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Nonlinear partial diferential equations are considered as an essential tool for describing the behavior of many natural phe-
nomena. Te modeling of some phenomena requires to work in Sobolev spaces with constant exponent. But for others, such as
electrorheological fuids, the properties of classical spaces are not sufcient to have precision. To overcome this difculty, we work
in the appropriate spaces called Lebesgue and Sobolev spaces with variable exponent. In recent works, researchers are attracted by
the study of mathematical problems in the context of variable exponent. Tis great interest is motivated by their applications in
many felds such as elastic mechanics, fuid dynamics, and image restoration. In this paper, we combine the technic of monotone
operators in Banach spaces and approximation methods to prove the existence of renormalized solutions of a class of nonlinear
anisotropic problem involving p

→
(.)− Leray–Lions operator, a graph, and L1 data. In particular, we establish the uniqueness of the

solution when the graph data are considered a strictly increasing function.

1. Introduction

Partial diferential equations (PDEs for short) are considered
a fundamental tool for modeling and thus understanding
many real-world phenomena. Tese partial diferential
equations make it possible to take into account many pa-
rameters related to the course of phenomena and the role of
these parameters. Tey also make it possible to predict,
sometimes extremely accurately, how the phenomenon
evolves over time. Tis prediction may exist in the very
special case of linear PDEs, but when the phenomenon is
modeled by a nonlinear PDE, prediction becomes almost
impossible.

Nonlinear PDEs appear in many felds including
chemistry, physics, and engineering science (see [1–5]). For
example, in [6], Gandji et al. used nonlinear equations to
study the three-dimensional Bödewadt hybrid nanofuid
fow where fuids are composed of water and hexanol. Note
that some nonhomogeneous materials such as aluminum

oxide or alumina (Al2O3) have the ability to change state
very quickly (in a few milliseconds) physically when an
electric feld of very small intensity is applied to them. To
model the behavior of these materials, classical Lebesgue and
Sobolev spaces with constant exponent are not efcient
enough to have accuracy. To this end, we commonly work in
the Lebesgue and Sobolev spaces with variable exponent.Te
properties of these nonhomogeneous materials are widely
exploited in many technological applications such as shock
absorbers and equipment rehabilitation.

Te study of PDEs with variable exponent has increased
intensively in recent years. Te importance of studying such
problems is due to the discovery of their applications in the
modeling of behavior of certain nonhomogeneous devices in
physics, mechanical process, electrorheological fuids, and
stationary thermo-rheological viscous fows of non-
Newtonian fuids (see [7–11] for more details). Tey are
also used in modeling the propagation of epidemic diseases
(see [12]) and image processing ([13]).
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In this paper, we are interested in the existence and
uniqueness of renormalized solution of the following an-
isotropic problem:

(E, f)

β(u) − 􏽘
N

i�1

z

zxi

ai x,
zu

zxi

􏼠 􏼡 + div F(u) ∋ f  in Ω,

u � 0 on zΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where Ω is an open bounded domain of RN(N≥ 3) with
Lipschitz boundary zΩ, f ∈ L1(Ω), F: R⟶ RN is locally
Lipschitz continuous, and β: R⟶ 2R is a set-valued
maximal monotone mapping such that 0 ∈ β(0). We al-
low the term β(u) to be multivalued, not necessarily defned
in the whole of R.

Under our assumptions, problem (E, f) is generally not
well posed in the framework of weak solution because F(u)

may not belong to (L1
loc(Ω))N (F is just continuous on R).

To overcome this difculty, we use the framework of
renormalized solutions which requires low regularity than
the weak one. Tis concept of solution frst appeared in the
work of Lions and Diperna [14] and used later by Lions and
Murat to tackle elliptic equation with low summability data
(i.e. when the data are L1 or a measure).

Analysis of problems involving graph data, Sobolev
space W1,p(Ω) with constant exponent, and generalized
Orlicz spaces is already a classical topic investigated since
[15–17]. Ten, diferential inclusion problems have been
extended to variable exponent setting in [18–21] and the
references therein. In [22], Akdim and Allalou ensured the
existence of renormalized solution of a problem close to
(E, f) but in the framework of weighted space.

