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This article examines the necessary conditions for the unique existence of solutions to nonlinear implicit 9-Caputo fractional
differential equations accompanied by fractional order integral boundary conditions. The analysis draws upon Banach’s con-
traction principle and Krasnoselskii’s fixed point theorem. Furthermore, the circumstances leading to the attainment of
Ulam-Hyers—Rassias forms of stability are established. An illustrative example is provided to demonstrate the derived findings.

1. Introduction

Fractional calculus, which belongs to the realm of mathe-
matical analysis, has emerged as a potent instrument for
representing intricate systems and phenomena characterized
by memory and nonlocal behavior. Over the past few de-
cades, it has attracted considerable attention from re-
searchers and scientists because of its capacity to capture
complex dynamic behaviors that elude traditional integer-
order calculus. This mathematical framework has found
extensive utility across a range of fields, including physics,
engineering, biology, and economics, thereby enriching our
comprehension of the underlying dynamics governing
complex systems (refer to [1-7] and related works).

The foundation of fractional calculus hinges on the
expansion of conventional derivatives and integrals into
noninteger orders. Notably, fractional derivatives and in-
tegrals have proven indispensable in representing real-world
phenomena marked by fractal geometry, anomalous diftu-
sion, and long-range interactions. This transition from

integer-order calculus to fractional calculus has laid the
groundwork for groundbreaking contributions to the fields
of science and engineering. You can explore this further in
works such as [5, 8-13] and related references.

A notable advancement within the realm of fractional
calculus is the 9-Caputo fractional derivative. Diverging
from the established Riemann-Liouville and Caputo
methodologies, the 9-Caputo derivative introduces a unique
kernel incorporating the parameter 9. This distinctive
characteristic sets it apart from classical derivative operators,
offering a more adaptable instrument for characterizing
intricate systems. Researchers have harnessed the potential
of the 9-Caputo fractional derivative across various do-
mains, including electromagnetics, fluid mechanics, signal
processing, and beyond. Explore this development further in
works such as [14-25] and related literature.

Furthermore, analyzing stability in fractional order
differential equations has assumed paramount importance.
A comprehensive comprehension of the stability charac-
teristics of such equations proves vital in forecasting the
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long-term behavior of dynamic systems governed by frac-
tional calculus. Researchers have extended classical stability
concepts to the fractional domain, introducing concepts
such as the Ulam-Hyers-Rassias stability types and their
extensions. These advances have opened up new avenues for
investigating the stability and resilience of fractional order
systems under diverse conditions. Delve deeper into this
topic through works such as [17, 26-34] and associated
references.

where 9" is the Caputo fractional derivative of order
re (0,1), I=1[0,T], with T>0, 0>0. The functions
I: R— R, f,g: IxR* — R, and h: X — R are con-
tinuous functions and Ax (t;) = x(t) — x(¢).

t _ mo-1
‘P x(t) = f(t,x(t),cgz’x(t), J 0%
1 x(0) = h(x),
Ax(t;) =I1;(x(t;)), i=12,...,m,

International Journal of Differential Equations

In the subsequent discussions, we present a summary of
recent research contributions in the field of fractional dif-
ferential equations (FDEs) and their stability. We start with
an overview of notable works.

In [35], Zada et al. studied the existence, uniqueness, and
Hyers-Ulam stability results of the following implicit FDE
with impulsive condition:

((,x(()),cgrx(f))df, telt#t,1<i<m,

(1)

In [36], the authors considered a class of y-Hilfer
nonlinear implicit fractional boundary value problems
(FBVPs) describing the thermostat control model of the
following form:

"5 x(0) = f(6x(6,0), T8 x(8,9)), ¢ € (0;T],

i w?@ﬁi”);wx (&) =4, i)x?@ﬁi’p;wx(aj) + zf: Oix (1) = B,
=1 =1 k=1

where 97"V denotes the y-Hilfer fractional derivative
operator of order v = {a,ﬁi,yj}, ae(1,2],B,u;€(0,1], A, B,
wp, A, & €R & g5, me(0T), i=12,...,m,
j=12...,mk=12,...,r, pe [0,1], I is the y-Rie-
mann-Liouville fractional integral of order g >0, 8, e € (0,1],
feC(JxR%,R), and J = [0,T] with T >0.

‘DVy(t) = f<t,y(t),59ﬁ’wy(t), J't k(t, s)cga’wy(s)ds), tel,
0

¥(0) = 0, ¥(T) = yr,

where ‘@*V is the y-Caputo fractional derivative of order
a€(0,11,I=1[0,T], f: IXxR* — R k: IxR — R,and y,
and y; are constant real numbers.

(2)

In [17], the authors explored the existence, uniqueness,
and Ulam-Hyers type stability for the following nonlinear
implicit y-Caputo fractional order integro-differential

boundary value problem CIFDP:

(3)

In [26], Al-Issa et al. developed existence and stability

theorems for the implicit fractional order differential
problem (ISDP):
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4 ¢
2= f(ct y(0),° Dy (0), j k(¢, o)f@“"*’y(ama),

y(0 >-m] ¢ (@) (p(1) = $ () 'hy (0, y (0))do,

y (1) = j 6 () ($(1) = $(0) "y (0, y (0))do,

(4)

T(y)

2

with the following nonlocal boundary conditions:

where °@° is the Caputo fractional derivative of order
8 e {Ba}, with 1<B<a<2, and 0<y<1. In addition,
f: IxR*— R and k: I x R —> R are continuous func-
tions w1th I'=10,1], and ¢(7) is a nondecreasing function
with ¢ (r)#0 for all T € I.

In [28], the authors investigated the existence and
Ulam-Hyers stability of solutions for second-order differ-
ential equations with integral boundary conditions:

¢
%y(o = f((s)’(f),cgﬁy((), JO 0(¢, S)k((,s)cguy(s)ds),f € (0,1), (5)

y(0) =0,

y(1) = %y) [} =9ty s s s [ =9 L sy (s

»(0) = r?y) | =9y enas “
y(1) = WJ (n=35)"""L, (s, y(s))ds,

where °@° is a Caputo fractional derivative of order
8 €{B a}, with 1<f<a<2,0<y<l, f: IXR®* — R and
0: I x I — R are given functions, L;: IXR — R, (i = 1,2)
is a continuous function, A,y € R, and #,7 € [0, 1].

