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In the realm of ecology, species naturally strive to enhance their own survival odds. Tis study introduces and investigates
a predator-prey model incorporating reaction-difusion through a system of diferential equations. We scrutinize how difusion
impacts the model’s stability. By analysing the stability of the model’s uniform equilibrium state, we identify a condition leading to
Turing instability. Te study delves into how difusion infuences pattern formation within a predator-prey system. Our fndings
reveal that various spatiotemporal patterns, such as patches, spots, and even chaos, emerge based on species difusion rates. We
derive the amplitude equation by employing the weak nonlinear multiple scales analysis technique and the Taylor series ex-
pansion. A novel sinc interpolation approach is introduced. Numerical simulations elucidate the interplay between difusion and
Turing parameters. In a two-dimensional domain, spatial pattern analysis illustrates population density dynamics resulting in
isolated groups, spots, stripes, or labyrinthine patterns. Simulation results underscore the method’s efectiveness. Te article
concludes by discussing the biological implications of these outcomes.

1. Introduction

Mathematical modeling is an efective tool for describing
and comprehending the complex systems’ spatiotemporal
dynamics. Te behaviours of various species in the natural
ecosystem reveal a wealth of dynamical traits. Te habits of
diferent species in the natural ecosystem exhibit a wide
variety of dynamic characteristics [1]. Many species have
threatened extinction in recent decades as a result of in-
adequate resources, overexploitation, pollution, and pre-
dation. Most species extinctions are caused by an imbalance
in the environment or an ecological system. External support
trends to prevent species extinction including refuge and
population limitation to a single place [2–4]. Considering
the issue of extinction, many authors [5–10] investigated the
dynamical behaviour of the same system. However, because
we live in a spatial environment, spatial aspects in predator-
prey systems should be considered. As a result, to

characterize these systems, reaction-difusion equations [11]
should be used. Te interaction between prey and predators
receives the most attention in the ecosystem because it is so
important and happens all over the world [4, 12]. In the
realm of ecology, the dynamics of predator-prey interactions
have long been the focus of interest and research. For
forecasting and controlling ecosystems as well as deci-
phering the complex interspecies balance, it is essential to
comprehend the spatiotemporal dynamics of these in-
teractions. Mathematical models may be used as a useful tool
for analyzing and forecasting the behaviour of predator and
prey populations, which is one way to investigate these
dynamics [13].

Te spatiotemporal dynamics of a response difusive
predator-prey model is an important study area for
a number of reasons [14–16]. First of all, it enables us to
investigate the intricate interplay of species in a vast eco-
system. We may investigate how the movement and
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dispersal of predators and prey afect their population dy-
namics, geographical distribution, and overall stability by
introducing difusion factors. Furthermore, this study issue
is extremely important in the light of global environmental
changes and habitat fragmentation [17–19]. Landscape
changes and the loss of habitat connectivity can have
a signifcant impact on the dynamics of predator-prey in-
teractions. We may acquire insights into the resilience and
susceptibility of ecosystems under changing conditions and
improve conservation policies aiming at maintaining bio-
diversity by examining the spatiotemporal dynamics of
predator-prey models. Finally, the study of the spatiotem-
poral dynamics of a response difusive predator-prey model
is an extremely interesting research area. We can acquire
a better understanding of how spatial dynamics andmobility
impact the stability, coexistence, and persistence of predator
and prey populations by including difusion variables into
mathematical models. Tis study’s fndings have implica-
tions for biodiversity conservation, ecosystem management,
and our general knowledge of complex spatiotemporal
systems in nature and beyond [20, 21].

Te creation of spatiotemporal patterns is signifcant in
describing the dynamics of interacting populations as part of
a larger ecological community [22, 23]. Such populations are
scattered heterogeneously over their habitats, resulting in
patterns that might be stationary or nonstationary in terms
of time. Turing [24] demonstrated that difusion-driven
instability might bring out the spatial patterns in a system
of coupled difusion equations. Segel and Jackson [25]
proved that Turing’s theories can also be applied to species
diversity. Gierer and Meinhardt [26] also demonstrated
a biologically justifed formulation of the Turing-type model.
Levin and Segel [27] proposed spatial pattern formation as
one of the possible causes of planktonic fakiness.

Nevertheless, when compared to two-species food chain
models, pattern development for three-species systems has
received far less attention. In the study in [28], White and
Gilligan give adequate conditions for a difusive model to
induce difusion-driven instability. Chen and Peng [29]
established the existence of nonconstant positive steady con-
ditions to prove the endurance of static patterns for a cross-
difusionmodel.Tey also showed that without cross difusion,
the corresponding model fails to deliver any stationary pattern.

Te time-dependent spatial patterns can be studied using
the amplitude equation. It ofers us a diplomatic classif-
cation of weak nonlinear studies’ pattern formation. It is
feasible to derive the given model’s amplitude equation
using multiple-scale analysis.

A wide range of computational approaches has been
employed for the nonlinear prey-predator model, including
the fnite diference method [30], B-spline method [31],
fnite element method [32], spectral method [33], pertur-
bationmethod, variational iterationmethod (VIM) [34], and
so on. Researchers, on the other hand, have always sought to
identify the most efective numerical method [35]. A sinc
function interpolation method for the prey-predator system
has been developed.

In this article, our objective is to explore the intricate
spatiotemporal dynamics exhibited by models involving
three interacting species (specifcally, two prey species and
their shared predator). Our primary focus lies in analyzing
the consequences of the stochastic dispersal of all three
species on their respective population distributions. In
addition, we aim to delve into fundamental ecological
inquiries, such as the phenomenon of extended transience
and the infuence of habitat size on the resulting patterns.
To address these questions, we thoroughly examine
a temporal model based on reaction-difusion principles.
Tese systematic investigations hold values in discerning
and contrasting the ensuing dynamics and their underlying
causal factors, given that these three models form a se-
quence of nested systems. Te following is a breakdown of
the structure of our work. In Section 2, we introduce
a temporal model with three species—two prey species and
one predator, and discuss the dynamical behaviours briefy
as well as provide stability of the model then expand by
including spatial components, where we also present
a broad range of spatiotemporal dynamics that the model is
capable of. Te necessary condition of Turing instability as
well as bifurcation is identifed in Section 3. In Section 4,
a sinc interpolation approach has been developed using our
model. We obtain the amplitude equation by applying
a weak nonlinear analysis close to the parameter threshold
value for the patterns in Section 5. In Section 6, we perform
numerical simulations to support our analytical results.
Ten, we show the Turing patterns for some fxed pa-
rameter values in Section 7. We discussed and concluded
our work in Section 8.

2. Temporal Model and Stability

In this section, we framed a model of prey-predator in-
teractions involving three species associated with a system of
three diferential equations and discussed the stability of this
model.

da1
dt

� g1a1 1 −
a1

K1
􏼠 􏼡 − σa1a2 − ]a1b,

da2
dt

� g2a2 1 −
a2

K2
􏼠 􏼡 − φa1a2 − ηa2b,

db
dt

� μ1]a1b + μ2ηa2b − ϱb.