In the literature, special cases of problem (E, f) have
been explored in the framework of anisotropic Sobolev space
(see [23–25]) and have concerned the problem below:

(P)

β(u) − 􏽘

N

i�1

z

zxi

ai x,
zu

zxi

􏼠 􏼡 ∋ f  in Ω,

u � 0 on zΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where f is a bounded Radon measure or L1-function.

Let us recall that the frst elliptic problems studied in
anisotropic Sobolev space with variable exponent were the
works of Mihailescu et al. [26, 27].

For the case where β(.) ≡ 0, Koné et al. [28, 29] used the
minimization technics to prove the existence of weak so-
lutions of problem (P) (see also [30, 31]). Te case in which
f ∈ L1(Ω) and β are continuous nondecreasing functions
from R to R is studied in [23]. In [24], Konaté and Ouaro
have proved the existence and uniqueness of an entropy
solution of problem (P) when f is a Radon measure and β is
a maximal monotone graph.

When the components of the vector p
→

� (p1, . . . , pN)

are constants, the authors in [32] studied the problem (E, f)

and established the existence and uniqueness of renor-
malized solution in the anisotropic Sobolev space W1, p

→
(Ω)

with constant components of the vector p
→. Since the

components of the vector p
→

(.) are able to vary, the
p
→

(.)− Leray–Lions operator Au � − 􏽐
N
i�1z/zxiai(x, zu/zxi)

which appears in the left-hand side of problem (E, f) is
more general than the one which appears in [32].

To our knowledge, all the previous studies dealing with
similar problem (E, f) in the framework of variable ex-
ponent spaces are focused on particular cases.

In this paper, we extend the recent works [21, 24, 25, 32]
by using the ideas developed in [21, 32]. More precisely, we
used the technic of monotone operators in Banach spaces
and approximation methods to prove the existence and
uniqueness of a renormalized solution of problem (E, f) in
the context of anisotropic space involving variable expo-
nents W1, p

→
(.)(Ω). As the novelty of this study, the com-

ponents of the vector p
→

(.) � (p1(.), . . . , pN(.)) are able to
vary and the difusion convection term div F(u) is not null.
Te main difculty we encounter is how to establish the
a priori estimates and convergence results.

Our main results rely on the following assumptions.
Troughout this paper, p

→
(.) � (p1(.), . . . , pN(.)) is

a vector such that the components pi(.): Ω⟶ R are
continuous functions (for any i � 1, . . . , N) satisfying

1<p
−
i ≔ inf

x∈Ω
pi(x)≤p

+
i ≔ sup

x∈Ω
pi(x)<∞, (3)

and we set

pM(x) ≔ max p1(x), . . . , pN(x)( 􏼁  and pm(x) ≔ min p1(x), . . . , pN(x)( 􏼁. (4)

For any i � 1, . . . , N, let ai: Ω × R⟶ R be a Car-
athéodory function verifying the following assumptions.

Tere exists positive constants C1, C2, C3 such that

(i) For a.e. x ∈ Ω and for every ξ ∈ R,

ai(x, ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1 ji(x) +|ξ|
pi(x)− 1

􏼐 􏼑, (5)

where ji is a nonnegative function in Lpi
′(.)(Ω), with

1/pi(x) + 1/pi
′(x) � 1.

(ii) For ξ, η ∈ R with ξ ≠ η and for every x ∈ Ω,

ai(x, ξ) − ai(x, η)( 􏼁(ξ − η)≥
C2|ξ − η|

pi(x)
, if |ξ − η|≥ 1,

C2|ξ − η|
p−

i , if |ξ − η|< 1.

⎧⎨

⎩ (6)
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(iii) For ξ ∈ R and a.e. x ∈ Ω,

ai(x, ξ).ξ ≥C3|ξ|
pi(x)

. (7)

We assume that

p(N − 1)

N(p − 1)
<p

−
i <

p(N − 1)

N − p
,
p

+
i − p

−
i − 1

p
−
i

<
p − N

p(N − 1)
, (8)

􏽘

N

i�1

1
p

−
i

> 1, (9)

where N/p � 􏽐
N
i�11/p

−
i .

Tis paper is structured as follows. In Section 2, we recall
some fundamental preliminaries which are useful in this
work and we give our main results. In Section 3 we study the

case where f ∈ L∞(Ω). In Section 4, we study the existence
and uniqueness of a renormalized solution when f ∈ L1(Ω).
Finally, in Section 5, we give an example for illustrating our
abstract result.