In light of the recent advancements in the field, this
research article delves into the stability analysis of nonlinear
implicit 9-Caputo fractional differential equations with
fractional integral boundary conditions. We aim to con-
tribute meaningfully to the expanding body of knowledge
concerning the 9-Caputo derivative and its practical ap-
plications. Simultaneously, we aim to enrich our

comprehension of the stability characteristics inherent in
fractional-order differential equations. Our work builds
upon the foundational work laid out by previous researchers
and extends the utility of 9-Caputo derivatives to intricate
boundary value problems, offering insights into the behavior
of complex systems. Therefore, motivated by the preceding
discussions, our study delves into the investigation of the
existence and uniqueness of solutions for a nonlinear im-
plicit 9-Caputo fractional order differential problem
(ICFDP), characterized by the following equations:

¢
‘D) = %(c, y(0),°D*y (0), jo k(s u)c.@z“’sy(wdv), (7)
y(0) -y (0) = mj 9 (1) (9(T) = 9(v))" "k, (v, y (v))dv, (8)
, 1 (T .
y(T)+y (T) = ) jo 9 (0) (9(T) = 9(v))" "1y (v, y (v))du, (9)



where 9({) is an increasing function with 9 ({)#0forall{in
the interval I = [0, T]. The parameters o, f3, and y satisty the
conditions 1<f<a<2 and 0<y<1. The operator ‘@*’
represents the 9-Caputo fractional derivative. Our primary
findings, which are derived under specific assumptions, are
established using the Banach and Krasnoselskii’s fixed point
theorems. Furthermore, our investigation encompasses the
9-Caputo fractional derivative, denoted as ‘@%°. Addi-
tionally, we address the topics of Ulam-Hyers stability and
the generalized Ulam-Hyers stability.

The article is structured as follows: We initiate our
work with an introduction in Section 1. Following that,
Section 2 covers notations, definitions, lemmas, and
theorems that establish the fundamental basis for our
study. In Section 3, we establish the existence and
uniqueness of mild solutions for (ICFDPs) (7)-(9) by
using the fixed point theorems of Banach and Krasno-
selskii. Section 4 delves into Ulam-Hyers stability, gen-
eralized Ulam-Hyers stability, Ulam-Hyers-Rassias
stability, and generalized Ulam-Hyers-Rassias stability.
Additionally, Section 5 provides an illustrative example to
showcase the practical application of our main findings.
Finally, we conclude the paper in Section 6.

a9 _ n—o,9d 1
2%u() =s ( 70 d() u() =

where ul () = ((1/9 () (d/d0)"u({) and n = [a] + 1 for
a¢Nand n=afor a eN.

h({) = co+¢, (9() = 9(0)) + ¢, (9() = 9(0))* +---+¢

where ¢; € R,i=0,1,2,...,n—-1,n=[a] +1

Lemma 4 (see [15]). Let o, 3 € R* and g({) € L, (I). Then,

TR () = I () = TEFg () and (I
g = Jgieg((), where n € N.

Definition 5. A fixed point of a mapping g: X — X, where
X is a given space, is a point x € X satisfying x = g(x).

Theorem 6 (Banach fixed point theorem). In a Banach
space X, if C is a nonempty closed subset and T is a con-
traction mapping of C into itself, then T possesses a unique

fixed point.

Theorem 7 (Krasnoselskii’s fixed point theorem). For
a Banach space X and a bounded closed convex subset S of X,
given mappings Q, and Q, from S to X with the property
Qx+Q,y € Sforallx,y €S, ifQ, is a contraction and Q, is
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2. Preliminaries

In the subsequent sections, we present various notations,
definitions, lemmas, and theorems that hold significance in
the progression of our findings within this article.

Definition 1 (see [14]). For any positive real number «, the
left-sided 9-Riemann-Liouville fractional integral of order «
for an integrable function u: I — R with respect to an-
other function 9: I — R, which is a differentiable in-
creasing function such that 9 ({)#0forall { € I = [0,T], is
defined as follows:

,9
Ju(() = )

where I' represents the classical Euler gamma function.

JS(U)(S(() 9()* u(v)dv, (10)

Definition 2 (see [14]). Let n be a natural number, and let
9ueC*(I,R) be two functions such that 9 is an increasing
function with 9 ({)#0 for all { € I. In such cases, the left-
sided 9-Caputo fractional derivative of a function u of order
a is defined as follows:

“)j 9 (1) (9(0) = 9 ()" 'ul (v)dw, (11)

Remark 3. Let a>0, then the differential equation
(oo 91) () = 0 has the following solution:
BICI(OR () (12)

completely continuous, then there exists a point z € S such
that Q,z + Q,z = z.

3. Existence and Uniqueness of the Solutions

In this section, we demonstrate the presence of mild solu-
tions for the nonlinear implicit 9-Caputo fractional order
differential problems (ICFDPs) (7)-(9), subjected to the
following assumptions:

(#,): The functions h, (¢, x), where i = 1,2, are con-
tinuous and possess Lipschitz continuity with constants
k; € [0, 1], obeying the following criterion:

lh,-((,u)—hi((,v)|ski|u—v|. (13)
(#,): The function § (t,u;, u,, u;) is continuous, and
there exists a positive function y € C(I,R*) that sat-
isfies the ensuing inequality:
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| (g g 113) = F (G vy, v, v3))| 5/‘(0“”1 = vy [y = o] + us - "3|)’ (14)
forall { € I and u;,v; € R(i=1,2,3). (% ,): The function @ (¢) is increasing and belongs to
(%5): The function k({,v) is continuous over the the class C (I, R*), with a positive constant Ag > 0 such
domain I x I, and there exists a positive constant K that, for each (€ I,
such that TR <1, (). (16)

max |k(,v)| = K. (15) iy . .
Gwel0.T] (#5): Positive functions ¢(t) and y;(t) (i =1,2,3)

exist in the class C (I, R*) such that

|%(( ul,uz,u3)| <o +x, (()|u1| +X2(()|u2| + X ({)|u3|, Y (Cuyp,uy,uy) € I R’ (17)

| (&) <[y (5, 0)] + Ky lul, (19)

