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In this study, the classical Lie symmetry method is successfully applied to investigate the symmetries of the time-fractional
generalized foam drainage equation with the Riemann–Liouville derivative. With the help of the obtained Lie point symmetries,
the equation is reduced to nonlinear fractional ordinary diferential equations (NLFODEs) which contain the Erdélyi–Kober
fractional diferential operator. Te equation is also studied by applying the power series method, which enables us to obtain extra
solutions. Te obtained power series solution is further examined for convergence. Conservation laws for this equation are
obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.

1. Introduction

Fractional calculus, which deals with fractional integrals and
derivatives of arbitrary order, emerged towards the end of
the 17th century. Since then, numerous researchers have
dedicated their eforts to understanding, studying the
properties, and applying fractional order diferential equa-
tions. Te interpretation, properties, and applications of
such equations have garnered signifcant attention within
the scientifc community [1–3]. In recent years, there has
been a surge of interest in studying fractional diferential
equations (FDEs) as they prove to be efective in describing
various physical phenomena and processes across diverse
felds.Tese equations have found applications in hydrology,
viscoelasticity, mechanics, physics, fuid dynamics, biology,
chemistry, control theory, electrochemistry, and fnance
[4–6]. Numerous efcient methods have been developed to
obtain both analytical and numerical solutions for fractional
order diferential equations. Some prominent methods in-
clude homotopy perturbation method, subequation method,
the frst integral method, and Lie group method; for more
details see [7–10].

Te Lie symmetry method was initially introduced by
Sophus Lie (1842–1899) in order to study the (DE) of integer

order.Tis method is an algorithmic procedure to obtain the
point symmetry which leaves the considered diferential
equation invariant. Later, Gazizov proposed the general-
ization of the Lie symmetrymethod for fractional diferential
equations (FDEs) by developing prolongation formulas for
fractional derivatives. Since then, numerous studies have
been conducted to investigate FDEs using the Lie symmetry
method, see [11–13].

Conservation laws play a signifcant role in investigating
various properties of nonlinear partial diferential equations
(PDEs). Te relationship between the Lie symmetry group
and conservation laws of PDEs was established by Noether’s
theorem [14] which provides a powerful framework for
constructing conservation laws of diferential equations. In
recent developments, Ibragimov [15] has introduced a new
conservation theorem based on the concept of nonlinear
self-adjoint equations to study the conservation laws for
arbitrary diferential equations.

Te analysis on the equations of foam drainage is of
considerable signifcance as foams omnipresent in daily
activities, either naturel or industrial. Te generalized foam
drainage equation describes the evolution of the vertical
density of foam under the gravity, for more details see
[16–19].
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In this study, we are interesting in the following frac-
tional generalized foam drainage equation:

z
α
u

zt
α − u

m
ux( x + 2uux � 0, 0< α≤ 1, (1)

where zαt u is the Riemann–Liouville (R-L) fractional de-
rivative of order α with respect to t. In [20], the generalized
fractional foam drainage equation with α � 1 is reduced to
the following classical generalized foam drainage equation:

ut − u
m

ux( x + 2uux � 0, (2)

for m � (1/2), equation (1) becomes the well-known foam
drainage equation which has been studied in both cases,
fractional and integer order by using Lie symmetry analysis
see ([21, 22]), also for the case and m � 1, 2 the equation is
studied in [21].

Te paper is structured as follows. In Section 2, we
provide some of the most important Lie symmetry analysis
results in the context of fractional partial diferential

equations FPDEs in general. In Section 3, we present Lie
point symmetries and similarity reduction of generalized
fractional foam drainage equation. In Section 4, we propose
another type of solutions in the form of power series solution
by using the power series method. By using the nonlinear
self-adjointness method, the conservation laws of equation
(1) are calculated in Section 5. Finally, some conclusions are
given in Section 6.

