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Most nonlinear partial differential equations have many applications in the physical world. Finding solutions to nonlinear partial
differential equations is not easily solvable and hence different modified techniques are applied to get solutions to such nonlinear
partial differential equations. Among them, we considered the modified Korteweg-de Vries third order using the balance method
and constructing its models using certain parameters. The method is successfully implemented in solving the stated equations. We
obtained kind one and two soliton solutions and their graphical models are shown using mathematical software-12. The obtained
results lead to shallow wave models. A few illustrative examples were presented to demonstrate the applicability of the models.
Furthermore, physical and geometrical interpretations are considered for different parameters to investigate the nature of soliton
solutions to their models. Finally, the proposed method is a standard, effective, and easily computable method for solving the

modified Korteweg—de Vries equations and determining its perspective models.

1. Introduction

It is significantly important in nonlinear phenomena to
search for exact solutions to nonlinear partial differential
equations (NLPDEs). Exact solutions play a vital role in
understanding various qualitative and quantitative features
of nonlinear phenomena. There are diverse classes of in-
teresting exact solutions, traveling wave solutions, and
soliton solutions, but it often needs specific mathematical
techniques to construct exact solutions due to the non-
linearity present in their dynamical nature [1-3]. The
NLPDEs are widely used as models to depict many im-
portant complex physical phenomena in a variety of fields of
science and engineering. Some nonlinear partial differential
equations can be written as follows:

Burger’s equation is as follows:

U, + U, = al,,. (1)

The modified Korteweg—de Vries (KdV) equation is as
follows:

u, +6un, +u,,, =0, (2)
The Kadomtsev—Petriashvili (KP) equation is as follows:

(u, + auu, +bu,,.), +u,, =0. (3)

The NLPDEs are fundamentally important because lots
of mathematical physics models are often described by such
wave phenomena and the investigation of traveling wave
solutions is becoming more and more attractive in nonlinear
sciences nowadays. However, NLPDEs are very difficult to
solve explicitly, specifically, or in detail. As a result, many
powerful methods have been proposed and developed for
finding analytical solutions to nonlinear problems.

Some of the researchers used to solve NLPDEs are the
simple equation method [4], the tanh-function and balance
methods [5], the inverse scattering transform method [6],
Backland and transformation [7], and other mathematical
procedures such as combinations of the equation, trans-
formation procedure, bilinear method, integration, and so
on. Of these methods, the balance method was based on the


https://orcid.org/0000-0002-5373-6463
mailto:dabam7@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7663326

higher order of partial derivative terms, the highest non-
linear terms, and parameters of the intended technique to
solve the proposed problem of the modified KdV equation.

The Kadomtsev-Petviashvili (KP) equation is a partial
differential equation that describes nonlinear wave motion
[8], which is usually written as

éu,, =0. (4)

(ut + 6uux + uxxx)x %y

& = £ 1 that can be applied to mathematical physics as
a way to model water waves of long wavelengths. It is a two-
dimensional generalization of the one-dimensional KdV (2).
Like the KdV equation, the KP equation is completely
integrable.

KdV were among the scholars who derived the KdV
equation and one of the most famous nonlinear PDEs that
arise in a great number of physical situations. It was derived
from fluid mechanics to describe shallow water waves in
a rectangular channel.

u, +uu, + Pu,,., =0. (5)
The positive parameter f refers to a dispersive effect.
The generalized modified KdV equation is given by the

following equation:

u, +u,,, +ufu, =0. (6)

x € R, where p is a positive parameter. Formulated in
the moving frame x = & — ct, the generalized modified KdV
equation reads as follows:

U, —cuy + Uy, +ufu, =0, (7)
where ¢ denotes the wave speed.

The inverse scattering transform method is a method
introduced that yields a solution to the initial value problem
for an NLPDE with the help of the solutions to the direct and
inverse scattering problems for an associated linear ordinary
differential equation. The balance method (BM) is a pow-
erful method for finding exact or approximate solutions to
given NLPDEs which was presented by Wang and other
scholars in recent years and was improved by Fan with
others to make it more straight forward and simple [9]. In
addition to this, as EI-Wakil and others [10], used the
balance method and auto-Backlund transformation. We
used balance method for solving nonlinear partial differ-
ential equations, the modified Korteweg-de Vries equation.
It is well known the KdV equations describe the unidirec-
tional propagation of shallow water waves and a number of
generalizations.

Let us consider a general nonlinear PDE, say, in two
variables,

)=0, (8)

where P is a polynomial function of its arguments and the
subscripts denote the partial derivatives. The balance
method consists of the following steps:

Pttty Uy Uy -

Step 1. Suppose that the solution of (8) is in the form of the
following equation:
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k=m,j=n

u :apd<(lna))},,d+ Z

k,j=0,k+j #0,p+d

q
akj(ln(w)k,j + a00)> , (9)

where u=u(x,t), w=w(x1t), ((In w))k,j =9 (Inw
(x,1)/0x*0t/, and ay;(k =0,1,2,....p,j =0,1,2,......d)
balance coefficients are constants to be determined. By
balancing the highest nonlinear terms and the higher order
partial derivative terms in this expression; p, d, and g can be
determined.

Step 2. Substituting (9) into (8) and arranging it at each
order of w yield an equation as follows:

lZfzwl (10)

where f;(1=0,1,2,....) are differential-algebraic expres-
sions of w and a;;. Setting f; = 0 and using a compatible
condition (w,, = w,,) vield a set of differential-algebraic
equations (DAEs).

Step 3. Solving the set of DAEs, w and
aj(k=0,1,2,....p,j=0,1,2,.....,d) can be determined.
By substituting w, p, d, ¢, and g, ; into (9), the exact solutions
of (8) can be obtained.

Nonlinear type partial differential equations can be
solved by many different methods such as the Hirota method
[11, 12]. Inverse scattering transform method and similarity
reductions method [13]. Among those methods, the mod-
ified Korteweg—de Vries equation was solved by a few of
them with their limitations as it is. The limitation of com-
plexities to find the solutions are one core of the problem.
This study aimed to find an alternative solution to the
modified KdV equation which simplifies the complexity of
solving NLPDEs showing the 1 and 2- soliton solutions of
the modified KdV equation, by applying the balance
method.

A long wave characterizes geophysical fluid dynamics in
shallow waters and deep oceans [14, 15]. From another
perspective, the KdV equation appeared for the first time in
1895 as a one-dimensional evolution equation describing the
waves of an along surface gravity propagation in a water
shallow canal [16]. It also appeared in a numeral of diverse
physical phenomena such as hydromagnetic collision-free
waves, ion acoustic waves, stratified waves interior, lattice
dynamics, and physics of plasma [17]. By applying the
differential transform technique, the approximate result of
coupled KdV has been studied in [5]. One of the most at-
tractive and surprising wave phenomena is the creation of
solitary waves or solitons. An adequate theory for solitary
waves was developed, in the form of a modified wave
equation known as KdV [18-21]. The modified KdV
equation has defined a wide variety of physical phenomena
used to model the interaction and evolution of nonlinear
waves [22-24]. Korteweg and de Vries pursued the work
done by Rayleigh and including the effect of surface tension
leading to the now famous KdV equation given as follows:
Onlot + 3/2+/gThoIO (11212 + 2/3an + 1/360*4/3¢%) = 0,
where 7 is the surface elevation, of the wave, above the
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equilibrium level A, « is a constant related to the uniform
motion of the liquid, with the unit of length, g is the
gravitational acceleration and & = 1/3h* — Th/pg, with T is
surface tension.

The permanent profile of a soliton solution of the KdV
equation results from the equilibrium between two effects;
the nonlinearity which is proportional to uu, or ##7, and
Dispersion which is proportional to u,,,. or 7y The
nonlinearity tends to comprise, to constitute the wave and
dispersions spread it out. The dispersive term is proportional
to K3, it decreases whereas, the nonlinearity term, is pro-
portional to 1/vh, increases leading to a large wave. The
balance method has been developed for the analytical so-
lutions of nonlinear partial differential equations. Compared
to other methods, the balance method gives high accuracy
and has a wide range of applications in many mathematical
problems and many physical phenomena. In this paper, we

o (8 a\"(d oY\ N
[D] Dx(f.g)](x,t)—(a—g) (a—g) f(x,t)g(x,t)'x =x,t =t

where f is a function of x and t, whereas g is a function of x’
and t ; for which f#g.

2.1.2. Fractional Derivative. A fractional derivative is a de-
rivative of any order, real or complex in applied mathematics
or mathematical analysis.

2.1.3. The ELzaki Transform. The Elzaki transform is
a function of the form h(x,t) with respect to t
0 t
Ylh(a )] = y(xs) = sj h(x, t)exp (—;)dt, (12)
0

where s is the complex number, ¢ > 0.

2.2. Main Results

2.2.1. Method of Solution. Considering the general nonlinear
PDE:s given in (8), let us consider the modified KdV equation

used the balance method in combination with the Hirota
bilinear equation method to solve the modified form of the
KdV equation considered using the balance method and its
respective models.