By fulfilling these assumptions, we establish the existence
of a mild solution to (ICFDPs) (7)-(9). and consequently,

Remark 8. Given assumption (%), it follows that |1 (G )| < H, + kylul, with H; = S(lgjlhi (¢, 0)] (20)

|1 (& 0] =By (6, 0)] < [ (8u) = by (3, 0)| < Kyl — O, Under assumption (%’,), we find that

(18)
which implies
1B (¢ 1y, 1y, u3)| = 15 (£,0,0,0)] < | (¢ 14y, 1y, u3) — F(£,0,0,0)] Sy(()(|u1| +|uy) +|u3|), (21)
leading to the conclusion that and furthermore,
| (& tys vty 143)| < p ()|t | +[t4a] +u45]) +1F (£, 0,0,0)1,
(22)
|%((,u1,u2,u3)| Sy(()(|u1| +|u2| +|u3|) + F,where F = scup IF (£,0,0,0)|. (23)
el

Lemma 9. The mild solution of (ICFDPs) (7)-(9) is the so-  where u is the solution of the following functional integral
lution of the following Volterra integral equation: equation:

T !
y(©Q=h(ly()+ JO 9 (1)G(§v)u(v)dv, (24)

T , ¢
u<c)=%<c,h(c>+%j 9 (u)G(c,u)u(v)dv,f“‘ﬁ"’u(a,j k(c,u)u(v)dv), (25)
a)Jo 0
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where G ((,v) is the Green’s function defined by

9(0“”(0( 5 () )( -9+ D=2 90y gty (90— 90, if 0<vsi<T,

o(T) F(a-1) ¢ (T)I' () I'(a)
G((v) =
Y0 -9( 9© w2, 90 -0 .
(26)
with and
GO = max{lG((, U)': ((a l)) S I},
(27)

9(0) =9 (0)+9() +9 (0) - 9(0),

J 9 (WD) - 9" "hy (v, y (0))dv

[, e-9©)\ 1
(¢ y () -(1 e >r( )
(28)

Lo0-9@ 1

T r-1
o(T) r()J 9 W) = 9@ 'y (v, y (v))dv.

Proof. Let ‘9""9)1(() =u({) in equation (7), where

a—f,9 ¢
u({) = %((,y((LJ’ “u((), Jok(f, v)u(v)dv>,
(29)
y(Q) =ay+a, (9(() - 9(0))+mj 9 (1) (9(0) = 9(v)* 'u(v)dv.

From equations (8) and (9), we can obtain

ao—a19’<0)—%j 9 (0)(9(T) = 91, (v, y (v))dv (30)

a0+a1<9 (T) + 9(T) - 9(0))+mj 9 () 9(T) - 9(w)]* 'u(v)dv

9 (T -
+F(oc I)J 9 () [T)-9()]" “u(v)dv (31)
%j 9 () (9(T) = 9(u))'hy (v, y (1)) dlw.
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Solvipg equations (30) and (31), and if
9()=9 () +9({) +9 (0) - 9(0), then it is obtained that

" <1 _%>$I:9,(“) [9(T) =9 ()" 'y (v, y (v)dv
" ¢(13L)(£Zy) JoT 9 (0)[9(T) = 9] By (v, y (v)dv
B q)(ST’)(?za) JZ 9 () (9(T) - 9(W)™ "u(v)dv
—Mﬂsf(v)(s(i*) ~9(0)* 2u(v)dv, (32)

1 T, .
“ =mf I @I = 9w (hy (0, y () = hy (v, y (0))do

1 T a-1
j 9 () (9(T) = 9 (W)™ "u (v)dv

9,(T) ! ' a—2
e, Y W@ W) s

Then, the solution of (ICFDPs) (7)-(9) is given by

(oM -9@-9D+90)) 1 (T, -
y(()-( o) > e jos(u)[sm_e(v)]v hy (v, y (v)dv

90 +9@-90) 1 [Ty -
+< 9(T) > I'(y) JOS‘“)[“’(T)—f)(v)Jy hy (0, y (v))dv

(9 +9(0)-9(0)
9 (T)I (a)

) JT 9 () (9(T) = 9(v)* u(v)dv
0

_Sr(T)<9(C) +9(0) - 9(0)

! ' _ a—2
¢(D)I (e~ 1) >JO9(“)(9(T> 9(v)* *u(v)dv

+Lj(9’<v)(9(o —9(0)* 'u(v)dv
I'(a) Jo

_ <</>(T) —p()+9 m) 1 st’(v) I9CT) ()T b, (v, y ()

@(T) T'(y)Jo

pO-9@) 1 [Ty -
+< 9(T) >F(y)109(v)[9(T) 9" hy (v, y (v)dv
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o) =9 (T .
_WL 9 (V) (O(T) = 9 ()™ u(v)dy

g 2O -9\ [Ty g2 33
S(T)<¢(T)F( — )>J 9 (v)(O(T) =9 (v))* “u(v)dv (33)

i [ 8 @O0 - 9@ u e

Using the fact that _[ .[0 f ¢» e get equation (24), (7)-(9) refers to a function u € C(I,R) that fulfills the in-
and the proof is complete. O  tegral equation (24). In this context, u represents the so-
lution to the following functional integral equation:
Definition 10. A mild solution of the nonlinear implicit
9-Caputo fractional order differential problems (ICFDPs)

u(Q) = %(c h() + mj 9 ()G (¢, V) (v)dv, T Fhu (D), j k(&u)u(v)du) (34)

h(¢,x)—h({, I <clx - yl. 35
for all { € I. |h(,x) = h((, p)l <cllx =yl (35)