(1)

Te parameters used in the model are described in
Table 1.

Stability in ecology is frequently described as the capacity
to resume the initial structure or functioning following
external disturbances. Now, we fnd the equilibrium points,
confrm their existence, and examine their stability in order
to better understand the dynamical behaviour of the system
(1). Solving the following simultaneous equations yields the
equilibrium points as follows:
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g1a1 1 −
a1

K1
􏼠 􏼡 − σa1a2 − ]a1b � 0,

g2a2 1 −
a2

K2
􏼠 􏼡 − φa1a2 − ηa2b � 0,

μ1]a1b + μ2ηa2b − ϱb � 0.

(2)

System (1) admits fve equilibrium points by solving the
above equations.

E0 � (0, 0, 0), E1 � K1, 0, 0( 􏼁, E2 � 0,K2, 0( 􏼁,

E3 �
g1K1g2 − σK1K2g2

g1g2 − σφK1K2
,
g1K2g2 − φK1K2g1

g1g2 − σφK1K2
, 0􏼠 􏼡.

(3)

System (1) yields a unique positive equilibrium
E∗ � (a∗1 , a∗2 , b∗), where

a
∗
1 �

K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
,

a
∗
2 �

K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
,

b
∗

�
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
.

(4)

Te Jacobian matrix is as follows:

J a1, a2, b( 􏼁 �

g1 −
2g1a1

K1
− σa2 − ]b − σa1 − ]a1

− φa2 g2 −
2g2a2

K2
− φa1 − ηb − ηa2

μ1]b μ2ηb μ1]a1 + μ2ηa2 − ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Theorem 1. E0 � (0, 0, 0) of system (1) is always
a saddle point.

Proof. Te Jacobian matrix of (1) about E0 � (0, 0, 0) is as
follows:

J E0( 􏼁 �

g1 0 0

0 g2 0

0 0 − ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Te eigenvalues of the matrix are
Λ1 � g1,Λ2 � g2, andΛ3 � − ρ. Here, Λ1 > 0 andΛ3 < 0. As
a result, system (1)’s equilibrium point is a saddle point.

Theorem  . E1 � (K1, 0, 0) of system (1) is asymptotically
stable if g2 <φK1 and K1μ1]< ρ. Otherwise E1 is
a saddle point.

Proof. Te Jacobian matrix for E1 is given by the following
equation:

Table 1: Description of parameters.

Parameters Description
a1(t) Prey 1 population
a2(t) Prey 2 population
b(t) Predator population
g1, g2 Intrinsic growth rate
K1, K2 Carrying capacity of preys
σ,φ Competition rates between two preys
], η Te rate of predation on preys by predator
μ1, μ2 Conversion efciencies of preys
ϱ Predator’s natural death rate
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J E1( 􏼁 �

− g1 − σK1 − K1

0 g2 − φK1 0

0 0 K1μ1] − ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Te eigenvalues of the matrix are Λ1 � − g1,

Λ2 � g2 − φK1, and Λ3 � K1μ1] − ρ.
Hence, E1 is asymptotically stable when the restrictions

g2 <φK1 and Kμ1]< ρ hold and unstable when g2 >φK1 and
Kμ1]> ρ.

Theorem 3. E2 � (0,K2, 0) of system (1) is asymptotically
stable if K2 < 2g2 and μ2]K2 < ρ. Otherwise E2 is
a saddle point.

Proof. Te Jacobian matrix for E2 is given by the following
equation:

J E2( 􏼁 �

− σK2 0 0

− φK2 K2 − 2g2 − ηK2

0 0 μ2ηK2 − ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Te eigenvalues of the matrix are
Λ1 � − σK2,Λ2 � K2 − 2g2, andΛ3 � μ2]K2 − ρ.

Here, Λ1 < 0. If K2 < 2g2, then Λ2 < 0 and if μ2]K2 < ρ,
then Λ3 < 0.

Terefore, E2 is asymptotically stable if the above con-
dition holds, otherwise E2 is a saddle point.

Theorem 4. E3 � (g1K1g2 − σK1K2g2/g1g2 − σφK1K2,

g1K2g2 − φK1K2g1/g1g2 − σφK1K2, 0) of system (1) is as-
ymptotically stable if υ1 > 0, υ2 > 0, υ3 > 0, and υ1υ2 − υ3 > 0.

Proof. At E3, the Jacobian matrix is given by the following
equation:

A∗ B∗ C∗

D∗ E∗ F∗

0 0 G∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

where

A∗ � g1 −
2g1

K1

K1g1g2 − σK1K2g2

g1g2 − σφK1K2
􏼠 􏼡 − σ

K2g1g2 − φK1K2g1

g1g2 − σφK1K2
􏼠 􏼡,

B∗ � − σ
K1g1g2 − σK1K2g2

g1g2 − σφK1K2
􏼠 􏼡,

C∗ � − ]
K1g1g2 − σK1K2g2

g1g2 − σφK1K2
􏼠 􏼡,

D∗ � − φ
K2g1g2 − φK1K2g1

g1g2 − σφK1K2
􏼠 􏼡,

E∗ � g2 −
2g2

K1

K1g1g2 − φK1K2g1

g1g2 − σφK1K2
􏼠 􏼡 − φ

K1g1g2 − σK1K2g2

g1g2 − σφK1K2
􏼠 􏼡,

F∗ � − η
K1g1g2 − φK1K2g1

g1g2 − σφK1K2
􏼠 􏼡,

G∗ � μ1]
K1g1g2 − σK1K2g2

g1g2 − σφK1K2
􏼠 􏼡 + μ2η

K2g1g2 − φK1K2g1

g1g2 − σφK1K2
􏼠 􏼡 − ρ.

(10)

Te characteristic equation is as follows:

Λ3 − A∗ + E∗ + G∗( 􏼁Λ2 + E∗G∗ + A∗G∗ + A∗E∗ − D∗B∗( 􏼁Λ − A∗E∗G∗ − B∗D∗G∗( 􏼁 � 0. (11)

Tis can be written as follows:

Λ3 + υ1Λ
2

+ υ2Λ + υ3 � 0, (12)

where υ1 � − (A∗ + E∗ + G∗), υ2 � (E∗G∗ + A∗G∗
+ A∗E∗ − D∗B∗), and υ3 � (A∗(E∗G∗ − B∗(D∗G∗)).

Te equilibrium point E3 is stable by the Routh–Hurwitz
criterion if υ1 > 0, υ2 > 0, υ3 > 0, and υ1υ2 − υ3 > 0. □

Theorem 5.

E
∗

� a
∗
1 �

K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
,

a
∗
2 �

K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
,

b
∗

�
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
,

(13)
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of system (1) is locally stable if b1 > 0, b2 > 0, b3 > 0, and
b1b2 − b3 > 0.