2. Preliminary and Main Results

Tis section is devoted to some defnitions and basic
properties of anisotropic Lebesgue with Sobolev spaces and
variable exponents. Set

C+(Ω) � p ∈ C(Ω): min
x∈Ω

p(x)> 1􏼨 􏼩. (10)

For any p ∈ C+(Ω), the variable exponent Lebesgue
space is defned by

L
p(.)

(Ω) ≔ u: Ω⟶ R a measurable  function  such  that 􏽚
Ω

|u|
p(x)dx<∞􏼚 􏼛, (11)

endowed with the so-called Luxemburg norm

|u|p(.) ≔ inf λ> 0: 􏽚
Ω

u(x)

λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

dx≤ 1􏼨 􏼩. (12)

Te p(.)-modular of the space Lp(.)(Ω) is the mapping
ρp(.): Lp(.)(Ω)⟶ R defned by

ρp(.)(u) ≔ 􏽚
Ω

|u|
p(x)dx. (13)

For any u ∈ Lp(.)(Ω), we have (see [33, 34])

min |u|
p−

p(.); |u|
p+

p(.)􏼚 􏼛≤ ρp(.)(u)≤max |u|
p−

p(.); |u|
p+

p(.)􏼚 􏼛.

(14)

For any u ∈ Lp(.)(Ω) and v ∈ Lq(.)(Ω), with 1/p(x) +

1/q(x) � 1 for any x ∈ Ω, we have the Hölder type inequality

􏽚
Ω

uvdx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
p

− +
1
q

−􏼠 􏼡|u|p(.)|v|q(.). (15)

If Ω is bounded and p, q ∈ C+(Ω) such that p(x)≤ q(x)

for any x ∈ Ω, then the embedding Lp(.)(Ω)⟶ Lq(.)(Ω) is
continuous (see [35], Teorem 2.8).

We defned the anisotropic Sobolev space with variable
exponent as follows:

W
1, p
→

(.)
(Ω) ≔ u ∈ L

pM(.)
(Ω):

zu

zxi

∈ L
pi(.)

(Ω), i � 1, . . . , N􏼨 􏼩,

(16)

which is a separable and refexive Banach space (see [26])
under the norm

‖u‖
p

→
(.)

� |u|pM(.) + 􏽘
N

i�1

zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌pi(.)

. (17)

We have the following embedding results.

Theorem 1 (see [33], Corollary 2.1). Let Ω ⊂ RN(N≥ 3) be
a bounded open set and for all
i � 1, . . . , N, pi ∈ L∞(Ω), pi(x)≥ 1 a.e. x ∈ Ω. Ten, for any
q ∈ L∞(Ω) with q(x)≥ 1 a.e. x ∈ Ω such that

ess inf
x∈Ω

pM(x) − q(x)( 􏼁> 0, (18)

we have the compact embedding

W
1, p

→
(.)

(Ω)⟶ L
q(.)

(Ω). (19)

We defned the numbers

q �
N(p − 1)

N − 1
,

q
∗

�
N(p − 1)

N − p
�

Nq

N − q
.

(20)

Theorem 2 (see [36]). Let p1, . . . , pN ∈ [1,∞);
g ∈W1,(p1 ,...,pN)(Ω) and

q � (p)
∗
, if  (p)

∗ <N,

q ∈ [1,∞), if  (p)
∗ ≥N.

􏼨 (21)

Ten, there exists a constant C4 > 0 depending on
N, p1, . . . , pN if p<N and also on q and meas(Ω) if p≥N

such that

‖g‖Lq(Ω) ≤C4 􏽙

N

i�1
‖g‖LpM (Ω) +

zg

zxi

��������

��������Lpi (Ω)

􏼢 􏼣

1/N

, (22)

where 1/p � 􏽐
N
i�1pi and (p)∗ � Np/N − p.

Te Marcinkiewicz space Mq(Ω)(1< q< +∞) is in-
troduced as the set of measurable function g: Ω⟶ R for
which the distribution
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λg(k) ≔ meas x ∈ Ω: |g(x)| > k􏼈 􏼉, k≥ 0, (23)

satisfes the following:

λg(k)≤Ck
− q

, for  some  f inite  constant C> 0. (24)

We will use the following pseudonorm in Mq(Ω).