Lemma 11. The function h: I x R — R satisfies the fol-  Proof. For arbitrary u,v € X and for each { € I, we have
lowing Lipschitz condition:

1h (¢, x(0) = h (G y (D)

%J 9 (WIO(T) = (W) [y (v,x (v) = by (v, y ()| dv

_9 T, i
+%Jo 9 ((T) = 9] hy (v, x(0)) = hy (v, y (v))]dv

_9 T, _
+%jo 9 (1) = 9" Ay (v, y (v)) = by (v, x (v)|dv

O - 9(0))"

T+ ||h1(v,x)—h1(v,y)||

(-9 @) @) -90)
e(TT'(y+1)

|7, (v, %) = By (v, y))

(90(() -9 (C))(S(T) -9(0))
e(Tr(y+1)

||h1 (v, ) = hy (v, x)"

(s0-9'©)
¢(T)

_ (M) - 9(0))"

r()/+l) "hl(v)x)_hl(v>y)"+

("h2 (v,x) — hy (v, y)" +||h1 (v, ) —hy (v, x)”)
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(9(T) - 9(0))

T+ 1) killx =yl +

- (1) - 9(0))"

(s2-5®)

(s0-9'@)
T (k2||x =yl +klly - x||)

(36)

ky +

I'(y+1) o (T)
Thus,
17({, %) = h({, Ml <cllx = yl, (37)
where ¢ = ((9(T) = 9(0))"/T(y + D)k, + (9 (D)= 9 ()
o (T)) (ky + k)]

Our first result is based on Banach’s fixed point theorem
to obtain the existence of a unique solution of (ICFDPs)
(7)-09). O

Theorem 12. Suppose that assumptions (#,)-(H ;) hold,
and c is the Lipschitz constant as defined in Lemma 11 with

. GollulT
1=l (KT +((9(T) = 9(0)* /T (e~ B+ 1)))

<1,

(38)

such that |ull (KT + ((9(T) - 9(0)F/r(a- B+1)))<1,
then (ICFDPs) (7)-(9) have a unique mild solution on I.

Fa+((9(T) - 8(0))"/T(y + 1)) Hl - (go(T) _9 (T)/go(T))

(ky + kl)]”x -yl

Proof. Transform (ICFDPs) (7)-(9) into a fixed point
problem. Define the operator &/: C*(I,R) —> C*(I,R) by

T U
Ay () =h(y(O)+ JO 9 (VGG vv(v)dv,  (39)

where v € C(I, R) satisfies the following implicit functional
equation:

a—B,9 ¢
v(() = %(CJ’(C),J ’ V(C),Jok(f, v)V(v)dv>, (40)

where G and h are the functions defined by equations (26)
and (28), respectively. We define the ball 3B, with radius r as
follows:

B, ={y e C(LR): Iyl <r}, (41)

where

H, +

(o(1)- 5 Drp()

2

r>

1= lullw - ((9(T) = 9(O)'/T(y + 1))[\1 —<<p(T) —9’(T)/¢(T))

G, (9(T) - 9(0))

T lel(((9(T) = 9(0)* P/ (a~ B +1)) + KT)

First, we show that the operator o/ is well-defined, i.e., we
show that &/ (%B,) c B,, where

B, ={y e C(I,R): [yl <r}. (43)

Let y € B,. In the following, we show that &/ y € B, for
each ( € I as follows:

a—p,9 ¢
) =‘%(<2 YO, T (0), jok(c, v)v(v)dv)

(9() - 9(w)*F!

ky +

(o(1) -5 Drp(n))

kz], (42)

T !
|y (O] = ‘h((,y(f)) + JO 9 (VG (G v)v(v)dv

r (44)
<Ih (G y (D) + JO 9 WIG & v)lIv(v)ldv,

where v({) = § ((, y ({), FBIy (), Jg k (¢, v)v(v)dv), such
that

(45)

¢ !
S#(()(Iy(()l + jos )

Taking supremum for { € I, we get

I'(a—p)

¢
|v(v)|dv + Jo |k (¢, v)IIv(v)Idv) + F.
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9(T) - 9(0)* " Then,
i+ CO O e KT ) +

(46)

rllull + F
1=l (((9(T) = 9(0))*P/T(a— B+1)) + KT)

vl <

Ih(Gy (0)] < —

r'(y) o(T)

—_ ' T !
<1 (-9 (:)) Jo 9 W) = 9"y (v, y (W)|dv
9 -9(©)

! ' -1
9 (DI (y) J O @M =9 hy (v, y (0)]dv

1
<
L(y)

9= Q| [Ty T
e |JOS(“)[9(T) I [H, + K ly (v)l]dv

T !
JO 9 (V) [9(T) = 9] ' [H, + kyly (v)]]dv (47)

‘wo ~9(0)
o ()T (y)

9(0) -9 (] (O(T)-9(0)
Sll_ o (T) | T(y+1) [Hy + Ky lly ()Il]

+|§"(() -9 (O] (1) -9(0)"

e | ren Ry

LM - 9(0))" {1

-9, Jo@ -9
Ty+1) - H, + H,

o(T) | '] oD |

(O(T) - 9(0))" [
+

L_2Q-9Q|  |e@©-9 (0|k2]r.
F'(y+1)

k
o) |7 e |

Thus, equation (44) implies that, for each { € I,

(ru() + F)G,
(9(T) - 9(0))
1-u(@)((O(T) = 9(0)* P/ (a - B+ 1)) +KT)

Ay (Ol <

(9(1)—9(0))V{
+ 1

_9@Q-9Q, |e©-9 (()le]
I'(y+1)

¢ (T) e |

(48)

(D=9
¢(T)

(9(1)—9(0))V{

lp () -9 )
T(y+1) kar

k
YT e

If we take supremum for all { € I, we get
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w)
)