Proof. Te Jacobian matrix at E∗ of (1) is as follows:

J E
∗

( 􏼁 �

M∗ N∗ P∗

Q∗ R∗ S∗

T∗ U∗ V∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

where

M∗ � g1 −
2g1

K1

K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡

− σ
K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡

− ]
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

N∗ � − σ
K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

P∗ � − ]
K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

Q∗ � − φ
K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

R∗ � g2 −
2g2

K2

K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡

− φ
K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡

− η
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

S∗ � − η
K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

T∗ � μ1]
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

U∗ � μ2η
g1g2 ]μ1K1 + ημ2K2 − ϱ( 􏼁 + K1K2 σφϱ − σ]g2μ1 − φηg1μ2( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡,

V∗ � μ1]
K1 ]g2ϱ + K2η g1μ2η − ]g2μ2 − σϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡

+ μ2η
K2 ηg1ϱ + K1] g2μ1] − ηg2μ1 − φϱ( 􏼁( 􏼁

σ]μ1K1K2η + φ]μ2K1K2η − ]2g2μ1K1 − η2g1μ2K2
􏼠 􏼡 − ρ.

(15)
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Te characteristic equation is as follows:

Λ3 − M∗ + R∗ + V∗( 􏼁Λ2 + R∗V∗ − U∗S∗( 􏼁 + M∗V∗ − T∗P∗( 􏼁 + M∗R∗ − Q∗N∗( 􏼁( 􏼁Λ

− M∗ R∗V∗ − S∗U∗( 􏼁 − N∗ Q∗V∗ − S∗T∗( 􏼁 + P∗ Q∗U∗ − T∗R∗( 􏼁( 􏼁 � 0.
(16)

Tis can be written as follows:

Λ3 + b1Λ
2

+ b2Λ + b3 � 0. (17)

where

b1 � − M∗ + R∗ + V∗( 􏼁,

b2 � R∗V∗ − U∗S∗( 􏼁 + M∗V∗ − T∗P∗( 􏼁 + M∗R∗ − Q∗N∗( 􏼁,

b3 � − M∗ R∗V∗ − S∗U∗( 􏼁 − N∗ Q∗V∗ − S∗T∗( 􏼁 + P∗ Q∗U∗ − T∗R∗( 􏼁( 􏼁.

(18)

Here, E∗ is stable if b1 > 0, b2 > 0, b3 > 0, and b1b2 − b3 > 0.
Te stability of (1) in the nonspatial case is described in

details above. Ten, the Turing instability of system (1) will
be investigated by incorporating difusive terms. □

3. Spatiotemporal Model and
Bifurcation Analysis

In this section, we extend (1) by introducing the random
dispersal of all three species. Te associated spatiotemporal
system is given by the following equation:

za1

zt
� D1

z
2
a1

zx
2 + g1a1 1 −

a1

K1
􏼠 􏼡 − σa1a2 − ]a1b,

za2

zt
� D2

z
2
a2

zx
2 + g2a2 1 −

a2

K2
􏼠 􏼡 − φa1a2 − ηa2b,

zb

zt
� D3

z
2
b

zx
2 + μ1]a1b + μ2ηa2b − ϱb.

(19)

with the following initial conditions:

a1(X, 0) � a10(X)≥ 0,

a2(X, 0) � a20(X)≥ 0,

b(X, 0) � b0(X)≥ 0, X ∈ Λ∗,

(20)

and homogeneous boundary conditions as follows:

za1

zn
�

za2

zn
�

zb

zn
� 0, X ∈ zΛ∗, t> 0. (21)

Here, Λ is a bounded domain in R2 with the smooth
boundary zΛ∗; z/zn represents the outward drawn normal
derivative on zΛ∗ while n is the outward unit normal vector
of zΛ∗. Te densities of the three species are denoted by
a1(x, t), a2(x, t), and b(x, t), respectively, at spatial position
x and time t. Te positive parameters di (i� 1, 2, 3) denote
the difusion coefcient of the species.

Te Jacobian matrix J0 for the model in (2) at the
equilibrium point E∗ � (a∗1 , a∗2 , b∗) is as follows:

p
∗

− σa1 − ]a1

− φa2 q
∗

− ηa2

μ1]b μ2ηb r
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

where p∗ � g1 − 2g1a1/K1 − σa2 − ]b, q∗ � g2 − 2g2a2/K2−

φa1 − ηb, and r∗ � μ1]a1 + μ2ηa2 − ϱ.
By implementing a small amplitude spatiotemporal

perturbation around the coexistence steady state
E∗ � (a∗1 , a∗2 , b∗) and by linearizing, we get the following:

p
∗

− σa1 − ]a1

− φa2 q
∗

− ηa2

μ1]b μ2ηb r
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − k
2
∗

d
∗
1 0 0

0 d
∗
2 0

0 0 d
∗
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

p
∗

− d
∗
1k

2
∗ − σa1 − ]a1

− φa2 q
∗

− d
∗
2k

2
∗ − ηa2

μ1]b μ2ηb r
∗

− d
∗
3k

2
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

Here, k∗ � (k∗x, k∗y, and k∗z) is the wave number
vector and k∗ � |k∗| represents the wave number. Te
characteristic equation of (23) is as follows:

Λ3 + P k
2
∗􏼐 􏼑Λ2 + Q k

2
∗􏼐 􏼑Λ + R k

2
∗􏼐 􏼑 � 0. (24)

Here,
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P k
2
∗􏼐 􏼑 � p

∗
+ q
∗

+ r
∗

− d
∗
1 + d
∗
2 + d
∗
3( 􏼁k

2
∗,

Q k
2
∗􏼐 􏼑 � k

4
∗ d
∗
1d
∗
2 + d
∗
2d
∗
3 − d
∗
1d
∗
3( 􏼁

+ k
2
∗ − d
∗
3q
∗

− d
∗
2r
∗

+ d
∗
3p
∗

+ d
∗
1r
∗

− d
∗
2p
∗

− d
∗
1q
∗

( 􏼁

+ q
∗
r
∗

+ η2a2μ2b − p
∗
r
∗

− μ1]
2
ba1 + p

∗
q
∗

− σφa1a2􏼐 􏼑,

R k
2
∗􏼐 􏼑 � − k

6
∗ d
∗
1d
∗
2d
∗
3( 􏼁 + k

4
∗ d
∗
2d
∗
3p
∗

+ d
∗
1d
∗
3q
∗

+ d
∗
1d
∗
2r
∗

( 􏼁

+ k
2
∗ d
∗
3σφa1a2 − d

∗
3p
∗
q
∗

− d
∗
2p
∗
r
∗

− d
∗
1q
∗
r
∗

( 􏼁

− k
2
∗d
∗
1η

2
a2μ2b − k

2
∗d
∗
2]

2
a1μ1b + p

∗
q
∗
r
∗

+ η2a2μ2bp
∗

− σφa1a2r
∗

+ σηa1a2μ1]b + ]φa1a2μ2ηb + μ1]
2
a1bq
∗
,

(25)

where P(k2
∗)> 0 if p∗ + q∗ + r∗ > (d∗1 + d∗2 + d∗3 )k2

∗.
System (2) is stable if tr(Jλ)< 0 and det(Jλ)> 0. If it fails

to meet the abovementioned conditions, the system is
considered unstable. As a result, R(k2

∗) can be reframed as
follows:

R k
2
∗􏼐 􏼑 � R3 k

2
∗􏼐 􏼑

3
+ R2 k

2
∗􏼐 􏼑

2
+ R1 k

2
∗􏼐 􏼑 + R0, (26)

where

R3 � − d1d2d3 < 0 as d1 � d2 � d3 > 0,

R2 � d
∗
1d
∗
2r
∗

+ d
∗
1d
∗
3q
∗

+ d
∗
2d
∗
3p
∗

( 􏼁> 0,

R1 � d
∗
3σφa1a2 − d

∗
1q
∗
r
∗

− d
∗
2p
∗
r
∗

− d
∗
3p
∗
q
∗

− d
∗
1η

2
a2μ2b − d

∗
2]

2
a1μ1b> 0,

R0 � p
∗
q
∗
r
∗

+ η2a2μ2bp
∗

− σφa1a2r
∗

+ σηa1a2μ1]b + ]φa1a2μ2ηb + μ1]
2
a1bq
∗
.