‖g‖Mq(Ω) ≔ inf C> 0: λg(k)≤Ck
− q

,∀k> 0􏽮 􏽯. (25)

We defned the truncation function Tk, (k> 0) by

Tk(s) � max − k, min k; s{ }{ }. (26)

We observe that limk⟶+∞Tk(s) � s and
|Tk(s)| � min |s|; k{ }.

For any v ∈W1, p
→

(.)(Ω), we use v instead of v|zΩ for the
trace of v on zΩ.

Set T1, p
→

(.)(Ω) as the set of the measurable functions
u: Ω⟶ R such that for any k> 0, Tk(u) ∈W1, p

→
(.)(Ω).

Lemma 1 (see [30]). Let g be a nonnegative function in
W1, p

→
(.)(Ω). Assume p<N and there exists a constant C> 0

such that

􏽚
Ω

Tk(g)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p−

Mdx + 􏽘
N

i�1
􏽚

|g|≤k{ }

zg

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p−
i

dx≤C(k + 1), (27)

for every k> 0.
Ten, there exists a constant D, depending on C such that

‖g‖Mq∗(Ω) ≤D, (28)

where q∗ � N(p − 1)/N − p.
We introduce some useful functions as follows.
For r ∈ R, let r+ ≔ max(r, 0) and sign+

0 be the function
defned by

sign+
0(r) �

1, if   r> 0,

0, if   r≤ 0.
􏼨 (29)

Let hl: R⟶ R be defned by
hl(r) ≔ min((l + 1 − |r|)+, 1) for each r, l ∈ R.

For σ > 0, we defne H+
σ : R⟶ R by

H
+
σ(r) �

0, if   r< 0,

1
σ

r, if  0≤ r≤ σ,

1, if   r> σ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

and Hσ : R⟶ R by

Hσ(r) �

l − 1, if   r< − σ,

1
σ

r, if − σ ≤ r≤ σ,

1, if   r> σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Now, we give our main results.

Theorem 3. Under assumptions (3)–(9) and f ∈ L1(Ω),
there exists at least one renormalized solution (u, b) to
problem (E, f) in the sense that

(i) u ∈ T1, p
→

(.)(Ω), b ∈ L1(Ω), u(x) ∈ dom(β(x)),
b(x) ∈ β(u(x)) for a.e. in Ω.

(ii) For all h ∈ C1
c(R) and φ ∈W

1, p
→

(.)

0 (Ω)∩ L∞(Ω),

􏽘

N

i�1
􏽚
Ω

ai x,
zu

zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx + 􏽚
Ω

bh(u)φdx

− 􏽚
Ω

F(u).∇[h(u)φ]dx � 􏽚
Ω

fh(u)φdx.

(32)

(iii) 􏽒
k<|u|<k+1{ }

ai(x, zu/zxi)zu/zxidx⟶ 0 as
k⟶ +∞.

Theorem 4. Let (u, b) and (􏽥u, 􏽥b) be two renormalized so-
lutions of problem (E, f). Ten,

u � 􏽥u a.e.in Ω,

b � 􏽥b a.e.in Ω.
􏼨 (33)

3. Existence Result for L‘-Data

Theorem 5. Assuming that (3)–(9) hold, f ∈ L∞(Ω), then
the problem (E, f) admits at least one renormalized solution.

Proof. We demonstrate Teorem 5 in fve steps.

Step 1. Approximate problem.
Let βϵ: R⟶ R be the Yosida regularization of β (see

[37]), defned by βϵ � 1/ϵ(I − (I + ϵβ)− 1) such that 0< ϵ≤ 1.
We consider the approximate problem

Eϵ, f( 􏼁

βϵ T1/ϵ uϵ( 􏼁( 􏼁 + ϵ arctan uϵ( 􏼁 − 􏽘
N

i�1

z

zxi

ai x,
zuϵ
zxi

􏼠 􏼡 − divF T1/ϵ uϵ( 􏼁( 􏼁 � f  in Ω,

uϵ � 0 on zΩ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)
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Lemma 2. Te problem (Eϵ, f) has at least one weak solution

uϵW
1, p
→

(.)

0 (Ω) in the sense that

􏽚
Ω

􏽘

N

i�1
ai x,

zuϵ
zxi

􏼠 􏼡
zφ
zxi

dx + 􏽚
Ω

βϵ T1/ϵ uϵ( 􏼁 + ϵ arctan uϵ( 􏼁(( 􏼁φdx

+􏽚
Ω

F T1/ϵ uϵ( 􏼁( 􏼁.∇φdx � 〈f,φ〉,

(35)

where φ ∈W
1, p
→

(.)