2. Mathematical Formulation and Main Results
2.1. Preliminaries

2.1.1. Bilinear Operators. Bilinear differential operator D
mapping a pair of functions D(f.g). Unlike usual linear
differential operators like (9/0x)", which maps a single
function f into a single function 0"f/0x". That is
D: C®xC® — C*: (f.g)—»D(f.g9)

Remark 1. For all integers m,n>0,

1

(11)

that was chosen as an example to illustrate the balance
method. Suppose that the solution of (5) is (9). Now con-
sidering u,.,., uu, balancing it in the (5), it is required that
pg+3=2pq+1 (by letting u = pq, u, =1, u,, =2, and
U, = 3, where 1, 2, and 3 represent the order of derivatives
for this case or condition). Again balancing u, and uu, in (9),
it gave that dq+1=2dq+1, which implies dq =2dq.
Choosing p = 2, and then solving for the rest of the variables,
we obtained that g =1 and d = 0. That means from the
equation pq + 3 = 2pq + 1, by simplifying it we found pq =
2. Since we chosen p = 2, then we have g = 1. Again from the
second condition dq + 1 = 2dq + 1, we have d = 0.

_ k=p,j=d
Hence 9) u=au( (In w)pa+ Zk,j:o,k+j#0,p+dakj
(In(w); + ag))?, ...

u = a,y(Inw),, + a;o (In(w), + ag). (13)

Also, this equation can also be expressed as follows:

2 2
Wy, W — W, W, 2w, w,, W - w 2ww, W, W — W, Ww,
= dy, 5 - n tapl — =2
w w w

0 Wiy wi w,
“x—a (N j‘? +‘110E+a00
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w 3w w, 2w w w?
= ay, XXX xxz X + 3x + a XX _ 792c , (14)
w w w w w
w 3w, w, 2w w w?
ux = azo XXX _ 73062 X + _3x + alo XX _ _JZC >
w w w w w
0
U == [ay (Inw),, +a,(Inw), + ay]
t
0 w w? w
== |ayp| —F-—F | +a— +ay
0, W w w
) 2w )2 (15)
W,y W — Wy, Wy W, Wy W wxwt w w,w —w,w;
= ay, 5 3 taol— = —
w w w
w w, w, 2w.w 2wiw w w, w
xxt xxt x ' xt xt xt x Ut
= a,, -— 3 ER R U] P
w w w w w w
w w,. w, + 2w, w 2wiw w w, w
xxt xx Ut x ' xt x 7t xt x Ut
=dy - 2 3 | tap| ————>5 |
w w w w w
w w,, w, + 2w, w 2wiw w w, w
xxt xx =t xxt x Ut xt x*t 6
u, = —_— - + + —— . (16)
t 20 2 3 10 2
w w w w

From equation (15), we get

3 2
a wxxx 3wxxwx 2wx wxx wx
uxx__Ux:a_ A\ ——~— 3 t—3 |tadp|— -~
x x w w w w w
2
WyxoxxW = Wiy Wy (wxxxwx + wxxwxx)w B (wxxwx)zwwx
= ay, 3 -3 I
w w
2 3 3 2 2 2
Sww,, w —w x3ww, Wy W — W, W, 2w, W, W — W 2W.w,
+2 3 +ay 5 - )
w w w
3 3w'xx 6 ’ 6 > ew' 2 2w’
_ wxxxx wxxxwx _ wxxxwx _ w xx wxxwx wxxwx _ w wxxx _ wxxwx _ wxxwx wx
=ay 2 2 7T 5 T 3 7 | T %0 2 7 t—3
w w w w w w w w w w w
2 2 4 3
Wynr AW w,+3wxx 1LRw,w, 6w Wy SW,w, 2w,
=4 - 2 + 3 1 )t -T2 3 )
w w w w w w w
(17)
2 2 4 3
Wypnx AWy, w, +3wxx 12w, w, 6w, Wiy SWe,W, 2w, 1
Upx = o - P + 3 2 | T - 2 t—3 ) (18)
w w w w w w

From (18), we get
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2 2 4 3
u 9 g (W _ 4w, w, + 3w xx . Ruw, w, 6w Y 3wyw, 2w,
xxXx a 20 w 2 3 4 10 w 2 3
x w w w w w
2 2 2 2 2 5
— wXXXXXw - wXXXXwX 4 (wXXXXwX + wXXwa)w - (wXXXwX) w'wx 3 wxxwxxxw - wxx w‘wx
= ay 2 a 4 - ¢
w w w
2 2 3 23,2 4w’ 4 440
wxxxwx + wxx wxwxx w - wxxwx w wx wxwxxw - wX w wx
+12 -6
6 3
w w
2 2 (3w2w w - w3wtw )
WyyxxW = Wy Wy -3 (wxxxwx + wxxwxx)w B (wxxwx w'wx) 2 XU xx X x
*ayo 2 4 " 0
w w w
w w w w w w,, W w, W w,, W wrow W, w Wt w
— a20 XXXXX _ XXX.;C X _ 4 XXX)ZC b _ 4 XXXZ XX + 8 XXX;) X _ 6 XXXZ XX + 6 X.X3 X + 12 XXX?’ X + 24 xx3 X
w w w w w w w w w
3 w1 5 o w w 2 2 w? 4
XX X XX X X XXXX XXX X XXX X XX XX X P X X
36 1 24 +24— | +ay 5 3 5 3—=+6 5 +6 3 6—
w w w w w w w w w
w w w w w? 3 >
XXXXX XXXX X XXX XX XXX X XX X XX X X
= ay, 5 5 10 > +20 5— +30 5— — 60 T —24—=
w w w w w w
w w,, . W w? w, w w?
XXXX xxx'x _ XX XXX _ g%
tap|l———-4———-3—"F+12——=-6—7%|,
w w w w
(19)
w w w w, W w.. w wrw w. w W
— XXXXX _ XXXX X _ XXX XX XXX X XX X _ XX X __X,‘
Uy = Gog 5 3 10 >+ 20 5— + 30 3 60 24—
w w w w w w w
2 2 4 (20)
w w,, . W w w, W w
+ay, CXXXX f XXX X 3 )sz+12L3)C_6_Z'
w w w w
Now substituting equations (14), (15), (16), and (20) into
(5), we have;
2
wxxt _ wxxwt + 2wxth 2l‘Uxu)t th _ wxwt
Ayl —— 7 T3 | tau 2
w w w w w
2 2
XX wx wx wXXX 3wxxwx 2w XX wx
tlap| =5 |+a0—+ay || s—+—5 |+ a -+
w w w w w w
w w w w,, W w,, w wrw w, w w’
ﬁ ay XXXXX 5 TXXXXTTX () XXX TN A TAXXTx o3 Tax UK o) XXX A X
2 2 3 3 1 5
w w w w w w w
w w,,. W w? w, W w?
+a, ﬂ—4%—3—"2’“+12%—6—2 =0
w