(27)

Here, R0 > 0 if σφa1a2r
∗ <p∗q∗r∗ + η2a2μ2bp∗

− σφa1a2r
∗ + σηa1a2μ1]b + ]φa1a2μ2ηb + μ1]2a1bq∗ and

R1 > 0 if d∗3σφa1a2 >d∗1q∗r∗ − d∗2p∗r∗ − d∗3p∗q∗ − d∗1η
2a2μ2

b − d∗2]2a1μ1b.
Terefore,

R k
2
∗􏼐 􏼑 � − R3 k

2
∗􏼐 􏼑

3
+ R2 k

2
∗􏼐 􏼑

2
+ R1 k

2
∗􏼐 􏼑 + R0. (28)

Hence, R(k2
∗)< 0 if R3 > (R0 + R1 + R2).

R(k2
∗) is a criterion for Turing bifurcation spatial pat-

terns if all other mentioned conditions have been met.
In the next section, system (2) can be solved by using the

sinc interpolation method as follows.

4. Interpolation Method

Te sinc method is a very efective numerical technique [36].
It is frequently used in many diferent areas of numerical
analysis, including quadrature, integral and diferential
equation solution, and interpolation [37]. When

singularities or unbounded domains are present, the method
may efectively handle them. As the number of bases rises,
the method’s error converges exponentially to zero.

System (2) can be solved by dividing the interval [0, 2π]

into N equally spaced nodes, each of which corresponds to
a regular region ξ � [0, 2π] × [0, 2π]. A periodic sinc
function SN [38] is defned as follows:

SN �
sin(πx/h)

(2π/h)tan(x/2)
, (29)

where h � 2π/n. On the other hand, SN(xα − xβ) is an N

order unit matrix.
For h> 0,

span SN(x − βh), β � 1, 2, . . .N􏼈 􏼉. (30)

For functions a1(x), a2(x) and b(x) defned on [0, 2π],
let IN be the interpolation operator. We have [39] the fol-
lowing equations:

a1(x, y, t) ∼ INa1(x, y, t) � 􏽘
N

α�1
􏽘

N

β�1
SN x − xα( 􏼁SN y − yα( 􏼁a1 xα, yβ, t􏼐 􏼑,

a2(x, y, t) ∼ INa2(x, y, t) � 􏽘
N

α�1
􏽘

N

β�1
SN x − xα( 􏼁SN y − yα( 􏼁a2 xα, yβ, t􏼐 􏼑,

b(x, y, t) ∼ INb(x, y, t) � 􏽘
N

α�1
􏽘

N

β�1
SN x − xα( 􏼁SN y − yα( 􏼁b xα, yβ, t􏼐 􏼑.

(31)

Te following relation holds at the collocation nodes
(xu, yv):
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a1 xu, yv, t( 􏼁 � INa1 xu, yv, t( 􏼁

� 􏽘
N

α�1
􏽘

N

β�1
SN xu − xα( 􏼁SN yv − yα( 􏼁a1 xα, yβ, t􏼐 􏼑,

a2 xu, yv, t( 􏼁 � INa2 xu, yv, t( 􏼁

� 􏽘
N

α�1
􏽘

N

β�1
SN xu − xα( 􏼁SN yv − yα( 􏼁a2 xα, yβ, t􏼐 􏼑,

b xu, yv, t( 􏼁 � INb xu, yv, t( 􏼁

� 􏽘
N

α�1
􏽘

N

β�1
SN xu − xα( 􏼁SN yv − yα( 􏼁b xα, yβ, t􏼐 􏼑.

(32)

a1
(c,d)

xu, yv, t( 􏼁 ∼ INa
(c,d)
1 xu, yv, t( 􏼁

�
z

c+d
a1 xu, yv, t( 􏼁

zx
c
zy

d
􏽘

N

α�1
􏽘

N

β�1
S

(c)
N xu − xα( 􏼁S

(d)
N yq − yα􏼐 􏼑a1 xα, yβ, t􏼐 􏼑,

a2
(c,d)

xu, yv, t( 􏼁 ∼ INa
(c,d)
2 xu, yv, t( 􏼁

�
z

c+d
a2 xu, yv, t( 􏼁

zx
c
zy

d
􏽘

N

α�1
􏽘

N

β�1
S

(c)
N xu − xα( 􏼁S

(d)
N yv − yα( 􏼁a2 xα, yβ, t􏼐 􏼑,

b
(c,d)

xu, yv, t( 􏼁 ∼ INn
(c,d)

xu, yv, t( 􏼁

�
z

c+d
n xu, yv, t( 􏼁

zx
c
zy

d
􏽘

N

α�1
􏽘

N

β�1
S

(c)
N xu − xα( 􏼁S

(d)
N yv − yα( 􏼁b xα, yβ, t􏼐 􏼑.

(33)

Here, a1, a2, and b are as follows:

a1( 􏼁11, . . . , a1( 􏼁N1, a1( 􏼁12, . . . a1( 􏼁N2, a1( 􏼁1N, a1( 􏼁2N, . . . a1( 􏼁NN􏼂 􏼃
T
,

a2( 􏼁11, . . . , a2( 􏼁N1, a2( 􏼁12, . . . a2( 􏼁N2, a2( 􏼁1N, a2( 􏼁2N, . . . a2( 􏼁NN􏼂 􏼃
T
,

(b)11, . . . , (b)N1, (b)12, . . . (b)N2, (b)1N, (b)2N, . . . (b)NN􏼂 􏼃
T
,

(34)

respectively.
As a result, (33) can be expressed as follows:

a1 � D
(0,0)

a1, a2 � D
(0,0)

a2, b � D
(0,0)

b,

a1
(c,d)

� D
(c,d)
N a1, a2

(c,d)
� D

(c,d)
N a2, b

(c,d)
� D

(c,d)
N b,

(35)

whereD(c,d)
N � Dc

N ⊗D
d
N is the matrix Kronecker product.Dc

N

and Dd
N, and D(0,0) � IN ⊗ IN. IN is an N order unit matrix.