0 (Ω)∩L∞(Ω) and 〈., .〉 denotes the du-

ality pairing between W
1, p
→

(.)

0 (Ω) and (W
1, p
→

(.)

0 (Ω))∗.

Proof. We defne the operators A1,ϵ, A2,ϵ, and

Aϵ: � A1,ϵ + A2,ϵ, acting from W
1, p

→
(.)

0 (Ω) into its dual

(W
1, p
→

(.)

0 (Ω))∗ as follows:

〈A1,ϵu,φ〉 � 〈Au,φ〉 + 􏽚
Ω

βϵ T1/ϵ(u) + ϵ arctan uϵ( 􏼁(( 􏼁φdx,∀u,φ ∈W
1, p
→

0 (Ω), (36)

where

〈Au,φ〉 � 􏽚
Ω

􏽘

N

i�1
ai x,

zuϵ
zxi

􏼠 􏼡
zφ
zxi

dx,

〈A2,ϵu,φ〉 � − 􏽚
Ω

F T1/ϵ(u)( 􏼁.∇φdx,∀u, φ ∈W
1, p
→

0 (Ω).

(37)

Reasoning as in [25] (see also [21, 32]), we can prove that
the operator Aϵ is pseudomonotone, coercive, and bounded.
Ten, we deduce from [38] (Teorem 2.7) that Aϵ is sur-

jective. Since f ∈ (W
1, p
→

(.)

0 (Ω))∗, it follows that the problem

(Eϵ, f) admits at least one solution uϵ ∈W
1, p

→
(.)

0 (Ω).
Taking into account the monotonicity of ai and βϵ and

following the same lines as in [21, 32], we establish the
following comparison principle which will be essential in the
proof of uniqueness of the solution. □

Proposition 1. Let f, 􏽥f∈ L∞(Ω) and uϵ, 􏽥uϵ∈W
1, p

→
(.)

0 (Ω)

such that uϵ is a solution of (Eϵ, f) and 􏽥uϵ is a solution of
(Eϵ,

􏽥f). Ten, the following comparison principle holds:

ϵ􏽚
Ω

( arctan uϵ( 􏼁 − arctan 􏽥uϵ( 􏼁
+ ≤􏽚
Ω

(f − 􏽥f)sign+
0 uϵ − 􏽥uϵ( 􏼁.

(38)

Remark 1 (see [21, 32]). By assuming that f≤ 􏽥f a.e. inΩ, an
immediate consequence of the proposition above is the
inequality uϵ ≤ 􏽥uϵ. In addition, we have
βϵ(T1/ϵ(uϵ))≤ βϵ(T1/ϵ( 􏽥uϵ)) a.e. in Ω.

Step 2. A apriori estimates.

Lemma 3 (see [25]). If uϵ is a solution of problem (Eϵ, f),
then

􏽘

N

i�1
􏽚

uϵ| |≤ k{ }

zuϵ
zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)

dx≤
k‖f‖∞

C5
,

βϵ T1/ϵ uϵ( 􏼁( 􏼁
����

����∞≤ ‖f‖∞,

􏽘

N

i�1
􏽚

l<uϵ| |< l+k{ }
ai x,

zuϵ
zxi

􏼠 􏼡
zuϵ
zxi

dx≤ k􏽚
uϵ| |> l{ }

|f|dx

􏽚
uϵ| |≤ k{ }
∇Tk uϵ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p−

mdx≤C6,

(39)

where k, C5, C6 > 0.

Lemma 4 (see [23, 30]). Tere exist some constants
C7, C8 > 0 such that

(i) ‖uϵ‖Mq∗(Ω)≤C7.
(ii) ‖(zuϵ/zxi)‖Mp−

i
q/p

(Ω)
≤C8,∀i � 1, . . . , N.

Remark 2 (see [25]). Tere exist C9, C10 > 0 such that

􏽘

N

i�1
􏽚
Ω

zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)

dx≥C9∇u‖‖
p−

m

Lp−
m (Ω)

− Nmeas(Ω),

􏽘

N

i�1
􏽚

l< uϵ| |< l+k{ }
ai x,

zuϵ
zxi

􏼠 􏼡
zuϵ
zxi

dx≤ k‖f‖∞ uϵ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ l􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C10(k)l
− p−

m .