w w w w
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2
xxt _ wxxwt + 2wxth xwt th _ wxwt
ao 20 2 ta—s; 10 a5 +
w
w’ w w 3w, w 2w’ 2
XX X XXX XX X X X. X
a0 — Ay 5 T A1 T a0 || %0 —dy 7 T a3 tdayp ap— |t
w w
w W, . W w,, W 2 W w 3
XXXXX XXXX X XXX XX X X XX
Bl ay — ay,5 S = 10 55 4 4,020 +a,,30 3 — G560
w w w
w’ w Wiy Wy w2 w? w?
—05024—% + Ay — X - a3+ ay)12 —x" £—a,6—5|=0
w w w? w’ w
2
xxt wxxwt + zwxth 2 xwt th wxw
ao —dy 3 2073 10, %0 3 T
w w
3 3 2
[a Wyx a wxxx_a wxxwx+a x4ia XX _ g Wy
2 2 2 2 0.~ %
0 w 0 w 0 wz 0 w3 0 w sz
w? w 3 w 3 w?
X XXX XX X X XX X
—A20 7 || %20 —ay 7 tay 3 tadp_  —adip 5|t
w w w w w w
w w 3w N w?
X XXX X X
alo_] [azo ] a2 +a Tap T4 |t
[ w w 2 3 0
w 3w, w w’ 2
XXX P X X P X
[ag]| a -a tay—=+ay—>—a,— |+
00l | 920 20 2 2073 10 1032
w w w w w
w w,,. . W Wy Wiy w, w2 2 W
XXXXX XXXX X XXX X
ay e 0 1) == AP0 T R R T e
w w w w’
B =0
w3 5 w w, W w? w, W N
XXXX XXX X XX XX X X
60 L2 a2024 a0 — AR g 3T g 1) X g6
w w w w w
w w,, w, + 2w, w ‘w w w, w
xxt xx*t X xt xt xt x“t
a -a a +a,—— — a;p———+
20 20 20 10 10
w e 3 w e
[ w w 3w, w 2w’ w w?
XX XXX XX X XX XX X
- L - 7 T Oy G 3 tady 49 — Gy G105 |~
L w w
r 2 2 30w 2 o 2 O W
X XXX X X. X X X X XX X X
00 3%0 . %0 %0 3 T 3%0 3 T 3%0 . %0 %0 2|
L w w w w w w w w w w
r 2
wX w.X.X.'X wx 3wX.XwX w P wx wx
a9y — a9y Ay Ay + a4 aypp——a10 5 |t
w w 2 w
[ w 3w, w, 3 W, w?
XXX P X
gl — aooazo— + g0~ T Aol — Agofio— |t
L w u) w w w
w w,,. W w,, W w? w? W 3
XXXXX XXXX WX XXX TUXX xxx X X XXX
g a5 lx g o e leny g g0 et g 30l g 60
w w w w w w
B =0
5 w w wz o 4
—a2024 T+ap - 61104M —a,03—5 +ay12 7x - a;06—5
w’ w’
w w,, w, + 2w, w 2wiw w w,w
xxt _ xx 7t X xt xt xt _ xt
ay ay 3 tay—73tap aj——>
w w w w w
w,, w 3w w 2w w? wzw
2 Waxx%Wxxx 2 xxx 2 xx xx
|9 7 9 3 T ay F o+ aya 15— Ay
w w w! w w
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[ wzw 3w w3 2w w. w w?
2 XXX 2 XX 2 x
—| %20 3 a2 Gy — Gy 5+ AyAi—y
| w w w w
[ w, w 3w, w’ 2w’ w, w w’
x“Yxxx xx % x x 2 PxWxx 2 Yy
T 0109203  — G100 3 T3 T 3 %o 3
| w w w
_ 3 2
Wypy 3wxxw 2w, W, wy
+ | 400920 — Agofo + 000~ + Agodio—— — Aoof10— |+
w w w w
w w,, . W w, W w. . w 2 3 5
XXXXX XXXX X XXX XX XXX X
dyg —Qy5 7 — Ay l0——5—+ 0,020 ——+ a2030 a2060 - a2024 5
w w w w
B =0
w w, W w? 2 4
XXXX XXXTUX XX X X
+ay, - a4 > —a1p3—5 +ayl2 —a,06—5
w w
w w, W, + 2w, w 2wiw w w. w w, W 3w’ w 2wiw
xxt xx Yt X xt + x>t + t x Yt + 2 xxPxxx 2 xxUx + 2 xUxx
Ay ay 3 a3 an— Ay~ 5 Tay 2 a0 3 a0 1
w w w w w w w w
2 wrw wrw 3w, w 2w’ w, w w? w,w
XX x P xx 2 WxWxxx 2 xx % x 2 x xx % x x x Y xxx
T ax010—5 ~ %0 3 9 3 a0 T O 5 ~G%0 3 1T a0%0 5T %1090 2
w w w w w w w
2 3
Wy, Wy 2w 5 W, W 5 W w W, W,
XX X XX X XXX XX
— A1y 5t Ayl + A1 5 — A1g—3 T Aol — Apola 5+ g3+ Agodip—
w2 w w w w2 w? 3
XXXXX .XXX.X X XXX P XXX
= agoa19—5 + Pay = Bay5—"5— = fay 10 =5+ fay 20 == ﬁa2030 - ﬁa2060
w w w? w
ws w,,, o 2 W
XJCX X XX X _
- Pay24—5 v + fay - fa 4 —=5—= ) /3‘1103 + /3“1012 - /3“106E =0

Now equating the coefficients of w?/w’ and wi/w* to
zero on the left-hand side, we have a,, = 12 and a,, = 0.

This is to mean that; equating a,,f24w./w’ =0,
aBowt/wt =0, aa2wi/w* =0, -2awl/w’ =0, and
aygaywi/w* =0. Now considering the two equations

ayB24w’ /w® = 0 and —2a3,w’/w’ = 0, it is possible to solve
for ay,. Since f#0 and w # 0 24a,, = 0 and —2a3, = 0, we

solved for the reset a,, as { 4a20ﬁ _ 0
~2a%, =0
Adding these two equations together and solving for a,,,
as 24a,,f — 2a3, = 0 2a,,[12 — a,,] = 0. From this, we can
get a,, = 12
Again considering the equations;
—6fa wt/w* = 0,2a,ya,wt/w* = 0,and a,ya, w?/w* = 0.

2ww

- 128

w w,.,Ww.
12ﬁ xxt 12/3 xx2 t
w

+ 12

2w 2 2
+ (12/5)2 S 0(12ﬁw—"2") - 0(12/3‘”"—“5’"‘
w

4
+0<12ﬁw—j) +o(12ﬁu;m>_o(uﬁ
w w

2w’ wt (w

ol o

w

) (128)" ===

3w, w’ 2wt w, w w’
—a= x) + 0(12/3—;‘) + 0(—" 2"’“) - 0(—’3‘)+
w w w w

And adding them together using a system of equations as

—6fa,, =0,
24,04y = 0, we have 3a,ya,, — 6fa,,= 0. 3a,,a,, = 6Ba,
ajoay = 0.

Simplifying it we get, a,qa,, = 2fa,,. Substituting a,, = 123
into this equation we get, 12fa,, = 2a,,. Which give us
10Ba,, = 0, B #0. And hence it implies that a;; =0

Substituting a,, = 128 and a,, = 0 into the following
equation: u = a,;In(w),, +a,oIn(w), + ay,, we get u =12
(Inw),, +0In(w), + ag, = 12(Inw),, + agy = 128 (w,,/w
w?/w?) + ayy, where ay, is any arbitrary constant.

2
u=12(Inw),, +ay = 12/3<w’”C - w—’zc) + dy.- (22)
w w

Putting (22) into (5), we have the following results,
where, a,, = 12f3 and a,, = 0.

xxx 23w

- (12p)"—=—=

2 w wxxx

(12ﬁ)23wxxw (12ﬁ)22w <12ﬁwxxwi>
w
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3 2
w

U) w, w w w
aoolzﬁ x4 0( J) - o<aoog) + B12f 22 _ 13 (B)?5 —Ex
w w w w

w 3w
aoolzﬁ% —ag 12—

2 2 3
- 12(p) 10M+ 12(B)*20 —Xxx—x x""wx +12(B)°30 L 15 (B)?60 L= _ 15 (p)? 24
w w w

2 2
+ 0<ﬂ%> - o<4ﬁ7w"""2w"> - 0( wx;‘) " o<12ﬂw"XWX) (6/3 Z) -
w w
2 2w’ 3 2
12[;( xxt wxxzwt_ wxlzuxt + wx3wt) + 144(ﬂ)2wxxu;xxx 144([;)2 w 144(/3)2 w wxx
w w w w

2

+ 144 (p)?xWoexx "x" 144(/5)23w W,
w

3
- Y w WyxxxW W W
2x+a0024ﬁ §+ﬁ12ﬁw—60(ﬁ)2L§x—120(ﬁ)2L2“
w w w w

— @368 X
2 2 w, 3 5
+240 (B 4 360 (B)* e _ 720 (B x 288(/5)2 —X=0
w w LU

w w,. w, 2w.w 2wiw w Wi ww
12ﬁ<%— z;t_ xzxt+ 1::3 t) 12[3(12[;%) 12[3(36[3 w3 )+12ﬁ(24/3_3;)4xx)

w

2 3 5 3
w w,.,w w
+ 12ﬁ(12ﬁ%) + 12ﬁ(36ﬁ%§v"> - 12;3(24;3%) + 12ﬁ(a00w$"‘ - a3 aoozw—;‘)

2 2 3

5
w w w w w w w w, w w,,.w w
+12/3(/3 5 x’:’; *_108 "’ij 4208 x:g * 4308 ’33x—60ﬁ—’:4"—24/3w—’5‘>:0
w
2

wow, 2waw, 2ww w W, w w’ w w
12ﬁ< xxt xx2 t_ xz xt + x3 t) + 12/3(‘100 XXX _ a003 xx2 X 4 ‘1002_33() + 12/5 12ﬁ XX TTXXX 36ﬁ xx X
w w w w

w w

3 2 3 5
+ 24ﬁ xWxx 12[3 xwxxx + 36ﬁ Wy Wy _ 24ﬁw_)5c + ﬁwxxxxx _ Sﬁ wxxxazcwx _ IOﬁ WiexxWyx
w w w w

4 2
w w

2 2 5

w w w, w w LU w
+2OPET ¢ 3B — G0B 24ﬁ—’5‘] =0

w w w

LW, 2w,w wiw w w, W w’ w, W w,, w
12[;( xxt _ 2 t_ x2 xt + x3 t) + lzﬁ(aoo XXX _a003 xx2 X +61002§> + 12ﬁ 12ﬂ xx 2xxx _ IOﬁ xxx2 xx
w w w w w w w
w2 w w2 w wsw w w3 w w3 wzw w w2 w’
— 36ﬁ "x3 X+ 30ﬁ X 3 X+ 24ﬁ x 4"" + 36ﬁ "x4 x4+ —60[3 xx4 X 12[3 X ;‘xx + 20[3 xx’; x 24/3—’5‘
w w w w w w
5
+24ﬁw_)56 +ﬁwxxxxx _ 5[; wxxxazcwx — O
w w w
w w,, w, 2w.w 2wiw w w’
12ﬁ< xxt _ xx2 t_ x2 xt + x3 t) + 12[3(6100 XXX _aoo3 +0002 )+ 12/3 2[; xx xxx
w w w w w w w