Te discrete form of (19) can be written as follows using
equations (32), (34), and (35),
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z

zt

a1

a2

b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

d
∗
1D + g1D

(0,0) 0 0

0 d
∗
2D + g2D

(0,0) 0

0 0 d
∗
3D − ϱD(0,0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a1

a2

b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

m1 a1, a2, b( 􏼁

m2 a1, a2, b( 􏼁

m3 a1, a2, b( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(36)

Here,

a1, a2, b􏼂 􏼃 � a1( 􏼁11, . . . , a1( 􏼁N1, a1( 􏼁12, . . . a1( 􏼁NN􏼂

a2( 􏼁11, . . . , a2( 􏼁N1, a2( 􏼁12, . . . a2( 􏼁NN

(b)11, . . . , (b)N1, (b)12, . . . (b)NN􏼃,

D � D
(2,0)
N + D

(0,2)
N , E � D

(0,0)
,

m1 a1, a2, b( 􏼁, m2 a1, a2, b( 􏼁, m3 a1, a2, b( 􏼁􏼂 􏼃

� m1 a1( 􏼁11, a2( 􏼁11, (b)11( 􏼁, . . . m1 a1( 􏼁NN, a2( 􏼁NN, (b)NN( 􏼁􏼂

m2 a1( 􏼁11, a2( 􏼁11, (b)11( 􏼁, . . . m2 a1( 􏼁NN, a2( 􏼁NN, (b)NN( 􏼁

m3 a1( 􏼁11, a2( 􏼁11, (b)11( 􏼁, . . . m3 a1( 􏼁NN, a2( 􏼁NN, (b)NN( 􏼁􏼃.

(37)

Terefore,

m1 a1, a2, b( 􏼁 � g1a1 −
a1

K1
􏼠 􏼡 − αa1a2 − ]a1b,

m2 a1, a2, b( 􏼁 � g2a2 −
a2

K2
􏼠 􏼡 − φa1a2 − δa2b,

m3 a1, a2, b( 􏼁 � μ1]a1b + μ2ηa2b.

(38)

To get the numerical solution of (19), we use the nu-
merical scheme NDSolve in Mathematica software for
solving various initial conditions.

Te Turing patterns near the bifurcative value were
described using amplitude equations. For the aforemen-
tioned models, the dynamics obtained by varying the
bifurcative values were interpreted using weak nonlinear
analysis in the following section.

5. Amplitude Equation and Stability Analysis

In this section, to obtain the amplitude equations that make
up the various Turing patterns, we will use the multiple-scale
analysis method. We can then determine the necessary
conditions for the appearance of various Turing patterns by
examining the stability of the amplitude equations, allowing
us to construct various Turing patterns through numerical
simulation.

We use Taylor’s expansion to expand (2) at equilib-
rium E∗, since we know that the amplitude of the equation
cannot be determined directly. Te system solution could
be expanded as follows [40]: c � c0 + 􏽐

3
i�1Zie

ikir + Complex
conjugate. Furthermore, system (2) can be written as
follows:

zc

zt
� Lc + N(c, c), (39)

where c �

a1
a2
b

⎛⎜⎝ ⎞⎟⎠ is the variable and L � B + D∇2 is the

linear operator such that L �

ω11 ω12 ω13
ω21 ω22 ω23
ω31 ω32 ω33

⎛⎜⎝ ⎞⎟⎠ provided

ω11 � g1 − σa2 − cb + d1∇2, ω12 � − σa1, ω13 � − ca1,
ω21 � − φa2, ω22 � g2 − φa1 − ηb + d2∇2, ω23 � − ηa2,
ω31 � μ1cb, ω32 � μ2ηb, and ω33 � μ1ca1 + μ2ηa2 − ρ + d3∇2,

and N �
− g1a

2
1/K

0
0

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ is the nonlinear term.

WhenΩ approachesΩc, we must examine the dynamical
behaviour and then expand as follows:

Ωc − Ω � εΩ1 + ϵ2Ω2 + . . . , (40)

where ϵ is a sufciently small parameter and Ω is the
critical value.

As the series form of ϵ, we expand c and N as follows:
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c �

a1

a2

b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ϵ +

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ϵ2 + . . . ,

N �

− g1 a
2
1􏼐 􏼑1

K
ε2 +

− g1 a1( 􏼁1 a2( 􏼁1
K

+ a
3
1􏼐 􏼑1􏼠 􏼡ε3 + o ε4􏼐 􏼑

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(41)

Here, L can be expressed as L � Lc + (Ωc − Ω).

Let

T0 � t,

T1 � ϵt,

T2 � ϵ2t, . . . ,

(42)

such that z/zt � z/zT0 + ϵz/zT1 + ϵ2z/zT2 + . . .

Ti is a dependent variable that we use as a base for our
time calculation, whereas amplitude is a slow variable.

zW

zt
� ϵ

zW

zT1
+ ϵ2

zW

zT2
+ . . . , (43)

By incorporating the prior equations into (19) and
extending to diferent orders of ε, we get the following:

ε: Lc

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0,

ε2: Lc

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

z

zT1

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− Ω1M

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

− g1a
2
1

K

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ε3: Lc

a1( 􏼁3

a2( 􏼁3

(b)3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

z

zT1

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

z

zT2

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− Ω1M

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− Ω2M

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

− g1a
2
1

K

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

− g1a1a2

K

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(44)

An example of frst order ϵ is considered. Since the initial
linear operator of the system is Lc, then ((a1)1, (a2)1, (b)1)

T

is the linear combination of the eigenvectors corresponding
to the zero eigenvalue.

a1

a2

b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 􏽘

3

i�1

xi

yi

zi

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠e
ikir + Complex conjugate, (45)

and have deduced that xi � Hyi. Assuming yi � 1 and
zi � 0, let xi � H.

a1( 􏼁1

a2( 􏼁1

(b)1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 􏽘

3

i�1

H

1
0

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠Wie
ikir + Complex conjugate.

(46)
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Let us now consider the ϵ2 case. By Fredholm’s solubility
condition, the vector function of the preceding equation
must be orthogonal to the operator L+

c ’s zero eigenvectors.
L+

c ’s zero eigenvectors are as follows:

1

H

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

− ikir + Complex conjugate. (47)

Te orthogonality criteria implies that

1 H 0( 􏼁e
− ikirLc

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0. (48)

By only investigating at e− ik1r in the following, we get
another case by modifying the subscripts as follows:

(B + H)
zW1

zT1
� h11H + h12 + h21H + h22( 􏼁B􏼂 􏼃W1 − (Bh + Hh)

− g1a
2
1

K
􏼠 􏼡W2W3. (49)

Te same procedures can be used to achieve the same
results as follows:

a1( 􏼁2

a2( 􏼁2

(b)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

b0

h0

g0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

bi

hi

gi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

ikir +

bii

hii

gii

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i2kir

+

b12

h12

g12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i k1− k2( )r
+

b23

h23

g23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i k2− k3( )r

+

b31

h31

g31

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i k3− k1( )r
+ Complex conjugate.