(40)

Step 3. Convergence results.

Lemma 5 (see [23, 25]). Assume that 0< ϵ≤ 1 and uϵ is
a solution of (Eϵ, f). Ten, there exist u ∈W

1, p
→

(.)

0 (Ω) and
b ∈ L∞(Ω) such that for a non-relabelled subsequence of
(uϵ)0< ϵ≤ 1 as ϵ↓0,
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uϵ⟶ u  in L p
→

(.)
(Ω)  and a.e.  in Ω;

zuϵ
zxi

  converges  in measure  to  the weak partial gradi ent of  u;

ai x,
zuϵ
zxi

􏼠 􏼡⟶ ai x,
zu

zxi

􏼠 􏼡  in L1
(Ω) a.e.x ∈ Ω;

ai x,
zuϵ
zxi

􏼠 􏼡
zuϵ
zxi

⟶ ai x,
zu

zxi

􏼠 􏼡
zu

zxi

  in L1
(Ω)  and a.e.x ∈ Ω

and βϵ T1/ϵ uϵ( 􏼁( 􏼁⇀b weakly − ∗ in L∞(Ω).

(41)

Moreover, for any k> 0,

zTk uϵ( 􏼁

zxi

⇀
zTk(u)

zxi

  in Lpi(.)
(Ω),

ai x,
zTk uϵ( 􏼁

zxi

􏼠 􏼡⟶ ai x,
zTk(u)

zxi

􏼠 􏼡  in L1
(Ω).

(42)

Step 4. Passing to limit.
Let h ∈ C1

c(R) and ∈W
p
→

(.)

0 (Ω)∩L∞(Ω). We apply the
test function hl(uϵ)h(u)φ in (35) to get

J
1
ϵ,l + J

2
ϵ,l + J

3
ϵ,l + J

4
ϵ,l � J

5
ϵ,l, (43)

where

J
1
ϵ,l � 􏽚

Ω
βϵ T1/ϵ uϵ( 􏼁( 􏼁hl uϵ( 􏼁h(u)φdx,

J
2
ϵ,l � 􏽘

N

i�1
􏽚
Ω

ai x,
zuϵ
zxi

􏼠 􏼡
z

zxi

hl uϵ( 􏼁h(u)φ􏼂 􏼃dx,

J
3
ϵ,l � 􏽚

Ω
F T1/ϵ uϵ( 􏼁( 􏼁.∇ hl uϵ( 􏼁h(u)φ􏼂 􏼃dx,

J
4
ϵ,l � ϵ􏽚

Ω
arctan uϵ( 􏼁hl uϵ( 􏼁h(u)φdx,

J
5
ϵ,l � 􏽚

Ω
fhl uϵ( 􏼁h(u)φdx.

(44)

We frst observe that limϵ↓0J4ϵ,l � 0. Ten, letting ϵ↓0 and
l↑∞ in (43), we obtain

􏽚
Ω

􏽘

N

i�1
ai x,

zuϵ
zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx + 􏽚
Ω

bh(u)φdx

+ 􏽚
Ω

F(u).∇[h(u)φ]dx � 􏽚
Ω

fh(u)φdx,

(45)

where h ∈ C1
c(R) and φ ∈W

1, p
→

(.)

0 (Ω)∩L∞(Ω) (for the
convergence result, see [25]).

Step 5. Subdiferential argument.
To end the proof, we have (see [25, 39])

(i) u(x) ∈ dom(β(x)), b(x) ∈ β(u(x)) a.e. inΩ.
(ii) 􏽒

k<|u|<k+1{ }
ai(x, zuϵ/zxi)z/zxidx⟶ 0 as k⟶

+∞.

Remark 3 (see [21]). If (u, b) is a renormalized solution of
(E, f) for second member f ∈ L∞(Ω), then
u ∈W

1, p
→

(.)

0 (Ω)∩ L∞(Ω). Moreover, u is a weak solution
of (E, f).