(F((GO (9(T) - 9(0N)/(1 ~ Nl ((9(T) = (0D /T (@ = B+ 1)) +KT))) + ((9(T) — 9(0)"/T (y + 1))“1 7<¢(T) -9 (T)/qJ(T))‘Hl +K¢(T) -9 (T)/(p(T))

r>

(-G 9r) - 9ON)(1 1w 9(T) =90 F/T (= B+ 1) +KT))) = ((O(1) = 90y + D) |1 ~(9() - (T)/ga(T)){kl +

(¢(1)-9 (rp(m)

(49)
Hence, &/ (B,) ¢ B,. Let x, y € C(I, R). Then, for any { € I, we have
Second, we show that the operator & is a contraction.
T , T ,
A2 -y =hCxO) + | § G-y + | § WGV (50)
where u,v € C(I, R) such that Then, for any { € I, we have
¢
u(0) = %(c,xm,f“‘ﬁ"‘)u@), | ke v)u(u)dv),
(51)
a—B,9 ¢
v(() = %(Cy(()uf v({), Jok(& v)V(v)dv)-
T !
|x () = Ay (OI<Ih(Cx(0) = h(( y (D) + JO 9 ()G (G v)|u(v) - v(v)ldv. (52)
But, by assumption (%#,), we have
[u () —v(OI
a- 3,9 ¢ a— 3,9 ¢
=‘8 (x0T P, | K, v)u(v)dv) -§( 6y ©. 7O, | Koy
N C IO R 1)) (53)
Ix(C)—y(C)I+JOS (v) Fa-p) |t (v) = v(v)ldv
<u(0)
¢
+ J k(¢ )l (v) - v (v))do
0
Taking the supremum for all { € I, we get
_ a-p
I vl < ||y||(||x ol O v+ Kl vnT). (54)

Thus,
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lu— vl <

Now, return to equation (52), and by Lemma 11, we have

| x(0) =y (Dl <clx -yl +

L=l (KT +((9(T) - 9(0)* /T (a - g+ 1))

lx = ¥l (55)

GollulT

1= [lull (KT +((9(T) = 9(0)* /T (a - p+1)))

llx = ¥

(56)
GollulT
e+ I - 1,
<C 1—||m|(KT+(<9<T>—9(0))“‘ﬁ/r<a—ﬁ+1)))> T
and taking supremum for { € I, we get
GollulIT
letx - ctyl < e+ d I = . (57)
e <C (1—||u||(KT+((9(T)—9(0))“‘ﬁ/r(a—ﬁ+1>)))>x g

Now, if  c+ (GolullT/ (1 = ljull (K T+ (((9(T) -
8(0))“’5)/(F((x -B+1)))))<1, then operator & is
a contraction.

Therefore, by Banach’s contraction principle, we deduce
that &/ has a unique fixed point x € C (I, R), which is a mild
solution of (ICFDPs) (7)-(9) on [0, T].

In the following, we present our second existence result
for the mild solution of (ICFDPs) (7)-(9) based on the
Krasnoselskii’s fixed point theorem [1]. O

Theorem 13. Assume that the assumptions (#|) — (¥ ,)
and (¥ 5) hold. If

(9(T) - 9(0))" Kl
L'y+1)

where & = ), (9(T) = 9(0))* #/I'(a= B+ 1)) + lly;IKT,
then (ICEDPs) (7)-(9) have at least one mild solution on I.

Proof. Let the operator be o/ defined in (39). Define the
closed disk

((Om-o@yme+ 1))[\1 ~(o-9 (T)/GD(T))lHl ¥

9(0)-9 (0 (-9, | GoTlnl
(D) >k1+ o | 1ok P (58)
©, =1y € C(LR): Iyl <p}, (59)

with

(o(1) -8 (Drp(D)

H, | +(GyTIgh (1 - )

In addition, define the operators &/, and &, on g, by

(1 — ((S(T) = 9(O)!/T(y + 1))[’1 - <<,>(T) _9 (T)/(p(T))

k] - (Gorlulra-)))

(60)

K+ (o0~ 9 (rp(m)
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A1y () =h(G y()), Ay =d\y(+d,y(), (el (62)

(61) The proof is divided into several steps:

Step 1: o is well defined.
Let y1,y, € g,. Then, for any { € I, we have

T i
Ay () = jo 9 ()G (& v)v (v)dv.

Taking into account that &/, and &/, are defined on ,,
and for any y € C(I, R), we have

|511Y1(C)4'&f2YZ(()|S|&f1Y1(()|+¢5yZY2((H

T, (63)
<|h (&0 (O)] + jo 9 WIG, V)lIv(v)ldv,

where  v(0) = § (v, (0, TP, [o k(G v)v(v)d
v) such that

a—,9 ¢
lv (O =l%§<(>yz((),=7 “v(0), Jok(é U)V(v)dv)

9 - 9(w) !

¢ '
6@+ 1@ O]+ [ 8 0 O

)IV(v)Idv (64)
¢
1 (0 jo (&, 0)llv (0)ldo.

| ¢l +[x: [l
Taking supremum for all { € I, we have Ivii=< 1 —(||X2”((‘9(T) ~ 900 PIr(a-p+ 1)) +||X3||KT)'
Il < Nl +[x, 2 (60

(65)

9(T) - 9(0))**
+[x. ||<%) Ivll + s | KIVIT. Moreover,

Thus,

T U

(¢, (@) < |1 - 28 -9 [ $ @@ -9 0 @)

“I(y) o(T)

(-9
o (T)T (y)

T r
j 9 W9(T) = 9" |1, (v, y, (0))|dv

0

S;[l_so(o—s’(o
I'(y) o(T)

+‘¢<o -9
¢ (DI (y)

_|, 2@ -9@f o) -9
- o(T) | T(y+1)

L@ -9 @ o -9’
| oM | TG+D

EM -9 [, 2@ -9@)|,, |e@-9©)|
TG+ [1‘ o | e T

EM -9 [, e@-9@)|, o -9
- k k, |p.
T [1 o | e |2

T r
jo 9 9T - 91 [H, + [y, ()]