(50)

For ϵ3 case,

(B + H)
zz

zT1
+

zz

zT2
􏼠 􏼡 � Ω1z1 +Ω2w1( 􏼁 h11H + h12 + h21H + h22( 􏼁B􏼂 􏼃

− (Bh + Hh)
− g1a

2
1

K
􏼠 􏼡 Z2W3 + Z3W2( 􏼁

− hBH + hH2
+ hB + hH􏼐 􏼑

g2a
2
2

K
􏼠 􏼡 W

2
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + W

2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + W

2
3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑W1.

(51)

After simplifcation, we derive the coefcient expressions
as Ω0 � B + H, Ω∗ � Ωc − Ω/Ωc, f � − (hB + hH)

(− g1a
2
1/K), and g � (hBH + hH2 + hB + hH)(g2a

2
2/K). As

a result, the amplitude equation is as follows:

Ω0
zW1

zt
� Ω∗W1 + fW2W3 − g1 W1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ g2 W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ W3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏼐 􏼑W1,

Ω0
zW2

zt
� Ω∗W2 + fW1W3 − g1 W2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ g2 W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ W3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏼐 􏼑W2,

Ω0
zW3

zt
� Ω∗W3 + fW2W1 − g W3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ g2 W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏼐 􏼑W3.

(52)
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Te equation for the amplitude can be written as follows:

Wj � ςj exp iιj􏼐 􏼑, (53)

where the phase is ϖ � 2π/3 and the mode ςj can be defned
as ςj � |Wj|.

From (53),

zϖ
zt

� 􏽘
3

j�1

zϖj

zt
�
1
i

􏽘

3

j�1

1
Aj

zAj

zt

� −
f

Ω0
ς22ς

2
3 + ς23ς

2
1 + ς21ς

2
2􏼐 􏼑 ς1ς2ς3( 􏼁

− 1
(i cosϖ + sinϖ)

+ iΩ0( 􏼁 3Ω∗ − g1 + 2g2( 􏼁( 􏼁 W1
����2W2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ W3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓.

(54)

Considering the real part, we get the following:

Ω0
zς
zt

� − f ς22ς
2
3 + ς23ς

2
1 + ς21ς

2
2􏼐 􏼑 ς1ς2ς3( 􏼁

− 1 sinϖ. (55)

We derive the following mathematical relations by
substituting the value of (53) in (52) and taking the real part
of the equations into account as follows:

Ω0
zς1
zt

� Ω∗ϖ1 + fς2ς3 cosϖ − g1ς
3
1 − g2 ς22 + ς23􏼐 􏼑ς1,

Ω0
zς2
zt

� Ω∗ϖ2 + fς3ς1 cosϖ − g1ς
3
2 − g2 ς32 + ς21􏼐 􏼑ς2,

Ω0
zς3
zt

� Ω∗ϖ3 + fς1ς2 cosϖ − g1ς
3
3 − g2 ς21 + ς22􏼐 􏼑ς3.

(56)

When ϖ � 0 and ϖ � π, the value of f is positive and
negative, respectively. If we consider f> 0, then the system’s
pattern will be stable and defned as F0, if we consider f< 0,
then the system’s pattern will be stable and defned as Fπ . As
a result of (56), the following system of equations is obtained
as follows:

Ω0
zς1
zt

� Ω∗ϖ1 +|f|ς2ς3 − g1ς
3
1 − g2 ς22 + ς23􏼐 􏼑ς1,

Ω0
zς2
zt

� Ω∗ϖ2 +|f|ς3ς1 − g1ς
3
2 − g2 ς32 + ς21􏼐 􏼑ς2,

Ω0
zς3
zt

� Ω∗ϖ3 +|f|ς1ς2 − g1ς
3
3 − g2 ς21 + ς22􏼐 􏼑ς3.

(57)

We examine the stability properties of the amplitude
equations using (57).

Theorem 6. Te prerequisite for stationary state stability is
Ω∗ <Ω∗0 and the condition for the unstable is Ω∗ >Ω∗0 , where
Ω∗0 � 0.

Proof. Consider the stationary state to be (O), and from (57),
the prerequisite for stability is given by ς1 � ς2 � ς3 � 0 for
Ω∗ <Ω∗0 � 0 and for Ω∗ >Ω∗0 it is unstable. □

Theorem 7. Te prerequisite for stability for stripe patterns is
Ω∗ >Ω∗m and unstable if Ω∗ <Ω∗m where
Ωs � |f|2g1/(g1 − g2)

2.

Proof. Let us denote the stripe pattern as (M) and it is given
by ς1 �

������
Ω∗/g1

􏽰
and ς2 � ς3 � 0.

Consider ςj � ςm + θςj and j � (1, 2, 3).
Substitute ς1 � ςm + θς1, ς2 � θς2, and ς3 � θς3 in (57)

and replace the steady state condition. Te following are the
mathematical relationships:

Ω0
z

zt
θς1( 􏼁 � Ω∗ − 3g1ς

2
m􏼐 􏼑θς1,

Ω0
z

zt
θς2( 􏼁 � Ω∗ − 2g2ς

2
m􏼐 􏼑θς2 +|f|ςmθς3,

Ω0
z

zt
θς3( 􏼁 � Ω∗ − 2g2ς

2
m􏼐 􏼑θς3 +|f|ςmθς2.

(58)

Te characteristic equation for stripe pattern stability is
deduced from (58) as follows:

Ω∗ − 3g1ς
2
m − λ􏼐 􏼑 Ω∗ − 2g2ς

2
m − λ􏼐 􏼑

2
− |f|

2ς2m􏼚 􏼛 � 0,

(59)

where λ is the eigenvalue.
Substituting ςm �

������
Ω∗/g1

􏽰
in (64), we get the following:

− 2Ω∗ − λ( 􏼁 Ω∗ −
g2

g1
Ω∗ − λ􏼠 􏼡

2

− |f|
2Ω
∗

g1

⎧⎨

⎩

⎫⎬

⎭ � 0. (60)

We have λ1 � − 2Ω∗ and
λ2,3 � Ω∗(1 − g1/g2) + − |f|

������
Ω∗/g1

􏽰
.

If the eigenvalues are negative, the stripe patterns are
stable as follows:

Ω∗ >
|f|

2
g1

g1 − g2( 􏼁
2 � Ω∗m. (61)

Tus, the prerequisite for stability for stripe patterns is
Ω∗ >Ω∗s and unstable if Ω∗ <Ω∗m.

Theorem 8. Te hexagonal pattern is stable if Ω∗ <Ω∗f2
and

unstable if Ω∗ >Ω∗f2
, where Ω∗f2

� f2(2g1 + g2)/(g1 − g2)
2.