2 3 3 2
w, w w,w w, w w, w w w w
XX X X XX XX X X XXX XXXXX XXXX X -
—6ﬂ T+ 60ﬁ e 60ﬁ it Sﬁ 3+ ﬁ - Sﬁ 3 =0
w w w w w w

2 3
w,, w, 2w.w 2w w, w w, W w
xxt xx 7t x U xt xt XXX X X
128 7 5+ ——5— | + 12| ag —ag3——F—+dag2—3
w w w w w
w 2w, W, — 5w w, 8w 6w LWy
+ 12ﬁ [; XXXXX + XXX XX 5 XXXX WX + XXX x 3 — O
w w w

12(BK; + K, +K;3) =0,

(23)
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where
2
K. = wxxt _ wxxwt _ zwxth + 2wxwt
1= 2 2 3
w w w
w W, W w’
K, = agpy—"" = agp3 =5+ ag2 5, (24)
w w w
2 2
K3 - /3 wx;zcxx + waxxwxx _2 exxex Wy + waxxwx _3 6wxxwx ,
w w
12(BK, + K, + K3) = 0. (25)
Simplifying (25) and integrating once with respect to x,
we get
2 2
i (thw - wxwt) + ﬁ(wxxxxw - 4wxwxxx + 3wxx) + a()()(wxxw - wx) -0 (26)
0x '
Equations (20) and (26) are identical with
w,w - ww,) + f(w o w— 4w w,, + 3w )+ ag(w,w-w’
( xt X t) /3( XXXX xz xXxXx xx) 00( xx x) _ C(t)w2 -0, (27)
w
where C(t) is an arbitrary function of t, and a, is an ar-
bitrary constant. Especially, taking C(¢) as zero in equation
(27), we get the bilinear equation of (5) as follows:
2 2
(thw - wxwt) + ﬁ(wxxxxw — AW, Wy + 3wxx) + aOO(wxxw - wx) -0 (28)
” .
Equation (28) can be written concisely in terms of D Substituting
-operator as u=w, 31)

(DD, + BD + agDy ) (w,w) = 0, (29)

where DD’ (a.b) = (3x — 0x')™ (3t — 3t )"a (x, )b (x ,t)]
x=x,t=t.

Applying Hirota’s method, the bilinear equation of (5)
can be written as

(DD, + BDY ) (w,w) = 0. (30)

Equation (30) is obtained by setting a,, = 0 in equation
(29). Obviously, equation (30) is a special case of equation
(29). Therefore, a more general bilinear equation of the
modified KdV equation is obtained by using Hirota’s method.

Let us consider the modified KdV equation u, + 6uu, +
U, = 0 by using Hirota’s method.

which gives the following new equation: w,, + 6w, w,, +
W,ny = 0. Now integrating both sides with respect to x, we
have;

J ((th + 6wxwxx + wxxxx)dx = 0)’

J thdx + J 6wxwxxdx + waxxxdx = g(t)’ (32)

2
w, +6%+wxxx =C=g(t).

where C = g (t) is constant of integration. Likely we can get,
without loss of generality, the integration “constant” with
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respect to x, g (t) can be observed by a redefinition of w that

does not change ~the KdV field, u=w,wy,=
Wpew + f o dt' g(t ), dt' is the time derivative.
Using the new w, we have
w, + 3wx + Wy, = 0. (33)

Now considering the 1-soliton solution of the modified
KdV equation, let

u = 2u* sech’ [y(x - Xy — 4/42t)]. (34)
with
p="0, (35)

where v is the velocity of the wave propagating.
It can be written as u = w,, with

w = 244° tanh [/,t(x - X — 4p¢2t)]. (36)

In fact, we can integrate the right-hand side of equation
(36) once again, using tanh y = d/d, log cosh y. Therefore,
equation (34) can be written as follows:

2
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2

u= 2%logcosh [‘u(x - xy - 4/,121‘)]. (37)
X
Let
X=x-x5— 4‘uzt. (38)
Then, u = 20°/0X?log (exp"#%) (1 + exp 2%)/2),

where coshy = exp#%) (1 + exp#%)/2
2

0
= 2@(—yx -

log2 + log(l + exp(2”X>))

2 2 2

= —Z%yx - Zaa—zlogZ + Zaa—zlog(l + exp(zﬂx)) (39)
X X X

= Za—zlog (1 + expz’*X).
ox’

That iS, l/l(x, t) = 2az/ax210g (1 + eXp(z[l) (x—x0—4‘u2t))
= 20%/0x*log (1 + exp @ (X))

2

0 0
u(x,t) =2—log (1 +exp® (x’x°’4”2t)> 2 log(1+ exp® X)) (40)
0x ox’
- _ fxt - fxft
which is the 1-soliton solution of the modified KdV equa- W = 1 >
tion, that we use in the following:
Considering equations (31) and (33), the KdV equation 1 Foem f2
in a bilinear form, and rewriting it in a quadratic form, we —w, =
have the following equation. Inspired by equation (34), let us 2 f
substitute 5
5 l _fxxx_3fxfxx 2&
szilogf:ZQ@u—Za—logf (41) 24T f f? ’ i
ox f ax2 ’

where f =1+ exp@) > %~40_ Qubstituting in equation
(33), we get

2
w; + 3w, + Wy, =0,

(fxt ffxft) +3(2)2<&_f_92€> +2

for

lwxxxZM_ALfo;xX_afxx_l_lzfxxf 6f—%.
2 f f f? f f
(42)

lwxxx:fxxxx_4fxf2xxx_ fxx+12fxxfx fj’
2 f f f? f? f
(43)
Equation (43) is quadratic in f.
Thus, equation (33) for w becomes
fxxxx fxfxxx f fxxf fi

-4(2) -32)=F+12(2)—===-6(2)=

f f f f f
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zz(fxt fxft>+12<fxx s
f f £or

:z(fxt fxft>+12ffcx 24fxxf +12f
f f

f f!

1( Z(fxt fxft>+2fxxxx fxfxxx
f f?
— fxft fxxxx_4fxfxxx+3f_fcx

f2 f f s

Multiplying by f? throughout, we have

ffxt_fxft+ffxxxx_4fxfxxx+3f32cx:0 (45)

This is the bilinear form of the modified KdV equation.
Despite the fact that some nontrivial cancellations took place
it looks more complicated than the original problem,

a a a

= fi(x, t)g(x', t) - f(x.t)gy (x’, t’)x’

Lafi 2).

11
fxxxx_Sfxfxxx_6f92cx+24fxxfi_12&
R
O % SO RO OV ; S
R "
)
f

however, its special form makes it possible to solve using
bilinear operators.

Claim 1. 0/0x0/0t (1/2f*) = d/oxf f,
To express equation (45),
expressions:

:ffxt+fxft

we use the following

)f(x, t)g<x t>|x' —xt =t

=x,t =t

= f,(x,t)g(x,t) - f(x,t)g,(x,1)

[D: (f-9)] (x.1)
D,(f.f)(x,t) =0,
D, (f.f)(x.1)

0o o0 0 0
oo (3 232

= f, (6, )g(x,t) — f(x,1)g, (x,t)

=0forf=g

)f(x, t)g(x',t’)|x' =xt =t (46)

(ai > )fx (g5t ) = f g (5t Y =t =t

= fud= 195 = 9= 9
fudg=f19x= fx9:+ 9
DD (ff)=fuf = fifx=Fuf i+ ffu
=2(ffu—fifx)
DD, (f-f)=2(ffu = fi]2)

Like the first two terms in (45).
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Di(f. )_(ax aa ) fx(x,t)g<x tlx =xt =t

_(9_
~\ox

:fxxg_fxgx_
=fxxg_2fxgx+fgxx’

Di(f'g):fxxg_zfxgx-'—fgxx’

Di(f'f):fxxf_zfxfx+ffxx:Z(ffxx_fi) all
functions of x,¢.
Again this looks a bit like the differentiation of a product.

But, we have D2(f,f)=2ff..—2f> even though

%)fx (x, t)g(x’,t,> - f(x, t)gxr<x’,t,>‘x, =x,t =t

(47)

fxGx+ f9xx

D, (f.f)l(x,t) =0. So importantly the operators are not
associative since D (f.f)# D, [D,(f.f)l.

In fact, the right-hand side is meaningless, because
D, (f.f) is a single function, but the outer D, needs to act
on a pair of functions.