T i
jo 9 () [9(T) - 9" [H, + ky |y, (0)]]dv

(67)

[Hy + kil ()]

[Hz +k2||y1(”)“]
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Thus, equation (63) implies that, for each { € I, we
obtain that

|<971y1 ) +~sz)/2 (0| <

(9(T) - 9(0))" )
'(y+1)

9@ -9©, |p@-9©|
o | e T

, O~ 90 [ _o0-9Q), |e@- 9’<c>|k2]

oM | e |

I(y+1) (68)
, GoT(Igh + [ lle)
1-x ’
<p.
Taking supremum over { € I, we have Step 3: The operator &, exhibits complete continuity
both compactness and continuity) on g,.
lt,3, + oy <p. (69) ( P y)on g,
First, we establish the continuity of the operator &,.
This proves that oy, +d,y, €, for every Assume that {y, € N} is a sequence such that y, — y
Y1> 5 € ©,, where p is given in equation (60). as n — 00 in C(I, R). Then, for every { € I, the following

Step 2: The operator &, demonstrates contraction relation holds:

behavior within g,. It is clear from Lemma 11 that
operator &/, is a contraction mapping for ¢ < 1.

T !
|95, () = e,y (O] < |1 ($, 7, (D) = (¥ ()] + JO 9 (V|G (& v)||v, (V) = v(v)]do, (70)
where v,,,v € C(I, R), such that By Lemma 11, we have
n(0) = g(z, 5,078, 0. [ k o, (v)du>, &y (@) =Gy @ selyu =5 (72)
; ’ (71)  where c<1 is a Lipschitz constant. Moreover, by the as-
v(0) = g<(, y((),ff‘*ﬁ’%((),J k(¢ U)v(v)dv>. sumption (%), we have
0
v, (O = v(Q)

¢ ¢
= ‘%(C Y, (0, 7P (0, jo k((,v)v, <u>dv) - %(c, y(0), 7P (), jo k(¢ v)v(u)du)

(9(0) - 9(v)* k! (73)

INCE)

¢, {
S#(C)(Iyn(f) )+ jo 9 (v) v, () = v (0)]do + jo k(0w (0) - v(v)ldv)

(9(T) - 9(0)* #
<til{(n = o1+ g sl s, ).
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Taking supremum for all { € I, we get
o =< ~(KT+((9(T) = 9(0)* /T (a - B+ 1)) b=t 7

Since y,, — y, then we get v, ({) — v({) asn — oo
for each { € I. Consider € > 0 such that for any { € I, we have
[v, (O] < (e/2) and |v({)| < (&/2). Thus,

G (&, 0)][v,, (v) = v(0)| |G (&, V)| [[v,, (V)] + [ (V)] -

)
<e|G(¢ )

T !
|22y, (Q) =,y (D] <c||y, - y]| + JO 9 (WIG (G, v)l|v, (v) = v(v)|dv

For each ( € I, the function v — €|G ({, v)| is integrable
on I. Then, applying Lebesgue dominated convergence
theorem and equation (70), we deduce that

(76)

<d|y, - y| + €IG (& )| (S(T) - 9(0)).

Hence, |</,y,(() -9,y (Ol — 0 as n —> o0, and
consequently &, is continuous.

(ru () + F)G,

Second, due to the definition of p, it is easy to verify that
o, satisfies that

EBTE

This proves that &/, is uniformly bounded on g,
Third, we prove that &/, maps bounded sets into
equicontinuous sets of C(I, R), i.e., g, is equicontinuous.

- 1ul((9(T) - 9(0)*PIT(a -+ 1)) +KT)

(1) -9(0)) <p. (77)

Now, suppose that for every € >0, there exist § >0, and
(1,¢, € I such that {; <, and |{, — {;| < §. Then,

[027/() = 2y @] < 6y @) = hE @] + [ 8 @16 () -GGyl

<ely (@)= (@l+ 1 [, § @I6 @0 - 6@, o 79)

<y (&) - (G| + M JZ 9 (|G ({5, 0) - G (¢, v)|dv.

It is clear that as {; — (,, the right-hand side of the
above inequality tends to zero. Consequently,

|,y(8,) = ey (C)] — 0, V[, -¢ | —0.  (79)

Hence, the equicontinuity of {&/y} holds on g, along
with the compactness of operator & that is established by the
Arzela-Ascoli theorem. This leads to the inference that

(1-%)

d: C(I,R) — C(I,R) maintains both continuity and
compactness.

Notably, all prerequisites essential for Krasnoselskii’s
fixed point theorem are satisfied. This shows that the
operator &/, + 9, has a fixed point on g,. Therefore,
(ICFDPs) (7)-(9) have a mild solution on I. This con-
cludes the proof. O
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4. Ulam Stability of the Solutions

Consider now the Ulam stability for (ICFDPs) (7)-(9). Let
€>0 and ®: I — R* be a continuous function. We in-
vestigate the following inequalities:

<e, (el (80)

¢
D"y (0) - %(c, y (0, Dy (), jo k(¢ v)fez“’sy(u)dv)

€9 conBO ¢ ¢ %9
250 -§( 6y, 2 y(c),jok@,v)@ ydv || <o), (el (81)

<ed (), (el (82)

¢
‘D*y(() - %(c, y(),° Dy (), j k(¢ v) 2 y(v)dv)

Definition  14. (ICFDPs)  (7)-(9) are  considered
Ulam-Hyers stable if there exists a positive real number
cg >0 such that, for every €>0 and for any solution
y € C(I, R) satistying inequality (80), there exists a solution
x € C(I, R) of (ICFDPs) (7)-(9) with the following property:

ly () -x(0)l<ecg, forall(el (83)

Definition 15. (ICFDPs) (7)-(9) are said to be generalized
Ulam-Hyers stable if there exists a function cg €C (R,R)
with ¢ (0) = 0, such that for each >0 and each solution
y € C(I, R) satistying inequality (80), there exists a solution
x € C(I,R) of (ICFDPs) (7)-(9) with

[y () —x(Ol<cg(e), forall{ el (84)

