems,” Proceedings of International
Mathematical Sciences, vol. 1, pp. 28-40, 2019.

[9] M. Touahria and N. Bensalem, “Stabilization of bilinear
switching control systems by a mode-dependent average dwell

[6


https://www.uomustansiriyah.edu.iq

International Journal of Differential Equations

time strategy,” Mathematics and Mechanics of Complex Sys-
tems, vol. 9, no. 2, pp. 107-126, 2021.

[10] B. I. Akinnukawe, O. A. Akinfenwa, and S. A. Okunuga,
“Hybrid block algorithm for solving differential algebraic
equations with hessenberg index 3,” FUTA Journal of Research
in Sciences, vol. 15, no. 1, pp. 32-39, 2019.

[11] F. Magri, “Variational formulation for every linear equation,”
International Journal of Engineering Science, vol. 12, no. 6,
pp. 537-549, 1974.

[12] B. Benhammouda, “The differential transform method as an
effective tool to solve implicit hessenberg index-3 differential-
algebraic equations,” Journal of Mathematics, vol. 2023, Ar-
ticle ID 3620870, 13 pages, 2023.

[13] K. Ammari and M. Ouzahra, “Feedback stabilization for
a bilinear control system under weak observability in-
equalities,” Automatica, vol. 113, Article ID 108821, 2020.

[14] C. W. Gear and L. R. Petzold, “ODE methods for the solution
of differential/algebraic systems,” SIAM Journal on Numerical
Analysis, vol. 21, no. 4, pp. 716-728, 1984.

[15] J. D. Akinfenwa, S. A. Okunuga, and R. I. Abdulganiy,

A. Soneye, O. A. Akinfenwa, R. I. Abdulganiy, and

S. A. Okunuga, Hihger oder extended block hybrid second

derivatives backward differentiation formula for solving dae

of index 1,2, and 3 R,” Research Square, vol. 1, no. 1, pp. 1-21,

2022.

S. Yahyaoui and M. Ouzahra, “Quadratic optimal control and

feedback stabilization of bilinear systems,” Optimal Control

Applications and Methods, vol. 42, no. 4, pp. 878-890, 2021.

[17] M. Sogore and C. Jammazi, “On the global finite-time sta-

bilization of bilinear systems by homogeneous feedback laws.

Applications to some PDE’s,” Journal of Mathematical

Analysis and Applications, vol. 486, no. 2, Article ID 123815,

123822 pages, 2020.

S. Sangeetha, S. K. Thamilvanan, and E. Thandapani, “Os-

cillatory behavior of even-order half-linear neutral differential

equations,” International Journal of Differential Equations,

vol. 2022, Article ID 3352789, 6 pages, 2022.

[19] G. Soderlind, “The logarithmic norm history and modern
theory,” BIT Numerical Mathematics, Springer, vol. 46, no. 1,
pp. 631-652, 2006.

[20] 1. Higueras and G. Soderlind, “Logarithmic norms and
nonlinear DAE stability,” BIT Numerical Mathematics,
Springer, vol. 42, no. 1, pp. 823-841, 2002.

[21] O. Angtuncio Hernandez and G. Uribe Bravo, “Dini de-
rivatives and regularity for exchangeable increment pro-
cesses,” Transactions of the American Mathematical Society
Series B, vol. 7, no. 2, pp. 24-45, 2020.

[22] F. Amato and R. Ambrosino, Finite-time stability and control,
Vol. 453, Springer, London, England, 2014.

[23] B. Zhou, “Finite-time stability analysis and stabilization by
bounded linear time-varying feedback,” Automatica, vol. 121,
Article ID 109191, 2020.

[24] F. A. Ghazwa and A. Z. Radhi, “Parametrization approach for
solving index-4 linear differential-algebraic control systems,”
International Journal of Mathematics and Computer Science,
vol. 17, no. 2, pp. 815-825, 2022.

[25] N. N. Hasan and Z. John, “Analytic approach for solving
system of fractional differential equations,” Al-Mustansiriyah
Journal of Science, vol. 32, no. 1, pp. 14-17, 2021.

(16

[18