0 0 b )
4 —_ - _ = =
D.(f.9) —(ax ax,) fx(x,t)g<x N 'x x,t =t
(9 0 3<f (x,1) (x t) flxt) <x' t')|x'—xt'—t
- Ox ax' X g LGy ’ et
o o\
:<$ g) (fxxg fogx+fgxx |X —Xt =t
(48)
(8.0 (f 3f gy +3f faeve)lx =xt =t
- ox axr xxx9 xx9x x9x'x 9x'x'x' - b=
= (fxxxxg - 4fxxxgx' + 6fxxgx'x’ - 4fxgx'x’x' + fgx/x'x’x’)|x =xt =t
= fxxxxg - 4fxxxgx + 6fxxgxx - 4fxgxxx + fgxxxx
D;t (fg) = fxxxxg - 4fxxxgx + 6fxxgxx - 4fxgxxx + fgxxxx'
Again it looks just like a differentiated product of f and ( D.D + D4) (f.f) =
g but with significant changes on the odd terms. D% (f.f) T (51)

= fxxxxf - 4fxxxfx + 62fxxfxx
fxxxxf - Sfxxxfx + 6fxx'

Di(f'f)=2fxxxxf_8fxxxfx+6f32cx

Here, we have to notice that (49) is like ajt (fg), but we
have an alternative signs;

Di (ff) = z(fxxxxf - 4fxxxfx + 3fix)

So, the KAV equation is in a quadratic form in equation
(45) and can be recastas (D, D, + D) (f.f) = 0is abilinear
form of the KdV equation.

_4fxfxxx+ffxxxx:2

(49)

(50)

(D,D, + D) = D,(D, +D3).

(1) Solutions of the Bilinear KdV Equation. For example (1)
and considering u = 202log f, we have two cases.

Case 1. For f =1, then u = 0, which is a vacuum.

For f=1+exp@® %40 then u =1 - soliton so-
lution. Since equation (51) is a blhnear equation, then this
suggests that multisoliton solutions might be the sums of
exponents of linear functions of x and t.
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(2). The 1-Soliton Solution. In Hirota form the multisoliton
solutions are sums of exponential of linear expressions in x
and t.

For the one-soliton solution try

f=e"+é (52)

where = ax + bt + ¢, = x = ax,c = —x,, and —4u* =t

13

Theorem 1. For any 0, and 0,, we have D"D" (e%.e%)
= (b, - b,)" (a, — ay)" (%*%), where m,n>0.

Proof. By induction.
Let if 0, = a;x + b;t + ¢;, (i = 1,2). Then,

D:nDz(eel-egz) = (b - bz)m (a; - ‘12)"(601+62)

Then,

D:nD:LcH(eal'eez) = (b; - b,)" (a, - az)n<

- | , (53)
= (b1 - bz)m (a1 - az)”(g& Cotdets (ot )>|x =xt =t
9_0 <eel (x0)+6, (x’»f')>|x' =xt =t
o, ox
= (b1 - bz)m (111 - az)n (a1 - a2)<€01 ety (x4 )>'x =%t =t (54)

= (bl - bz)m (al - az)nﬂ(eeﬁ%)

D:”Dzﬂ(eel.eez) =(b,-b,)"(a, - az)"+1(e91+92).

and similarly for D, operator.

Finally, the equation is obviously true for n=1,m =10
and n = 0,m = 1 so by induction must be true for all n and
m. In particular, we find

D' D}y(e’.e’) = 0. (55)
Unless m=n=0
D]'D}y(e’.1) = b"a"’ 56
DTDZ(I.ee) = (—1)m+"bma"(1,eg).

Then, the bilinear form of the KdV equation for f =
1+¢% is

(DD, +D})(1+e”1+€%) =0
(Dth + Di) [ (1.1) +(1.e9) +(e9.1) +(e9.ea)]
(DD, + Dy)[(e"1) +(1.")] (57)

= 2bae’ + 2a%e?

Za(ba + a3)69 =0.
Since e? #0, we have two opportunities. These two cases
or opportunities are as follows:

(1) a=0.Ifa =0, then f is independent of x. So u = 0,
(which is a boundary condition).

(2) b=-a’.1fb = —a’, then f = 1 + e* **** and hence
u=20og f, f=1+e™ ¥ which is u =20’
log (1 + eax—a3t+c)

2
1
= a—sechz [— (ax —a’t+ c) ,
2 2
(58)

2
a 1

u = —sech? [f (ax —a’t+ c)]
2 2

This is the one-soliton solution with v = a?.

Figure 1 shows the disturbance of the water surface
having kink-shaped traveling waves with amplitude and
antibell soliton. The follow of this wave is to the front.

Figure 2 shows the propagation of waves having kink
shaped and like some periodic soliton. And follow the wave
from back to front.

Figure 3 shows surface waves of long wave length having
kink-shaped and bright periodic soliton. And the wave is
from left to right.

Figure 4 surface waves of long wave length having kink
shaped and bright periodic soliton. And the wave is from left
to right. This is the other form of Figure 3, but it is different
by the value of x, that is why it is broken from the above.

(3) Multisoliton Solutions. O

Case 2. For the power series in an auxiliary with parameter ¢
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Ficure 1: The result of one-soliton solution for a = 1/2, ¢=0.1.

FiGure 2: The result of one-soliton solution for a = 0.6, c=0.2.

Ficure 3: The result of one-soliton solution for a = 0.7,c = 0.3.
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F1GURE 4: The result of one-soliton solution for a = 0.7, ¢ = 0.3.

(o)

flet) =) &' f,(x1), (59)

n=0

With f; =1 in which the series will terminate at some
power of ¢ to give exact results rather than an infinite series
in e. So, we can take ¢ finite e=1.

To begin with, we put f(x,t) =1+ Y, 20&"f,(x,t) and
collect powers of e. We start with 1 as the € term as it
appeared in the one-soliton solution. Defining

B=(D,D, +D}). (60)

15

We want to find solutions such that
B(f.f)=0. (61)
Substituting (59) into (60), we have
0=B(Xo 0" fr> Zmeo€™ fr)s  with  fo=1=3",

ng o€ B(f,» fn,) and gathering terms of the same
degree n =n, + nyine and also expanding as for the one

soliton case we have

B(f.f) =B(1.1) +¢(B(1.f), + B(f,.1)) + € (B(1.f,) + B(f,.f1) + B(f,.1)) = 0,

S B(fomf).

0 m=0

Mg

=
Ii

so we have to solve an infinite set of equations order by order
in €

Y B(fum-fm) =0, (63)
m=0
forall n=1,2,....
Equation (63) can be written as
n-1
B(f ) +B(L, f1) == )" B(frm-fm)- (64)
m=1

o _ o o\"/o 0
Dth(f-g)—<a g) (a g

minf O 0\"
-3 (

(62)

(Expression involving in f1, f,,...., f,_1)-

Now we can solve (63) which is equivalent to (64) re-
cursively to determine the coeflicients f,. That is we begin
with f, and solve iteratively to get f,; hoping that it
terminates at some point. To do this we need the following:

Theorem 2. For any given f, we have; D]'D}(f.1)
= (-1)""D"D}(1.f), where m,n>0

Proof. By considering to interchange primed and unprimed
values as a simple label; i.e.,

)nf(x, t)g(x’,t')|x’ =xt =t

0
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minf 0 0 \" 2\ CONL
_(_1) (at at,> (ax ax,> (x,t)f(x,t>|x =Xx,t

= (-D)""D{"D(g.f)
DD (f.1) = (-1)"™D/"D}(1.f) =
m 1 _ ﬁ a_n
Dt Dx(fl) _atm axnf’

where f is any function of x and ¢
Thus, (70) became

o (o0 o 1
a(&Jrﬁ)fn =7 r;lB(fn—m'fm)' (66)
For n =1, it reduced to
o (o o o o
a(a*‘g)]{l = Oﬁ(a"'ﬁ)fl =0. (67)

Beginning with f, we may iterate(repeat) to find all the
f, and note that at any order we are now solving linear
partial differential equations. A simple particular solution to
the last equation would be

N . 3., N .
fl _ z s(alx—a 1t+cz) _ 89’,
i=1 i=1 (68)
f _ e(aix— adit+ci)
| = .
Using (63) for f,, we have 0/0x(0/ot+

0°/0x*) f, = —=1/2B(f,.f,) = 0, where this result follows

({0 o 1
ax(at+ax3>f” = —EB(f1~f1)>

am
5 5

International Journal of Differential Equations

7 (65)

(55). Here is the fact, with f,, the expansion of (59), ter-
minated at order N or (the f; , all vanish trivially). The
series has terminated with

f=1+e¢f,.

All higher-order equations with n > N are solved by f,, =
0 for n> N. We can always absorb ¢ into the constant ¢ and
we recognize the single soliton solution. Our hope is to find
other solutions where the series terminates in this way, so
that the solution is exact. Consider beginning with

N
f _ Z g(aix—a3it+ci)
1= .

i=1

f=1+e'fi+f,+...eY fy. We have already seen the
single soliton solution. Let’s verify that we recover the two
soliton solutions. Take for N = 2,

(69)

(70)

f=e" + e (71)

where 0, , are as above chosen to satisfy the f, equation, and
0, = a;x — a’t + ¢;. The f, equation became

= —%B(eg1 +eP.ef 4 692)

0, 0

= —%B(e e 2) -

=—(a; - a2)((bl ~b,) +(a; - ‘12)3)691+92

%B(eez.eel)

(72)

=~(a; - ‘12)(‘(“? - a;) +(a; - “2)3)‘301#)2

691+92

_ 2/ 2 2 2 2
=(a; - a,) (al +a,a, +a, —ay +2a,a, — az)

=3a,a,(a, - a2)2691+62

o(o o
3. (a_ + a_3)f2 =3a,a,(a, - a2)2691+92_
X t x
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Since the equation is linear in f, it has an obvious
solution of the form f, = Ae?*%. So, we just have to de-
termine A. Substituting into the f, equation; that is, let

ax = (al + 612),
0, =(—a? + a;),

afc =(a; + a2)3,

17

o(o o .
a (8 a3>f2—3‘11“2(“1_“2)2 O+

- (a; +ay) [(—a? + a;) +(a, + 612)3]Ae91+92 =3a,a,(a, - a,

2 6,46,
e’!