2. A Review on Lie Symmetry Analysis

Temain idea of this section is to describe the Lie symmetry
method for FPDEs; so, let us consider a general form of the
FPDE expressed as follows:

z
α
u(x, t)

zt
α � F x, t, u, ux, uxx( , (3)

where the subscripts indicate the partial derivatives and
(zα/ztα) is R-L fractional derivative operator presented by

z
α

zt
α g(x, t) �

z
n

zt
n g(x, t), if  α � n,

1
Γ(n − α)

z
n

zt
n 

t

0
(t − s)

n− α− 1
g(x, s)ds, 0≤ n − 1< α< n,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where g(x, t) is a real valued function, and n ∈ N∗ (the set of
natural numbers).

Te Lie symmetry method is based on assuming that
equation (3) is invariant under the following trans-
formations introduced by

t � t + ϵτ(x, t, u) + O(ϵ),

x � x + ϵξ(x, t, u) + O(ϵ),

u � u + ϵη(x, t, u) + O(ϵ),

u
α
t

� u
α
t + ϵηαt (x, t, u) + O(ϵ),

ux � ux + ϵηx
(x, t, u) + O(ϵ),

uxx � uxx + ϵηxx
(x, t, u) + O(ϵ),

(5)

where (5) is a one-parameter Lie group and ϵ is the group
parameter and ξ, τ, and η are the infnitesimals and
ηx and ηxx are the extended infnitesimals of order 1 and 2
and are given by the following explicit form:

ηx
� Dx(η) − uxDx(ξ) − utDx(τ),

� ηx + ηu − ξx( ux − τxut − ξuu
2
x − τuuxut,

ηxx
� Dx ηx

(  − uxxDx(ξ) − uxtDx(τ)

� ηxx + 2ηxu − ξxx( ux − τxxut + ηuu − 2ξxu( u
2
x

− 2τxuuxut − ξuuu
3
x − τuuu

2
xut + ηu − 2ξx( uxx

− 2ξxuxt − 3ξuuxuxx − τuuxxut − 2τuuxuxx,

(6)

where Dx, is the total derivative operator with respect to x,
defned by

Dx �
z

zx
+ ux

z

zu
+ uxx

z

zux

+ utx

z

zut

+ . . . . (7)

Now, the explicit form of the extended infnitesimal ηαt of
order α is written as follows:

ηαt � D
α
t (η) + ξD

α
t ux(  − D

α
t ξux(  + D

α
t Dt(τ)u(  − D

α− 1
t (τu) + τD

α+1
t (u),

� z
α
t (η) + ηu − αDt(τ)( z

α
t u − uz

α
t ηu(  + μ + 

∞

n�1

α

n
 z

n
t ηu −

α

n + 1
 D

n+1
t (τ)D

α− n
t u − 

∞

n�1

α

n
 D

n
t (ξ)z

α− n
t ux( ,

(8)

where Dα
t is the total time fractional derivative, and μ is given

by
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μ � 
∞

n�2


n

m�2


m

k�2


k− 1

r�0

α

n

⎛⎝ ⎞⎠
n

m

⎛⎝ ⎞⎠
r

k

⎛⎝ ⎞⎠
1
k!

t
n− α

Γ(n + 1 − α)

×[− u]
r d

m

dt
m u

k− r
 

z
n− m+kηu

zt
n− m

zu
k

.

(9)

We should mention here that μ vanishes when the in-
fnitesimal η(x, t, u) is linear in the variable u, that is,

η(x, t, u) � u(x, t)f(x, t) + h(x, t). (10)

One can now present the Lie algebra of the one-
parameter Lie group (5), which is generated by the vector
felds in the following form:

X � τ(x, t, u)
z

zt
+ ξ(x, t, u)

z

zx
+ η(x, t, u)

z

zu
. (11)

Te prolonged X(α,2) operator of the infnitesimal
generator X of order (α, 2) is written in the following form:

X
(α,2)

� X + ηαt
z

z
α
t u

+ ηx z

zux

+ ηxx z

zuxx

. (12)