Proof. Substituting ς1 � ς2 � ς3 � ςh in (57), we get the
following:

ς±f �
|f| ±

�����������������

f
2

+ 4 g1 + 2g2( 􏼁Ω∗
􏽱

2 g1 + 2g2( 􏼁
. (62)

On the basis of the real value, the value of ς±f discrim-
inant must be positive and it becomes the following:

Ω∗ >
− f

2

4 g1 + 2g2( 􏼁
Ω∗f1

. (63)

Substitute ς1 � ςm + θς1 and ς2 � θς2, ς3 � θς3 in (57) and
replace the steady state condition. Te following are the
mathematical relationships:
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Ω0
z

zt
θς1( 􏼁 � w1θς1 + w2θς2 + w2θς3,

Ω0
z

zt
θς2( 􏼁 � w2θς1 + w1θς2 + w2θς3,

Ω0
z

zt
θς3( 􏼁 � w2θς1 + w2θς2 + w1θς3,

(64)

where w1 � Ω∗ − (3g1 + 2g2)ς2f and w2 � |f|ςf − 2g2ς2f.
From (64), the characteristic equation is as follows:

λ3 − 3w1λ
2

+ 3 g
2
1 − g

2
2􏼐 􏼑λ + 3g1g

2
2 − g

3
1 − 2g

3
2􏼐 􏼑 � 0.

(65)

After solving the above cubic equation, the following
eigenvalues are obtained:

λ1 � w1 + 2w2 and λ2,3 � w1 − w2. (66)

Let us examine eigenvalues’ stability conditions, say ς+
f

and ς−
f.

Case 1. ςf � ς+
f:

Substituting ς+
f from (62) in λ1 defned as

λ1 � w1 + 2w2 � Ω∗ − 3(g1 + 2g2)ς+2
f + 2|f|ς+

f, we get the
following:

λ1 � −
4Ω∗ g1 + 2g2( 􏼁 + f

2
‖f|

�����������������

f
2

+ 4Ω∗ g1 + 2g2( 􏼁

􏽱

g1 + 2g2( 􏼁
< 0.

(67)

Assume λ2 � λ3 < 0.

λ2 � λ3 � Ω∗ − 3g1ς
+2
f − |f|ς+

f

�
4Ω∗ g1 + 2g2( 􏼁

2
− 6g1f

2
− 12g1Ω

∗
g1 + 2g2( 􏼁 − 2h

2
g1 + 2g2( 􏼁 − 4|f| 2g1 + g2( 􏼁

�������
g1 + 2g2

􏽰

4 g1 + 2g2( 􏼁
2 < 0.

(68)

On simplifcation, we get the following equation:

Ω∗ �
f
2 2g1 + g2( 􏼁

g1 − g2( 􏼁
2 . (69)

Tus, the hexagonal pattern is stable if Ω∗ <Ω∗f2
.

Case 2. ςf � ς−
f:

Substitute ς−
f from (62) in λ1 defned as

λ1 � w1 + 2w2 � Ω∗ − 3(g1 + 2g2)ς− 2
f + 2|f|ς−

f, we get the
following:

λ1 � −
4Ω∗ g1 + 2g2( 􏼁 − f

2
|+|f|

�����������������

f
2

+ 4Ω∗ g1 + 2g2( 􏼁

􏽱

g1 + 2g2( 􏼁
> 0.

(70)

On comparing (67) and (70), λ1 is positive. Now, cal-
culating λ2 and λ3, we get the following:

λ2 � λ3 � Ω∗ − 3g1ς
− 2
f − |f|ς−

f

�
4Ω∗ g1 + 2g2( 􏼁

2
− 6g1f

2
− 12g1Ω

∗
g1 + 2g2( 􏼁 − 2h

2
g1 + 2g2( 􏼁 + 4|f| 2g1 + g2( 􏼁

���������

g1 + 2g2( 􏼁

􏽱

4 g1 + 2g2( 􏼁
2 < 0.

(71)

Again comparing (68) and (71), we get (71) as positive.
As a result, when ςf � ς−

f, all eigenvalues turn positive,
which assures the instability of hexagonal patterns.

Now, the system can be simulated numerically in
a 350× 350 2D square lattice.

6. Numerical Computation

Analytical studies are never completed unless the results are
numerically validated. System (2) is simulated by the ODE
solver, and the results are displayed with parameter values.
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Various numerical results are shown to validate the ana-
lytical stability analysis presented in the preceding sections.
Te analyses have been carried out with positive parameter
values. As shown in the images below, we use a variety of
parameter values to acquire a better understanding of the
dynamics of system (2). Te numbers specifed for the
parameters are not based on feld data, and they are purely
hypothetical parameters meant to depict the system’s dy-
namic behaviour.

Te density plot graph depicts the interplay of prey
and predator populations at various geographical regions.
Overlapping density plots of both species allow for the
identifcation of locations with more strong predator-prey
interactions. Places with high predator density and low
prey density may indicate signifcant predation pressure,
whereas places having high prey density and low predator
density may indicate prey refuge or favourable breeding
grounds.

Let us examine model (2) with the following parameter
values g1 � 1.3,K1 � 5, σ � 0.027, ] � 0.08, g2 � 0.856,K2 �

5,φ � 0.002, η � 0.09, μ1 � 0.1, μ2 � 12, and ϱ � 1.2. From
Figures 1 and 2, it is clear that both populations survive for
the long term. In addition, Figure 1 demonstrates that the
periodic solution emerges for the frst prey, second prey, and
predator. Consider the same set of parameters as above and
slightly change the values of the intrinsic growth rate such
that g1 � 1.5 and g2 � 0.5. From Figure 2, it is noticeable
that all three species oscillate at a certain time interval then it
becomes stable. Figures 1 and 2 are qualitatively equivalent.
Te outcomes of the remaining instances with instances II
and III parameters are qualitatively equivalent. Te sole
distinction is the duration of the fuctuation period. It ap-
pears that being close to steady states is critical, even if the
steady state is unstable. Only then can the species cohabit in
an oscillating fashion and prevent a large fuctuation (or
blooming). It is concluded that prey 1, prey 2, and predator
populations coexist simultaneously.

Now, we assume the following parameters c1 � 1.5,K1 �

15, α � 0.027, c � 0.08, c2 � 1.9,K2 � 15, β � 0.002, δ � 0.09,

w1 � 0.1, w2 � 1.2, and ρ � 1.2. Figure 3, shows that the
population persists and are stable.

For Figures 4 and 5, let the initial conditions be
x0 � 1.2, y0 � 1.8, and z0 � 2.4, and all other constants are 1.
From Figure 4, it is noticed that even whenK1 is set to a peak
value, prey 1 persists at zero level. Tat is, the prey pop-
ulation vanishes for a large value of K1, while the other two
populations oscillate at time t. Similarly, Figure 5 shows that
for the carrying capacity K1 � 20, prey 1 remains at zero
level and vanishes. A periodic solution occurs between prey
2 and the predator. Te dynamics of the predator species
hunting the prey species are also visible in Figure 5(c). Te
solution consists of multiple layers within the support and
generates periodic patterns.

Now, if we decrease the value of the conversion co-
efcient μ2, it leads to the extinction of the predator, while
the prey population remains constant, which is shown in
Figure 6. Similarly, from Figure 7, when the growth rate is
increased, the prey population disappears while the predator
population endures and remains stable. Only circular

patterns exist within the solution’s support in Figure 7(c). It
is also possible to observe that the predator population is
chasing the prey population which leads to the extinction
of prey.