(“1"’“2)[( al"'“z) +(a, +a,) ]A 3a,a,(a; - 2)2

-3a,a, (a, + a2)2A =3a,a,(a, -

(a, - az)z
A= 2
(a, +a,)
The solution is then, f=1+ee +ee® + & (a;-

a,)*/ (a, + a,)*e®*%, which is a two-soliton solution of the

KdV equation. Settmg e =1, we have

—a
f=1+eel+eez+(l 2) 9+6 (74)

(a1 +a2)

Figure 5 shows follow of the presence of a solitary wave
to the front, having two kinks shaped with long amplitude,
dark of high speed.

Figure 6 shows the solitary wave to the front, having two
kinks shaped, a valley of the wave, and dark high speed.

Figure 7 shows the solitary wave from left to right, having
two kink-shaped solitons, a valley-shaped wave, long am-
plitudes, and dark high speed.

Figure 8 shows follow of the solitary wave to the front,
having two kink--shaped soliton profiles, periodic, and dark
and bell slow speed.

Finally, we just need to differentiate to get the original w
or (u) wusing w= fo/f = a,eh +a2692 + (a, — ay)*/
(a, +ay)?eh*%/1 + &b + % + (a, — a,)*/(a, + ay)” 0. It
is easier in this format to study the asymptotic of the two
soliton solutions. As in the BT discussion, first, we choose
a coordinate system with the origin at the center of the
around i = 1,2 soliton; taking t — t; + §, with §, = x -
Xo—v;t;, where v;=a? and let t; — + 0o, we have
0; = Vil2(8, - v;6,)

Vv 7
04 = g(&c =vi8) + g(w =)t (73)

Near the i soliton, we have (by definition) 4., 6, = 0, so

that §; is small but 0.,; — =+ oo as follows: (t — — 00, if

i=1,0,isfixedand 0;,_, — - oco,andifi=2,0

)]1—)_

‘12)2

), (t— +o00, if i=1, ,_, — —o00, and if i=2
8., — +00). When 6;,;, — oo the f clearly reduces
t0 the single soliton case, f =1+ €% When 6,,;, — + o0,
we have to do a little more work. To lead order we have

2
f=e9f<1+L“2)2e9f+....>. (76)

(a,+a,)
where the ellipsis indicates terms of order e %. But then
w = 20xlog f

2
w=2aj+26xlog<l+MeG"+....>. (77)

(a; + az)z

Since w — w + const gives equivalent solutions we
might ignore the constant piece. The remaining solution is
equivalent to an f of the for

f=<1+Me9f>. (78)

This is the original single i-soliton solution but with
a phase shift of

5. - g<|\/_ WI) (79)
" wi N

Precisely what we found for the 2 KdV soliton solution
using the much more complicated BT method. Finally, it was
just presented the general solution which might be proved by
induction. Define an NxN matrix Sy with elements.
Con51der1ng the 2-soliton solution for equation (68),
f—1+£e 1+ ee? + €2 (a, —az) /(a; + a,)*eh*0:
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2
(1 + ee )(1 + eee ) € (3914’62 T p— eeﬁe2
a, +a,

4a,a, O+

(1+se )(1+£e ) £ (a1+a2)2

2a, o

0
1l+eele—
(a, +a,)

2a,

P
(a; +ay)

ee1 1+ 8692

Zal- 9.
f = det(S), where(Sy),; = §;; + eaiTaje i,

(80)
and i, j = 1,2. Then, the N-soliton solution U = 23log f,
where f = det(Sy). O

2.3. Illustrative Examples

Example 1. Consider the fractional-order nonlinear KdV
system is given as follows:

m—1

—E[‘H((, T)

m-1

E[v({,7)] - Z Vi (0057 =

Applying the inverse ELzaki transform of (85), we have

Z ‘u(k (C 0)52 p+k
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Xu ’u ou ov
— =—-a——6ay—+6v—,
o a3 o a(
(81)
8”1/_ aa3v 3ayav 0<p<l1
5 T 43~ - .
o 0; a(r
with the initial condition,
p(l,0)=n sech2< ‘u(>
(82)

v((,0) = \[11 sech (—+M—()

For p = 1, the exact results of the KdV scheme (82) are
given by

u(l,r)=nq *sech <_+117C_a1121>’

o’ 0 v
[ el 2% _6aun + 6+
u(C1) = E ' [$u((,0)] +E [sE< aa§ 6aya(+6va(>]

(83)
_ ofa n an't
v((, 1) = \/711 sech (2 PR )
Using the ELzaki transform to (83), we obtain,
Iy ou
= [ a?—6a‘ua—(+6va—(:|,
(84)
—aj 3a o
o)
1 2-p a3 a
s—pE[H((,T)] = Uy ((0)s" "+ E a——6aya +6v vt
¢ ¢
1 >p a3
S_pE[V((a ] =vy ((0)s" P +E|- 3a/,t
0 ov (85)
E[u((,1)] = s°u({,0) + E” —a—y—6ay—‘u+6v—
%; o  of
3
E(G, ] = (0, 0) + B | -a 2~ 30|
(86)

~17 2 “1] o’y ov
v((,7)=E [s V(C,O)]+E s’E —a?—&wa— .
¢ ¢



International Journal of Differential Equations

FIGURE 7: The result of the two-soliton solution for a, = -3,a, = —-2.5,¢ = -3.5.
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FIGURE 8: The result of the two-soliton solution for a, = =5,a, = -3.5,¢ = —4.5.

Now, by using the suggested analytical method, we get

Uy (¢, 1) = ;12 sech2<%+‘%(),

v ((,7) = \/%’12 sec h2<g + %),

_epl _ 83/,10 _ Oy 9,
p ((,7) =E |S"E| ~a—5~ — 6au,——+ 6v, ,
) o o

¢
1 831/0 v,
v ({,7) = E |SE| —a—— - 3ap;—= ||,
5 a 0\ (e, ) 7
//‘1((,1)—17atanh(2+2)sech <2+2>F(p+1)’
5 3/2 P
_na LI/ NPT (2 (O W
v (1) = 7 tanh<2+2>sech (2+2>F(p+1)’

3
u () =E" [SPE —aa—/:l - 6a/41% + 61/1% ]
0; O¢ 0
1 v ov
V2 ((’ 17)=E s’E _aa—3l - 3“,"‘18_1 >
4 ¢
8 2

_na 2fa n¢ sfa nt %
‘le((,T) _T(ZCOSh (E+7>—3>sech <E+7>m,
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5/2 2
na \/— n¢ sfa ng (
VZ({ T)— ( ) 3:|Sech (2+2)r(2p+1),

- Ou oy ov
[’l3 (C) T) =E 1{SPE<—618—?2— 6a‘u2 a; +6v 2 a(2>:|

3
v;((,7) = E'|SE —aa—:z - 3“#2% ,

h (a/2 2)’a’y’
s (6, 1) = sinh (a/2 + ¢/ )T7 [ T(p+1) cosh4( + ) )
2LBp+ I (p+ 1*cosh’ (a/2 + n(/2) 2
—18T(p+1) 2cosh? ( ﬂC) +6I'(2p+ 1)cosh? (— 172—(> - 18T (p + )% - 9 (2p + 1) ,
h (a)2 273 7/2 11
vy ((,1) = Vasinh (a/2 + i/ ): a [ T(p+1) cosh4< )
AT (Bp+ I (p + 1)*cosh” (a/2 + n{/2) 2
~18T (p + 1)’cosh’ (— +'7—(> +6I(2p + 1)cosh? (— %) —18T(p+1)> — 9T (2p + 1) .
Generally, the n'" solution result was obtained as follows:
- ou ou ov,_
, =E1 pE_ n-1 _ n-1 n-1 ,
Aun(( T) {S < a a:}(, 6‘1#71—1 a( + 61/”,1 a(
(88)
3
v, ((,1) = E'|SE —aL;H— 3(1/,1”,161/”_1 , n>0.
The series form result is as follows:
(1) =pg (G 1)+ (G 1) + iy (G 1) + s (G 1) + ey, (G 7),
v((, 1) = v (G 1) + v (D) + vy (G 1) +v3 (1) + v, (G 1),
B0\ il 9’y aVo , Ouy o Oy
p(l,1)=nq sech2(+)+E [SE —a—5—— 6ay + 6V, sE —a—5——6ay +6v
3 e ac o, 3; o, o,
3,3 4
sinh (a/2 + '7(/2)1; [ (p+1) cosh4< +_) _ 18T (p + 1)%cosh? ( ’7()
2lBp+ DI (p+ 1*cosh’ (a/2 + n(/2)
(89)