Theorem 1 (Infnitesimal criterion of invariance). Equation
(1) is invariant under (5), if and only if equation (1) satisfes
the following invariant condition described by

X
α,2

(∆) (∆ � 0)
 � 0,∆ � z

α
t u − F. (13)

Remark 2 (Invariance condition). In equation (3), the lower
limit of the integral must be invariant under (5), which
means

X(t) ∣ (t�0) � 0,⟹ τ(x, t, u) ∣ t�0 � 0. (14)

Defnition 3. A solution u � f(x, t) is an invariant solution
of (5) if it satisfes the following conditions:

(i) u � f(x, t) is an invariant surface of (11), which is
equivalent to

Xf � 0,⟹ τ(x, t, u)
z

zt
+ ξ(x, t, u)

z

zx
+ η(x, t, u)

z

zu
 f � 0. (15)

(ii) u � f(x, t) satisfes equation (3).

3. Application of the Proposed Method for
Generalized Foam Drainage Equation

Suppose that equation (1) is invariant under equation (5), so
we have that

z
α
u

zt
α − u

m
ux x + 2uux � 0, (16)

with u � u(t, x) satisfes equation (1). Now, we start by
applying the second prolongation X(α,2) to (1), then the
infnitesimal criterion (13) becomes

ηαt − m(m − 1)u
m− 1

u
2
x + mu

m− 1
uxx − 2ux η + 2 u − mu

m− 1
ux ηx

− u
mηxx

� 0. (17)

Substituting the explicit expressions ηx, ηxx, and ηαt into
(17) and equating powers of derivatives up to zero, we obtain
the determining equations, by analyzing the determining
equations with the initial condition (14), and the in-
fnitesimals are determined as follows:

τ(t, x, u) � C1mt − 2C1t,

ξ(t, x, u) � C1αmx − C1αx + C2,

η(t, x, u) � uαC1,

(18)

where C1 andC2 are arbitrary constants. Te corresponding
Lie algebra is written as follows:

X � C1αmx − C1αx + C2( 
z

zx
+ C1mt − 2C1t( 

z

zt
+ uαC1( 

z

zu
.

(19)

If we set

X1 �
z

zx
,

X2 � (m − 2)t
z

zt
+ α(m − 1)x

z

zx
+ αu

z

zu
.

(20)

It is clear to show that the vector felds X1, X2 are closed
under the Lie bracket defned by [Xi, Xj] � XiXj − XjXi;
thus, the Lie algebraX is generated by the vectors felds Xi (1,
2) and is rewritten as follows:

X � C1X1 + C2X2. (21)

In order to fnd the reduced form and exact solution, we
should solve the characteristic equation corresponding of
each infnitesimal generator, which is described by
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dt

τ(x, t, u)
�

dx

ξ(x, t, u)
�

du

η(x, t, u)
, (22)

Case 4. Reduction with X1 � (z/zx).
By integrating the characteristic equation

dt

0
�

dx

1
�

du

0
, (23)

the symmetry, X1, leads to the group invariant solution

u � f(t), (24)

and f(t) satisfes

D
α
t f(t) � 0. (25)

Terefore, the group invariant solution corresponding to
X1, is given by

u1 � k1t
α− 1

, (26)

with k1 as an arbitrary constant.
Figure 1 presents the graph of solution u1(x, t) for

some diferent values of α,

u1 � k1t
α− 1

, (27)

with k1 as an arbitrary constant. Figure 1 presents the graph
of solution u1(x, t) for some diferent values of α.