Definition ~ 16. (ICFDPs)  (7)-(9) are considered
Ulam-Hyers—Rassias stable with respect to @ if there exists
a positive real number cg ¢ > 0 such that, for every € > 0 and
for any solution y € C(I, R) satisfying inequality (81), there
exists a solution x € C (I, R) of the systems (7)-(9) with the
following property:

and let y € C(I,R) be the unique solution of (ICFDPs)
(7)-(9) which by Lemma 9 is equivalent to the following
fractional order integral equation:

1

u(Q) = %((,h(fﬂr(a)

¢
‘D2 () - %<<ﬁ y(0,°2P2(0), jo k((, 0Dz (v)dv)

ly()-x(Dl<ecge @), forall{el (85)

Definition 17. (ICFDPs) (7)-(9) are said to possess gener-
alized Ulam-Hyers-Rassias stability with respect to the
function @ if there exists a positive real constant cg ¢ >0

such that for every solution y € C(I, R) of the inequality 23,
there is a solution x € C(I,R) of the (ICFDPs) (7)-(9)
satisfying the following condition:

ly()-x(Dl<cgqe @), forall (el (86)

4.1. Ulam-Hpyers Stability. In the following, we study the
Ulam-Hyers stability for (ICFDPs) (7)-(9).

Theorem 18. Assume that the assumptions of Theorem 12
are satisfied. Then, (ICFDPs) (7)-(9) are Ulam-Hyers stable.

Proof. Let €>0 and let z € C(I,R) be a function which
satisfies inequality (80), i.e.,

<e, forall (el (87)

T !
y(Q) =h(y () + jo 9 (1)G (G v)u(v)dv, (88)

where u is the solution of the following functional integral
equation:

! (
[T 9 (0)G({, v)u (v)du, J“*ﬁ’su(c),j k(¢ v)u(v)dv). (89)
0 0
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Applying .7*% on both sides of equation (80), we get
T 9(T) - 9(0))"
2O -h(G2@) - [ 9 06w <O EO (90)
0 (¢+1)
where v € C(I, R), such that
llue = vl < Iz = .
L 14WmKT+(GxT)—S«nﬁ*nma—ﬁ+1n)Z 4 D
This implies that for each { € I, we have
T U
12(Q) = y (Dl =|z(O) = h({, ¥ (0)) - JO 9 (G (G, v)u(v)dv
T ’
<2 (O -h((z(0) - jo 9 ()G (G v)v(v)dv + h((,z(0)
T, T,
+ 9 WG @ -h @y @) - | ¥ @GE
(92)
NT)-9 T,
<% 1h($,z(0)) = h(S, y (O] + JO 9 (G (Vv (v) - u(v)ldv
NT)-9 T,
<%+ clz () =y (Ol + JO 9 (G (G V)v(v) - u(v)ldv
<€(9(T) 9(0))" vzl + Gollull (9(T) - 9(0)) Iz = yl.
I(a+1) 1=l (KT +((9(T) = 9(0)*F/T (= B+ 1))
Thus, if we take supremum for all { € I, we get
o €Q(T) - 9(0)* B Gollull (I(T) - 9(0)) B
EE N e (om - sor g .
Then, for {=1-c— (GylulO(T)-9(0))/ (1 —[ul 4.2. Ulam-Hyers-Rassias Stability. Now, we show that

(KT + ((9(T) - 9(0 ))“ FIT (0= B +1))))), we get the fol-

lowing equation:

(9(T) - 9(0))" -
lz - yl< (W( l>€ = Ccge. (94)

Therefore, (ICFDPs) (7)-(9) are Ulam-Hyers stable. This
completes the proof. O

Remark 19. 1f we put @ (€) = cge, then @ (0) =0, which
yields that (ICFDPs) (7)-(9) are generalized Ulam-Hyers
stable.

€ ,d

¢
- %(c, y(0,°2P2(0), JO k(¢ u)csz“"’z(v)du>

(ICFDPs)
stable type.

(7)-(9) satisfy the Ulam-Hyers-Rassias

Theorem 20. Assume that assumptions (¥ ,)- (¥ ,) hold.
Then, (ICFDPs) (7)-(9) are Ulam-Hyers-Rassias stable with
respect to .

Proof. Letz € C(I,R) be a mild solution of inequation (82),
ie.,

<e®, forall{el, (95)
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and assume that y is a solution of (ICFDPs) (7)-(9), such that
T ’
YO =hCy @)+ [ § @G, 96

where u € C(I, R) satisfies the following integral equation:

where v € C(I, R) such that

a—,9 ¢
v(() = %((,Z(C),J “v(0), Jok((, U)V(U)dv>- (99)

20 ~h(z(0) - j 9 (WG, ) (V)| <

International Journal of Differential Equations

a—,9 ¢
u(f) = %((,y((),i “u(0), Jok(C U)u(v)dv). (97)

Operating by I*? on both sides of inequality (82) and

then integrating, we get

j 9 () (9(0) - 9(v)* D (v)dv

flu — vl <

Hence, in a similar manner as above, we have for each
(el,

l2(0) -y (Ol =

T !
+ jo 9 (WG, Vv (v) - u(v)ldv

<edp @O +clz—yl +

Taking supremum for all { € I, we get

“T(a) (98)
SeA’CD(D(())
But,
— Iz = ¥l 100
L Tel(KT +((O(T) - 9O Fr@-p+ 1)) (100
T !
20 -hCy@) - [ 9 OIGE vy
T r
<l @ -n@20) - 8 @G0 ds] +1h(E2(0) - h(E y )
(101)
Gollull (9(T) = 9(0)) i
1=l (KT +((9(T) = 9(0)* F/T (@ - +1)))
Gollull (9(T) - 9(0))
- Iz = yl. (102)
L=l (KT +((9(T) = 9(0) /T (o= B + 1)))) g

lz—yl<e Ay <D(()+<c+

If we take (=1-c— (Golull(O(T)~-9(0))/ (1~ llul
(KT + ((9(T) - 9(0)* F/T (a = B +1))))), then

/MDCIE(() .