+6T (2p + 1)cosh’ (/2 + n{/2) = 18T (p + 1)* = 9T (2p + 1)

83 a a3 a
v((,7) = \[’7 sech ( y{) + E1|:SPE<—a?VO— 3ay0$>:| +E! |:spE<—aa—:1 - 3%“1%)]

3p 7/2 11
V2sinh (a/2 + 11(/2);[ a [ZI‘(p +1)cosh® <ﬁ+’7_(> _ 18T (p + 1)*cosh? ( ’7()
AT Bp+ DI (p + 1)*cosh” (a/2 + n(/2) 22 2

+6I' (2p + 1)cosh’ (— + '7() 18T (p+1)> 9T (2p + 1)] +
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For p = 1, the exact results of the KdV scheme (81) are
given by

2 2 2

v((,1) = \/711 sech (—+%{—m121-)

Example 2. Consider the fractional-order nonlinear dis-
persive long wave scheme.

u(l,1) =19 sechz( ’7(_0”1 T),

(90)

(91)

and the initial condition;

© (¢, 0) =a[tanh(g+%{) + 1],

v((,0) = -1 +Isechz(’7 +“()

2 2 2

While using ELzaki transform of (91), we obtained

m-1 2
."t({ T)]_Z‘uk)({ 0)52 p+k_E|:—_],
m—1 3
lE[V(() T)] - Z V(k) ((, 0)52_P+k = E[—a—f—a—‘u _%}
k=0

m—1
LEW@D = Y gy @087 + E[— ’
k=0 ¢

U ((,0) = a[tanh (g+

v ((,0) = —1+;a sech2<z oc()

E‘l[sf’E<_

Hy (1) =

v ((, 1) =E_1[5PE<
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m—1 3
E[V({) T)] = Z V(k) ({, 0)52_P+k + E|:—a—;u — a—‘“ — M}

k=0
LB D] = ) (05> +E|:——
E[V((’ T)] = V(o) ((; 0)52—[7 + E[——3 - _})
0
Eu(, )] = 2u((,0) + ”E[ > !

E[v({,7)] = 'v({,0) + SPE[__3 % _].

(93)

Applying the inverse ELzaki transform of equation (93),
we get

u((r) =E (0] +E! [SPE<—
- _ Ou ou ouv
v((,71) = E ' [$v((,0)] +E [E( 7o o )|

Now, by using the current analytical method, we get

S
2

2

o 20 )/

Opg

’ a.“o"o}
o 9 O
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o

2
P (1) = sechz(Z+ “() NS
v (1) = —smh <g+—()se h3(z “()

2
e 313

o _
m(c,r):El[spE(_____
P

Uy ((, 7) =

7
I(p+1)

104y
2 9

2p

F(2p +1)
7

ofn ag
h( )r(z +1)

Nes
) )]
)

+ —Sl

+ sec hs(ﬂ (x()
2

2
TP

vy (0, 7) = 71,(2/”_ )

, ((,7) =

3
v, ((, 1) = E_I{SPE< o y;_l -
0
¢

_ a#n—lvn—l
o

aAl’ln—l
0

n=>0

Thus, the series form of the result is as follows:

+ ph, ((, 1),
+v, (¢ 1),

2
ﬂ((,T)=a[tanh<Z+0§)+l] azse hz(g a()
+3a551nh2 ’7 oc( sec bt ﬂ_,_“( » 4
4 2" 2

a
3
n, ol a
2 2

‘LI(C,T) 2/40({,‘[)+‘bll((,‘[‘)+[/t2((,‘[)+-'-
V((,T) :VO((’T)+V1((’T)+V2((’T)+"'

5
70 a

cprn 1%

(’1

h (gf)
e

_r
I'2p+1)

n.
2

—nh
2

a® al
+— |i2cosh2 (ﬁ+—) - 3]
4 2 2

For p = 1, the exact results of the KdV scheme (91)is as
follows:

v((,1) = —1+;a sech(

23

(95)
[(2p+1)r”

FGp+1I'(p+ 1)

2,
F

r(2p+1)

r(2p+ 17
oc(3p+ 1 (p +1)°

oc()

(96)
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2
n,af_av

u(l,1) = a[tanh(

)o1)
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and the initial conditions are

2 1
(97) #(¢,0) =1+ tanh(0),
1 n al a’t
> _1 . 1 1
v((,1) = +Zsech (2 S ) v(2,0) -~ Z tanh (0), (99)
Example 3. Considering the nonlinear fractional-order new w((,0) =2 - tanh(().
coupled modified KdV system,we get Using the ELzaki transform to (98), we get
Pu_ 10 a3 P w3 Fu
0, 295 o 2% Ty 2 0,
3w 4 30+ 3y
vw o ywa( Uy — o
Fv v _dvou Xy ,ow ou
aTP __673_367(67(_ Vai(z—3 a{+6‘uV +3‘Ha<,
Pw  dw _owu ou ou 0w
a—Tp —a—i— a—(a—(— u)a—(2 3w a(+6‘uw +3ﬂa_<,;
(98)
1 el ik 10u  ,0u 3 v v ow 3 82 ou ow
7E[,u(() T)] - ‘Ll k (()O)S ’ = E[ = = +3[4V
s kzo ® 2 9 3 2 oo, 2" 8, 3 o o |
v _ovo o ow ) ov
2-pk _ gl 9V _ ovou  OU 5 ou 2
Elv({1)] - Zwk)(( 0)s [ > 3a( 3 3v 2% 3v a(+6yv +3p a(]
= Pw _ow u u . ,0v o ow
SEwCD] - Y w ,Os“*"zE[— 3 o —3w——-3w+6 w—+32 ]
[w(,7)] kzo o (6,0) 5 Cara Mo, WatH Mo .
100
1y 504 3 0 ovow 3 ow ou ov aw
SEu( 0] = p (005 P+E[ Wt ow—+3 — +-v—— +3vw— + 3pw—+ 3uv—
v w9, o 20w ) 20V
- _ 2-p oV ,ovou “ U
E[v((,1)] = v ((,0)s +E[ SRR 31/(_)(2 3y a(+6/w +3u a(]
Pw _ow du ’u v Ou 20w
_E , 2P L E bttt _ 2,29
[w(l D] =w({0)s"F + [ 7 35( % 3w 50 3w a‘:+6/,1 +3‘u a(]
W6 = 20+ B[ L 2F 3 Za”+3waz w3 0w s 30 s s
Ele “ 29 My X o 2" A M A
o’v dvau a U, 0w o ,0v
= ’E 101
E[v((,1)] = s"v((,0) +s [ ai o % -3v 3 -3y a(+6‘uv +3u— 5t| (101)
O’w  dw du u L0V o4, 20w
= PE = — i
Ew((,1)] = sw((,0) +s E[ aT 38( 3 - 3w 6(2 - 3w a(+6/4w +3u = T |

Applying the inverse ELzaki transform of (101)



International Journal of Differential Equations 25

10° ou 3 v _ovow 3 dw 0 ov ow
— g2 1| pp( 2B g p0 2 OV Jovow S o o ow
u((,1)=E [SM((,O)]+E [s E<2 B 3u afzwa(z”a( a(+2va(2 +3vwa(+3‘uwa(+3yvac)],
v v o ow ) v
— (I[P - gp[ Y VO 5 08 5200 o 3,2
v({,1)=E [s v((, 0)] +E [s E( 7 38{ 2 3v 3 3v a0 + 6uv 2 +3u a(:)], (102)
_ _ Pw _ow du o’y ov ou ow
7.2 1 2 2
U)((,T)zE [S U)((,O)]‘I‘E [SPE(a—i_3a_(a_(_3wa{2 - 3w a—c+6ywa—(+3‘ua—( .

Now, by using the suggested analytical method, we get

B(0) =1+ tanh ()

V(0 = - tanh (D),

w((,0) = 2 - tanh (),

.| 10°u ou, 3 9 v, dw, 3 Ow oy ov, ow
,7) = E Y| SLE( = 250 3,270~ 04,307%0 7 0 o had} 00|,
(6 7) _S <2 ai 3y o +2w0 a(Z + T o +2v0 852 + 3vyw, o + 3uywy o + 3uyvy o
| v, ov, Oy oy ow oy ov
T B e R e R S|
| dw, ow, oy o’y o, ou ow,
o= |¢r( oy o Mg, Mgy iy T ) |

11 N v
1 (G 7) —Tsech (4”)r(er D’

__E 2 7
vi((,1) = s sech (()F(p+1)’

w, ((,1) = —lzlsechz(()r(pni 0

wn=E" :s"EG %" - 3#?%—’? + %wlaaz—;l + 3%—? aa—u;‘ + %vl% + 3v1wlaa—[? + 3”1“’186_? + 3y1vlaa—u:‘)],
v,((, 1) = E :SpE<—a;;1 - 3%—? aa‘u; - .’avlaazg1 - 3%% + 6,0111/18;(1 + 3yf&22)],

w,({,7) = E" :SPE<BZ§J1 - 388—? aa—il - 3wlaaz_;¢1 - 3wfaa—12 + 6P‘1w1aa—[? + SMfaa—L?”