Case 5. Reduction with X2 � (m − 2)t(z/zt) + α(m − 1)x

(z/zx) + αu(z/zu).
Te similarity variable z and similarity transformation

f(z) corresponding to the infnitesimal generator X2 is
obtained by solving the associated characteristic equation
given by

dt

(m − 2)t
�

dx

α(m − 1)x

�
du

αu
,

(28)

then, for m≠ 2, 1, the similarity variables are

z � t, f(z) � u, (29)

z � xt
(α(1− m)/m− 2)

, f(z) � ut
(− α/m− 2)

. (30)

Terefore,

u � t
(α/m− 2)

f xt
(α(1− m)/m− 2)

 . (31)

Theorem 6. Using the abovementioned similarity trans-
formation (30) in (1), we fnd that the time fractional foam
drainage equation is transformed into a nonlinear ODE of
fractional order in the following form:

P
(α(3− m)/m− 2)+1,α
(m− 2/α(m− 1)) f (z) − f

m
fz( z + f

2
 

z
� 0, (32)

with (Pδ,α
λ f)(ζ) is the Erdélyi–Kober diferential operator

given by

P
δ,α
λ f (ζ) � 

m− 1

i�0
δ + i −

1
λ
ζ

d

dζ
  K

δ+α,m− α
f (ζ), m �

[α] + 1, α ∉ N,

α, α ∈ N,

⎧⎪⎨

⎪⎩
(33)

where Kδ,α
λ is the Erdélyi–Kober fractional integral operator

introduced by

K
δ,α
λ f (ζ) �

1
Γ(α)


∞

1
(z − 1)

α− 1
z

− (δ+α)
f ζz

(1/λ)
 dz, α> 0,

f(ζ), α � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)
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Figure 1: Te solution u1(x, t) for equation (1) for K1 � 1 and
( α � 0.9, α � 0.75, α � 0.5, and α � 0.25).
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Proof. By using the Riemann–Liouville fractional derivative
defnition for the similarity transformation, we have

u � t
(α/m− 2)

f xt
(α(1− m)/m− 2)

 , (35)

We have

z
α
u

zt
α �

z
n

zt
n

1
Γ(n − α)


t

0
(t − s)

n− α− 1
s

(α/m− 2)
f xs

(α(1− m)/m− 2)
 ds . (36)

Let � (t/s), we have ds � (− t/v2), so the above-
mentioned expression can be expressed as follows:

z
α
u

zt
α �

z
n

zt
n t

n− (α(m− 3)/m− 2) 1
Γ(n − α)


∞

1
(v − 1)

n− α− 1
v

− (n+1− (α(m− 3)/m− 2))
f zv

(α(m− 1)/m− 2)
 dv ,

�
z

n

zt
n t

n− (α(m− 3)/m− 2)
K

1+(α/m− 2),n− α
((m− 2)/α(m− 1))f (z) .

(37)

On the other hand, we have

t
z

zt
ϕ(z) � tx

α(1 − m)

m − 2
t
(α(1− m)/m− 2)− 1ϕ′(z),

�
α(1 − m)

m − 2
zϕ′(z),

(38)

thus

z
n
u

zt
n �

z
n− 1

zt
n− 1

z

zt
t
n− (α(m− 3)/m− 2)

K
1+(α/m− 2),n− α
((m− 2)/α(m− 1))f (z)  ,

�
z

n− 1

zt
n− 1 t

n− (α(m− 3)/m− 2)− 1
n −

α(m − 3)

m − 2
−

m − 2
α(m − 1)

z
z

zz
  K

1+(α/m− 2),n− α
(m− 2)/α(m− 1)f (z) .

(39)

We repeat this procedure n − 1 times, we get

z
α
u

zt
α �

z
n− 1

zt
n− 1 t

n− (α(m− 3)/m− 2)− 1
n −

α(m − 3)

m − 2
−

m − 2
α(m − 1)

z
z

zz
  K

1+(α/m− 2),n− α
((m− 2)/α(m− 1))f (z) ,

⋮

� t
−
α(m − 3)

m − 2 

n− 1

j�0
1 −

α(m − 3)

m − 2
+ j −

m − 2
α(m − 1)

z
z

zz
  K

1+(α/m− 2),n− α
(m− 2)/α(m− 1)f (z), � t

(α(3− m)/m− 2)
P

(α(3− m)/m− 2)+1,α
(m− 2)/α(m− 1) f (z).