Therefore, (ICFDPs) (7)-(9) are Ulam-Hyers—Rassias
stable with respect to @ and with a real constant
cgo = (Ap/(). This completes the proof. O

lz -yl < (103)

5. Special Cases and Example

The results we just established concerning the existence of
a solution and its stability also hold for special cases. These
fractional derivative classes are created by selecting an ap-
propriate value for 9({) and taking into account the value of

In particular, we can deduce some existence results from
our approach in the following discussion:
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(i) When 9({) = {, then the obtained outcomes in the
current paper incorporate the investigation of the

19

following implicit fractional order differential
problem (ICFDP):

¢
‘Dy(0) = %(C,y(f), Dy (), Jok(C, v)CEZ“y(v)dv),

, 1 (7T 1
7(0) -y (o>=—j (T = o)y (v, y (v)d,

I'(y)

0

(104)

, 1 (T 1
y(T)+y (T)==— Jo (T —v)"" " hy(v, y(v))dv.

I'(y)

(ii) Also, if 9() = (W x,y,2)=F((,x, ), T=1,
and 8 =«, then we have the following implicit
fractional-order differential equation which gener-
alized the results studied in [37, 38]:

Dy () =F (G y(©0). Dy (D),

implicit fractional differential equations with frac-
tional integral boundary conditions:

¢
C9®@ha®+ﬂOLMCW9®wwu

1

1
~ ' (0) = —— _ !
(0) - y'(0) :LJ'1 (1-0)""'hy (v, y (v))dv O T JO Hoo et (100
y y T(y)Jo 1y > (105) . Jl 1
. y(1)+)/(1):r7 (1-0)" "hy (v, y (v)dv,
y(1)+y'(1):%y)jo (1 -v)"""'hy (v, y (v))dw. M Jo
where a € L, (I).
(iii) Putting F({,x, y,2) =a() +x({).z({) and T =1
in equation (106), we have the following quadratic = p,. ample 1. Consider the following ICFDP:
o 26_( |y(()| C9(6/5)y(()| ”(1) e((+v)c@(7/5)y(o|
2 - 7|3 1 HPBRTENGE) + T (Cro)e o (775) > (107)
69+ e @ 1+ 2Py 1+|[5e Dy ()
with the following boundary conditions:
ey Ly B _zycos(y (v)
Y0 = (0 = 75 [ 9 @O0 - 90 I,
(108)
I T —e3)n(y (v)
y(1)+y(1)—r(1/3)109(v)(9(1)—9(v)) Tdv,
such that Setting
9O =e*+1,
(109)
9(0) = 1+36%
2¢”¢ @l @l w@) )
S UV, W) = 3 , (110)
Bowrw) 69+e-<< T T+ @1 1+ @)
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it is clear that the function & is jointly continuous. In fact,
for any u,.v;, wy, Uy, v,, w, € R, and for every { € [0, 1], we
have

2e
|%((, U, v, W) — %((,uz,vz,wzﬂ Sﬁﬂul - u2| +|v1 - v2| +|w1 - w2|)
69 +e (111)
2
S%('”l — | [y = v, | +|w, - w2|).
Hence, the condition () holds  with
w(0) = (2¢7°/(69 +e %)) and |u| = (2/70). On the other
hand, we have
cos x (v) cosy(v)| 1
|1y (&% () = hy (8, y(0))] < T IS;IX(C)—)’(OI,
(112)
In(x(v)) In(y()| 1
|1y (6, x(0) = by (& y ()| < 5 }; Iéglx(()—y(ol-
Hence, the assumption (%) is satisfied with k, = (1/7)
and k, = (1/9). This implies that if T =1,
9 -9
(9(1) - 9(0))" <
h({,x -h(, < k, + ky + k) |llx =yl
A (O) =@y @O s F =S o g () [l = s
<0.456403[x — |
Hence, h({,y({)) is Lipschitz with constant In addition, the Green’s function is as follows:
¢ =0.456403 < 1.
262 (e _ 1 X (T~ ) 2w\
GGt NN et L0 SO G0 BT SO
(362T + l)F(Z/S)(eZT - 62“) (36 + 1)F(7/5) L(7/5)
G((,v) =+ (114)
20 2T 20\2/5 20 2
X -1 - 268 (= - 1
( - 2T)(e : ) + ‘ ( ‘ ) 5 if0<{<v<T.
(3 +)r 5 (3 + 1)r(2s)(e - )
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Then, straightforward calculations with T' = 1, « = (7/5),
B=(6/5), c¢=0.456403, u=(2/7), K=¢€* and
G, <0.716747 yield the following conditions:

IM(KT+

GollplT

21

(BT -9\ _|
T(a—-B+1) ’

(115)

c+ ~
1= [lul(K T +(9(T) = 9(0)* *IT (a~ B +1))

It follows from Theorem 12 that (ICFDPs) (7) and (8)
have a unique mild solution on I = [0, 1].

6. Conclusion

In our research, we achieved several key outcomes. Firstly,
we established a connection between (ICFDPs) (7)-(9) and
Volterra integration equation (24). Next, utilizing Banach’s
contraction principle and Krasnoselskii’s fixed point theo-
rem, we successfully demonstrated the existence and
uniqueness of mild solutions for boundary value problems of
implicit fractional order differential equations. Additionally,
we verified Ulam-Hayers stability and other related stability
types for ICFDPs) (7)-(9). Notably, we presented a practical
numerical example highlighting our findings’ applicability.
Furthermore, we emphasized the significance of our results,
noting that different variations of 9 ({) and diverse values for
B in (ICFDPs) (7)-(9) lead to various implicit fractional-
order differential equations. In conclusion, our work rep-
resents a significant advancement in the field of qualitative
analysis of fractional differential equations, introducing
a generalized nonlocal boundary condition that investigates
Ulam-Hyers stability within the framework of 9-Caputo
fractional derivatives. Future work will delve into exploring
coupled systems in greater depth.
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