2p

121
#,(¢,7) = — = tanh ({)sec b’ (o%,
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2p
v, (8, 7) = —tanh(()sechz(()%,
121 n?
w, ((,1) = Ttanh(()sech (()m
3P
uy (1) = —— (cosh (20) - 2)sec h“(om
3p
1 (1) = 12t (cosh (20) - 2)sec WOt
e
wa(c,r)=—l3il (cosh (20) - 2)sec <c)m (103)
_ P a ."ln 1 2 a‘“ § a Vn-1 avn—l awn—l § aZw aﬂn—l
Mn(()T)— [S E<2 as 3[’ln—l a( +2 n—1 a( +3 a( a( +2Vn71 a( 3V lwn—l a(

34w 0y Lysy v —aw"l)]
Up-1Wp-17= — T Uu-1Vn-1 >
" 6 " 0y

3 2
v (,7) =E1[SPE< v, 1_3aVn—1 Oty 3y 0ty — 32 ow,,_ + 61,V Ot 1+3[42_ aVn—1>])

a3 a( a{ n-1 a(2 n-1 a( n-1 a n-1 a(
- Sw,., 0w, O, Ot 0V, O ow,_
w,((,1)=E 1[s”E( l;)i L_3 1;)( L i_;( L 3w, , ;;(2 1—3wf,_lg—(1+6‘un_1wn,1%+3yi_l lg( 1)]
The series form result is given as follows:
(1) =pg (G 1)+ (G 1) + pp (G 1) + s (G 1) + -+ 1, (7)),
v(61) =y (D) + v (G1) + v, (G 1) +v3 (K1) + -+, (G 7),
w({"[):wo(()‘[)+w1((xT)+w2(ch)+w2((’T)+"‘+wn(()7)>
L) =1 th() (¢ 121 @sech ()
p((,7) =1+ =tanh( +—sec ()r(P )—? anh ({)sec h” ( m
1331 nr
+— (COSh (2() 2)sech (()m LN
11 11 121 n? (109
v(f,‘f)—2 4tanh(() s sech (C)r( 1)+ A tanh ({)sec h (OF(Z D
1331 osh 20) = 2)sech* (¢ —”Sp
——6(cos (2¢) — 2)sec ()F(3p+1)+
~ 1, " 121 > n*
w((,r)—Z—tanh(()—?sech (()r( +1)+Ttanh(()sech (()m

3
-@(co h (20) - 2)sec h* (()”—p+
+1)

The exact result of (98) is as follows:
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u( 1) =1 +§tanh<(—7q),

V(1) = —itanh((—l—;zo, (105)

NS

w((,7)=2 —tanh((—%n).

3. Conclusion

Nonlinear partial differential equations can be solved using
different methods based on their complexities to determine
the exact solutions. In this work, the balance method is
applied to solve the modified KdV of the NLPDEs of third
order kind analytically. The modified Korteweg-de Vries
equation is solved using the balanced method considered
with the bilinear and Hirota methods. The obtained soliton
solutions of the first and second kinds with certain pa-
rameters illustrated their physical models. The obtained
results were illustrated graphically to show the geometrical
interpretation of models and a few illustrative examples were
presented to check the applicability of the method. The
obtained solution will serve as a very useful event in the
study of nonlinear partial differential equations. This work
reveals that the balance method is sufficient, effective, and
convenient to simplify the complexities in solving NLPDEs
and can be applied appropriately for solving other modified
KdV equations of solitary wave type.

Data Availability

The required data are included in the manuscript and cited
as references when required.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are thankful to the referee for their invaluable
suggestions and comments which put the article in its
present shape.

References

[1] Daba Meshesha Gusu and S. Diro, “Solitary wave solutions of
nonlinear integro-partial differential equations of (2+1)-di-
mensional and its models,” International Journal of Differ-
ential Equations, vol. 2022, Article ID 9954649, 46 pages,
2022.

[2] Daba Meshesha Gusu and C. Bulo, “Solutions of nonlinear
integro-partial differential equations by the method of G'/G,
1/G,” Advances in Mathematical Physics, vol. 202215 pages,
2022.

27

[3] Daba Meshesha Gusu and M. Danu, “Existence of solutions
of boundary value problem for nonlinear one-dimensional
wave equations by fixed point method,” Mathematical
Problems in Engineering, vol. 2022, Article ID 5099060,
12 pages, 2022.

[4] A. G. Khaled, A. N. Taher, and A. A. T. Ali, “Double soliton
solutions for some nonlinear partial differential equations
(pdes) in mathematical physics,” International Journal of the
Physical Sciences, vol. 8, no. 2, pp. 57-67, 2013.

[5] M. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous
balance method to exact solutions of nonlinear equations in
mathematical physics,” Physics Letters A, vol. 216, no. 1-5,
pp. 67-75, 1996.

[6] M.]. Ablowitz, M. Ablowitz, P. Clarkson, and P. A. Clarkson,
Solitons, nonlinear evolution equations and inverse scattering,
Cambridge University Press, Cambridge, UK, 1991.

[7] C. Rogers, C. Rogers, and W. Schief, Backlund And Darboux
Transformations: Geometry And Modern Applications In
Soliton Theory, Cambridge University Press, Cambridge, UK,
2002.

[8] B. B. Kadomtsev and V. I. Petviashvili, “On the stability of
solitary waves in weakly dispersing media,” Soviet Physics -
Doklady, vol. 15, pp. 539-541, 1970.

[9] E. Fan and H. Zhang, “A note on the homogeneous balance
method,” Physics Letters A, vol. 246, no. 5, pp. 403-406, 1998.

[10] S. Elwakil, S. El-Labany, M. Zahran, and R. Sabry, “Exact
travelling wave solutions for the generalized shallow water
wave equation,” Chaos, Solitons & Fractals, vol. 17, no. 1,
pp. 121-126, 2003.

[11] R. Hirota, “Exact solution of the korteweg—de vries equation
for multiple collisions of solitons,” Physical Review Letters,
vol. 27, no. 18, pp. 1192-1194, 1971.

[12] R. Hirota, The direct method in soliton theory, Cambridge
University Press, Cambridge, UK, 2004.

[13] E. Pucci, “Similarity reductions of partial differential equa-
tions,” Journal of Physics A: Mathematical and General,
vol. 25, no. 9, pp. 2631-2640, 1992.

[14] A. Osborne, “The inverse scattering transform: tools for the
nonlinear fourier analysis and filtering of ocean surface
waves,” Chaos, Solitons & Fractals, vol. 5, no. 12, pp. 2623-
2637, 1995.

[15] L. A. Ostrovsky and Y. A. Stepanyants, “Do internal solitions
exist in the ocean?” Reviews of Geophysics, vol. 27, no. 3,
pp. 293-310, 1989.

[16] D. Kordeweg and G. de Vries, “On the change of form of long
waves advancing in a rectangular channel, and a new type of
long stationary wave,” Philosophical Magazine, vol. 39,
pp. 422-443, 1895.

[17] M. Fung, “Kdv equation as an euler-poincare equation,”
Chinese Journal of Physics, vol. 35, no. 6, p. 789, 1997.

[18] G. B. Whitham, Linear and nonlinear waves, Vol. 42, John
Wiley & Sons, New York, NY, USA, 2011.

[19] W. Hereman, “Shallow water waves and solitary waves,” 2013,
https://arxiv.org/abs/1308.5383.

[20] 1. E. Inan, “Multiple soliton solutions of some nonlinear
partial differential equations,” Universal Journal of Mathe-
matics and Applications, vol. 1, no. 4, pp. 273-279, 2018.

[21] H. Koc,ak, “Traveling waves in nonlinear media with dis-
persion, dissipation, and reaction,” Chaos: An In-
terdisciplinary Journal of Nonlinear Science, vol. 30, no. 9,
Article ID 093143, 2020.


https://arxiv.org/abs/1308.5383

28

(22]

(23]

(24]

A. Bekir and O. Guner, “Analytical approach for the space-
time nonlinear partial differential fractional equation,” In-
ternational Journal of Nonlinear Sciences and Numerical
Stimulation, vol. 15, no. 7-8, pp. 463-470, 2014.

M. Matinfar, M. Eslami, and M. Kordy, “The functional
variable method for solving the fractional korteweg-de vries
equations and the coupled korteweg-de vries equations,”
Pramana, vol. 85, no. 4, pp. 583-592, 2015.

Z. Yan, “Abundant families of Jacobi elliptic function solu-
tions of the (2+ 1)- dimensional integrable davey-stewartson-
type equation via a new method,” Chaos, Solitons & Fractals,
vol. 18, no. 2, pp- 299-309, 2003.

International Journal of Differential Equations