(40)

Continuing further by calculating ux and uxx for (31)
and replacing in equation (1) we fnd that time-fractional
generalized foam drainage equation is reduced to a FODE
written as follows:

P
(α(3− m)/m− 2)+1,α
(m− 2)/α(m− 1) f (z) − mf

m− 1
f
2
z − f

m
fzz + 2fzf � 0,

(41)

which is equivalent to
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P
(α(3− m)/m− 2)+1,α
(m− 2)/α(m− 1) f (z) − f

m
fz( z + f

2
 

x
� 0. (42)

So, the proof becomes complete. □

4. Conservation Laws

In this present section, some of the conservation laws of the
foam drainage equation are derived.

Te conservation laws of equation (1) are that each
vector (Ct, Cx) can be satisfed by the following conservation
equation for all solutions of equation (1)

Dt Ct(  + Dx Cx(  � 0, (43)

where Dt and Dx are the total derivative operators with
respect to t and x, respectively. So, by observing equation (1),
we can easily see that equation (1) can be rewritten as
follows:

u
α
t − u

m
ux( x − 2uux � Dt D

α− 1
u  + Dx − u

m
ux + u

2
 ,

(44)

thus, Ct � Dα− 1u and Cx � − umux + u2 is a conserved vector
of equation (1).

Now, let us introduce the formulation of formal La-
grangian which is written as follows:

F � ψ u
α
t − u

m
ux( ( x + 2uux( , (45)

with ψ(x, t) as a new dependent variable. Te adjoint
equation of the foam drainage equation is determined by

δF
δu

� 0, (46)

where (δ/δu) is the Euler–Lagrange operator described by

δ
δu

�
z

zu
+ D

α
t( 
∗ z

z D
α
t u( 

− Dx

z

z ux( 
+ D

2
x

z

z uxx( 
− . . . .

(47)

(Dα
t )∗ presents the adjoint operator of Dα

t

D
α
t( 
∗

� (− 1)
n
P

n− α
T D

n
T( ,

�
t
cD

α
t ,

(48)

with

P
m− α
t f(x, t) �

1
Γ(m − α)


s

t

f(x, s)

(s − t)
1+α− m

ds,

m � [α] + 1,

(49)

and (Dα
t )∗ is the right-side Caputo operator. Te con-

struction of CLs for FPDEs is in the same way of PDEs;
therefore, the fundamental Noether identity is given by

X
(α,t)

+ Dt(τ) + Dx(ξ) � Wi

δ
δu

+ Dt Nt(  + Dx Nx( ,

(50)

where Nx, Nt are Noether operators, X(α,2) is defned by
(12), and Wi is the characteristic function represented as
follows:

Wi � ηi − τiut − ξiux. (51)

For the x-component of the Noether operator, it is clear
to defne Nx as follows:

Nx � ξ + Wi

z

zux

− Dx

z

zuxx

   + Dx Wi( 
z

zuxx

. (52)

For the R-L time fractional derivative, Nt is determined
by

Nt � τI + 

m− 1

k�0
(− 1)

k
D

α− 1− k
Wi( D

k
t

z

zD
α
t u

− (− 1)
m

I Wi, D
m
t

z

z D
α
t( 

 , (53)

where I is presented by

I(f, h) �
1

Γ(m − α)


t

0


T

t

f(τ, x)h(ϕ, x)

(ϕ − τ)
α+1− m

dϕ dτ. (54)

Now, we apply (50) to (45) for Xi (1, 2), and for all
solutions, we conclude that X(α,2) + Dt(τ)F + Dx(ξ)F � 0;
also, we have (δF/δu) � 0, therefore

Dt NtF(  + Dx NxF(  � 0, (55)
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which is identical to the defnition of conservation laws of
(1). So, the components of the conserved vector become

Ct � NtF � τF + 

m− 1

k�0
(− 1)

k
D

α− 1− k
Wi( D

k
t

zF

zD
α
t u

− (− 1)
m

I Wi, D
m
t

zF

z D
α
t( 

 ,

� 
m− 1

k�0
(− 1)

k
D

α− 1− k
Wi( D

k
t

zF

zD
α
t u

− (− 1)
m

I Wi, D
m
t

zF

z D
α
t( 

 ,

Cx � NxF � ξF + Wi

zF

zux

− Dx

zF

zuxx

   + Dx Wi( 
zF

zuxx

,

� Wi

zF

zux

− Dx

zF

zuxx

   + Dx Wi( 
zF

zuxx

.