7. Pattern Formation

Tis section examines simulations of system (2) computa-
tionally, proving that difusion creates spatial patterns.
Turing patterns can appear in ecological systems as spatially
diferent zones of high and low population densities,
resulting in elaborate patterns that resemble stripes, dots, or
other complex structures. Te appearance of Turing patterns
in prey-predator models emphasises the relevance of spatial
dynamics and reveals a more complete knowledge of eco-
logical interactions. Te emergence of patterns for specifc
parameter values and difusion coefcients of (19) is studied,
demonstrating how difusion can cause a stable steady state
to become unstable. Te simulation proceeds by randomly
or predefned distributing predator and prey populations
over the geographical region. Te system of diferential
equations is then numerically solved, which advances the
populations in time. Te difusion parameters contribute to
the expansion of populations at each time step, allowing
predators and prey to travel and distribute throughout the
domain.

Patterns develop in the population distributions as the
experiment proceeds. Depending on the model’s unique
characteristics, these patterns might include spatial clusters,
waves, or spiral structures. Patterns occur as a result of the
intricate interplay between predator-prey interactions, dif-
fusion processes, and the system’s underlying nonlinear
dynamics. Contour plots, showing the number of predators
and prey at diferent places, can be used to visualise the
simulated patterns. Tis visualisation gives insights on the
population’s geographical organisation and structure
throughout time.

We provide here numerical demonstrations to further
clarify the prior theoretical results using various sets of
parameters. We analyse model (2) by considering the fol-
lowing values, g1 � 0.002,K1 � 1, σ � 0.005, ] � 0.001,

g2 � 0.0001, K2 � 1,φ � 0.01, η � 0.02, μ1 � 0.001, μ2 �

0.0001, and ϱ � 0.00011. When the difusion parameters d1,
d2, and d3 are increased from 0.01 to 50, four basic dynamics
such as chaos, intermittent chaos, smooth oscillatory state,
and stationary behaviour emerge which are shown in
Figures 8– Figure 10.

Troughout the prey-predator concept, a pattern is
formed when both prey and predator difuse at diferent
times in three-dimensional space. Figure 11 depicts the
coexistence of spot and stripe patterns at intervals of 0, 0.1,
0.2, and 0.8.

Figure 12 illustrates that predator death rates infuence
the pattern of spatial distribution. We get a pattern for t �

500 and choose difusion coefcients d1 � 5 and d2 � 0.2.
Tere are blue and brown spot patterns. In Figure 12(a), blue
spots indicate high population density and brown spots
indicate low population density, whereas in Figure 12(b),
both populations are equal.
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Figure 1: Time evolution of species in various dimensions (a) and (b). Also, (c) depicts the spatial distribution of the species.
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Figure 2: Upper panels (a and b) depict the existence of periodic solution between two preys and one predator in both two- and
three-dimensional spaces and the lower panel and (c) shows the density plot view.
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Figure 3: (a) and (b) exhibits the stability behaviour of prey and predator population when g1 � 1.5, g2 � 1.9,K1 � K2 � 15, and μ2 � 1.2.
In (c), we depict the non-Turing dynamic pattern view of the preys and predator in the spatial plane.
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Figure 4: In the upper panels (a, b), we illustrate the time series solution of (2) showing the extinction of frst prey at K1 � 20 in diferent
dimensions. In the lower panel (c), we depict the pattern formation.
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displays the pattern formations.
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We used Turing patterns in the spatial domain for
interpreting system (2). As time passes, the resulting pattern
structure will tend to stabilize. Te wave number modifes
the structure of Turing patterns in homotopy series

solutions, which is sensitive to the starting solution. In short,
as time goes by in the range of Turing pattern parameters,
the system will produce striped patterns, spot patterns, and
both striped and spot patterns at the same time.
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Figure 7: Two-dimensional time series (a, b) and non-Turing dynamic patterns (c) of (2) where the prey species dies out at μ2 � 2.
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Figure 6: (a) and (b) depict the extinction of predator at g1 � 13 and g2 � 11. In (c), we depict the two dimensional non-Turing dynamic
patterns of both the preys and predator in the xy-plane of (2).
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Figure 8: Plots illustrating stationary patterns (a–c) and contour plots (d–f) of the time evolution of the frst prey in the xy-plane of the
difusive model with the difusive values d1 � 4, d2 � 0.1, and d3 � 0.03.
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Figure 10: Predator Turing patterns of density plot (a–c) and contour plots (d–f) captured at diferent times in the xy-plane of the difusive
model with the difusive values d1 � 0.02, d2 � 6, and d3 � 15.
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Figure 9: 2D Turing dynamic patterns of density plot (a–c) and contour plots (d–f) for the second prey with the difusive values d1 � 0.3,
d2 � 5, and d3 � 50.
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8. Conclusion

In the present work, we have constructed and explored
a predator-prey model characterized by a system of difer-
ential equations incorporating reaction and difusion. Our
investigation encompassed an in-depth examination of
Turing patterns and spatial pattern formation within the
model. We conducted an extensive numerical analysis of the
Turing system, investigating how pattern generation is

afected by varying parameters. Te outcomes included the
creation of intricate spatiotemporal patterns, showcasing the
spatial complexity attainable in reaction-difusion systems,
including chaotic patterns. We further introduced an in-
novative sinc function interpolation method applicable to
three-species predator-prey systems (PPS) with intricate
behaviours. In addition, we have used Taylor’s expansion
method to obtain the amplitude equation for the reaction-
difusion system, which accurately described Turing patterns

t = 0.00 t = 0.10 t = 0.20

t = 0.30 t = 0.40 t = 0.50

t = 0.60 t = 0.70 t = 0.80

Figure 11: When time varies (t)� 0, 0.1, 0.2, 0.3, . . ., 0.8, snippets of varied spatial patterns of the frst prey are exhibited.

(a) (b)

Figure 12: Snapshots of the spatial distribution of prey 1 and 2, and predator time has been taken as t � 50 in the frst panel (a) and as
t � 500 in the second panel (b), respectively.
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near the bifurcation point. Trough simulation results, we
successfully demonstrated the efectiveness of this novel
approach.

Te investigation of Turing patterns in difusive prey-
predator models provides important insights into the spatial
organisation and stability of ecological systems. Researchers
can get a better grasp of the variables impacting species
coexistence, population dynamics, and ecological stability by
studying the underlyingmechanisms and circumstances that
give birth to these patterns. Furthermore, these discoveries
have practical applications in sectors such as conservation
biology, pest control, and biodiversity protection, where
knowing spatial dynamics is critical for making ethical
choices. Tus, studying Turing patterns in difusive prey-
predator models is an important area of study in ecological
systems. Tese models improve our knowledge of compli-
cated ecological processes and contribute to the develop-
ment of sustainable management methods by accounting for
spatial dynamics. Further research into the mechanics and
consequences of Turing patterns in predator-prey dynamics
will surely contribute to a better understanding of the
complex interplay between species interactions and geo-
graphical variability.
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