(56)

Now, we can compute the conservation laws of equation
(1) by using (56). As we have seen in the previous section, the
time-fractional foam drainage equation admits two in-
fnitesimals generators defned in Section 3 by

X1 �
z

zx
,

X2 � (m − 2)t
z

zt
+ α(m − 1)x

z

zx
+ αu

z

zu
.

(57)

Te characteristic functions corresponding to each
generator are given by the following formulas:

W1 � − ux,

W2 � αu +(2 − m)tut + α(1 − m)xux.
(58)

Substituting Wi(i � 1; 2; 3) into the vector components
(56), we obtain the conserved vectors of equation (1) as
follows:

C
1
t � ψD

α− 1
t − ux(  + I − ux,ψt( ,

C
1
x � − ux 2 u − mu

m− 1
ux ψ + Dx u

mψ(   + Dx − ux(  − u
mψ( ,

� − 2ψuux + ψmu
m− 1

u
2
x − ψxuxu

m
+ ψu

m
uxx.

(59)

5. Power Series Solution

In this section, by using the power series method, we can
extract another type of exact solution in the form of power

series solution. Moreover, the convergence of power series
solutions is shown.

With the aid of the fractional complex transformation
given by

u(x, t) � u(z),

z � cx −
υt

α

Γ(1 + α)
,

(60)

where C and υ are two arbitrary constants, and equation (1)
is reduced to a nonlinear ODE by substituting (60) into (1),
so we get

− υu
′
− c

2
u

m
u
″

− C
2
mu

m− 1
u
′2

+ 2cuu
′

� 0. (61)

Now, we integrate (61) with respect to z and obtain

− υu − C
2
mu

m
u
′
+ Cu

2
+ k � 0, (62)

where k is an integration constant. Ten, we assume that
the solution of (62) is in a power series form written as
follows:

u(z) � 
∞

n�0
anz

n
,

� 
∞

n�0
an cx −

υtα

Γ(1 + α)
 

n

,

(63)

moreover, we have
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uz � 
∞

n�0
(n + 1)an+1ζ

n
, (64)

substituting (63) and (64) into (62), we obtain

− υ 
∞

n�0
anz

n
− C

2
m 
∞

n�0
anz

n⎛⎝ ⎞⎠

m



∞

n�0
(n + 1)an+1ζ

n

+ C 
∞

n�0
anz

n⎛⎝ ⎞⎠

2

+ k

� 0, (65)

therefore

− υ 
∞

n�0
anz

n
− C

2
m 
∞

n�0


n

j1�0


j1

j2�0
. . . 

jm− 1

jm�0
n − j1 + 1( an− j1+1aj1− j2

aj2− j3
. . . ajm

z
n

+ C 
∞

n�0


n

j�0
an− jajz

n
+ k � 0,

(66)

Comparing the coefcient of z, when n� 0, we get

a1 �
− υa0 + Ca

2
0 + k

C
2
ma

m
0

, (67)

the second case is when n≥ 0

an+1 �
1

C
2
m(n + 1)a

m
0

− υan + C 
n

j�0
an− jaj

⎡⎢⎢⎣ ⎤⎥⎥⎦, n � 1, 2 . . . ,

(68)

thus, the power series solution of equation (1) can be
expressed as

u(ζ) � a0 + a1z + 
∞

n�1
an+1z

n+1
,

� a0 +
− υa0 − Ca

2
0 + k

C
2
ma

m
0

  Cx −
υt

α

Γ(1 + α)
  + 

∞

n�1

1
C
2
m(n + 1)a

m
0



n

j�0
− υan + C 

n

j�0
an− jaj

⎡⎢⎢⎣ ⎤⎥⎥⎦

× Cx −
υtα

Γ(1 + α)
 

n+1

,

(69)

where a0 is an arbitrary constant, and by using (67) and (68),
all the coefcients of sequence an 

∞
2 can be calculated. It

remains to prove the convergence of the power series
solution.

We can see that

an+1


≤M an


 + 

n

i�0
an− j



 aj



⎡⎣ ⎤⎦, (70)

where M � max |υ/mC2am
0 |, |1/mCam

0 | . Now, we take an-
other power series of the form

Q � Q(z)

� 
∞

n�0
qnz

n
,

(71)

with

q0 � a0


,

q1 � a1


qn+1

� M qn + 
n

i�0
qn− jqj

⎡⎣ ⎤⎦, n � 1, 2, . . . .

(72)

We can observe that |an|≤ qn, for n � 0, 1, 2, . . . , then
Q(z) � 

∞
n�0qnzn is a majorant series of (63). We continue

by showing that Q(z) has a positive radius of convergence

Q(z) � q0 + q1z + M 

∞

n�1
qnz

n+1
+ 

∞

n�1


n

i�0
qn− jqjz

n+1⎡⎣ ⎤⎦,

� q0 + q1z + M Q − q0( z + Q − q0(  Q + q0( z ,

(73)
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then, we constitute the implicit functional equation with
respect to the independent variable z

B(z, δ) � δ − q0 − q1z − M Q − q0( z + Q − q0(  Q + q0( z .

(74)

We can conclude from (74) that B(z, δ) is analytic in the
neighborhood of (0, q0), with

B 0, q0(  � 0,

Bq
′ 0, q0(  � 1≠ 0.

(75)

By using the implicit function theorem given in [23, 24],
Q(z) is analytic in a neighborhood of (0, q0) with a positive
radius, which shows that the power series
Q � Q(z) � 

∞
n�0qnzn converges in a neighborhood of

(0, q0); therefore (63) is convergent in a neighborhood
of (0, q0).

Finally, we can present the graph of the power series
solutions given in the following Figures 2 and 3 by choosing
the suitable parameters and diferent values of α.

Case 1: α � 0.25
Case 2: α � 1.

6. Conclusion

In this paper, the Lie symmetry method is used to study the
fractional generalized foam drainage equation based in
Riemann–Liouville derivative. Lie symmetries are calculated
and used to reduce the foam drainage equation to an or-
dinary diferential equation of fractional order connected to
the Erdélyi–Kober fractional operator, and an additional
solution of equation is given by mean of the power series
method. Some of CLs are obtained by using Ibragimov’s
method. Te power series method and the fractional Lie
symmetry analysis technique ofer valuable and efective
mathematical methods for researching other FDEs in
mathematical physics and engineering.

Data Availability

No data were used to support the fndings of this study.
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Figure 2: Te solution u3(x, t) for equation (1), when α� 0.25, a0 � 2, C � 1, υ � 2, k � 9. (a)m� 1, n� 6, (b) m� 4, n� 10, and (c) m� 10,
n� 15.

6. × 108

2. × 108
4. × 108

-6. × 108

-8. × 108

-4. × 108
-2. × 108

0

0

0.04
t

0

-10

x

(a)

0

0.04

t
0

-10

x

3.5

2.5

1.5
2

0.5
1

3

(b)

0

0.04
t

0

-10

x

2.008
2.006
2.004
2.002

2
1.998
1.996
1.994
1.992

(c)

Figure 3: Te solution u3(x, t) for equation (1), when α� 1, a0 � 2, C � 1, υ � 2, k � 9. (a) m� 1, n� 6, (b) m� 4, n� 10, and (c) m� 10,
n� 15.
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