4. The Case of L1-Data

4.1. Proof of Teorem 1. Tis proof is made in several steps.

4.1.1. Step 1: Approximate Problem. Te frst step consists in
approximating the second member by bounded function.
For f ∈ L1(Ω) and m, n ∈ N, we defne fm,n: Ω→R by

fm,n(x) � max min(f(x), m), − n􏼈 􏼉a.e.xΩ. (46)

Note that fm,n ∈ L∞(Ω), |fm,n(x)|≤ |f(x)| a.e. inΩ and
fm,n→f in L1(Ω) as n, m→∞. We have also

fm,n

����
����1≤f‖f‖1. (47)

According to Teorem 5, the problem (E, fm,n) admits

a renormalized solution (um,n, bm,n) ∈W
1, p
→

(.)

0 (Ω) ×L∞(Ω).
Tat is,

􏽚
Ω

􏽘

N

i�1
ai x,

zum,n

zxi

􏼠 􏼡
z

zxi

h um,n􏼐 􏼑φ􏽨 􏽩dx + 􏽚
Ω

bm,nh um,n􏼐 􏼑φdx

+ 􏽚
Ω

F um,n􏼐 􏼑.∇ h um,n􏼐 􏼑φ􏽨 􏽩dx � 􏽚
Ω

fm,nh um,n􏼐 􏼑φdx,

(48)

where h ∈ C1
c(R) and φ ∈W

1, p
→

(.)

0 (Ω)∩L∞(Ω).
Our goal is to show that these approximated solutions

(um,n, bm,n) tend, as n, m go to ∞, to a couple of functions
(u, b) which are renormalized solutions of problem (E, f).
We begin by giving some useful a priori estimates.

4.1.2. Step 2: A Priori Estimates
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Lemma  . If (um,n, bm,n) is a renormalized solution of
problem (E, fm,n), then

􏽘

N

i�1
􏽚
Ω

zum,n

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)

dx≤
k‖f‖1

C5
, (49)

bm,n1 ≤
����

����f1, (50)

for k> 0 and m, n ∈ N.

Proof. For any k, l> 0, by applying hl(um,n)Tk(um,n) as test
function in (48), we obtain

􏽚
Ω

􏽘

N

i�1
ai x,

zum,n

zxi

􏼠 􏼡
z

zxi

h um,n􏼐 􏼑Tk um,n􏼐 􏼑􏽨 􏽩dx + 􏽚
Ω

bm,nh um,n􏼐 􏼑Tk um,n􏼐 􏼑dx

+ 􏽚
Ω

F um,n􏼐 􏼑.∇ h um,n􏼐 􏼑Tk um,n􏼐 􏼑􏽨 􏽩dx � 􏽚
Ω

fm,nh um,n􏼐 􏼑Tk um,n􏼐 􏼑dx.

(51)

Using the same arguments as used in the proof of
Lemma 2, we get (49).

For the proof of (50), see [21, 32, 39]. □

Remark 4 (see [21, 32, 39]). Letting m, n go to∞, we get the
following convergences.

bm,n⟶ b  in L1
(Ω)  and a.e.in Ω,

um,n⟶ u a.e.in Ω,
(52)

where u: Ω⟶ R is a measurable function.
Te next lemma will be used to show that u is fnite a.e.

in Ω.

Lemma 7. If (um,n, bm,n) is a renormalized solution of
(E, fm,n), then there exists a constant C13 > 0, not depending
on m, n ∈ N, such that

um,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ l􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C13l
− p−

m( ), (53)

for all l≥ 1.

Proof. Using Remark 2, we get

um,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ l􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C p
−
m, N( 􏼁l

p−
m 􏽘

N

i�1
􏽚
Ω

zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)

dx + N.meas(Ω)⎛⎝ ⎞⎠,

(54)

where m, n ∈ N and C(p−
m, N) is a constant coming from

Sobolev embedding in (19). From (49) and (54), we
deduce (53). □

Remark 5. u is fnite a.e. inΩ and b ∈ β(u) a.e. inΩ. Indeed,
the proof relies on Lemma 4.6 and subdiferential argument
(see [21, 32, 39] for details).

Remark 6. If (um,n, bm,n) is a renormalized solution of
(E, fm,n), choosing h](um,n)Tk(um,n − Tl(um,n)) as a test
function in (48), discarding positive terms, and letting ] go
to ∞, we obtain

􏽘

N

i�1
􏽚

l<um,n| |< l+k
ai x,

zum,n

zxi

􏼠 􏼡
zum,n

zxi

dx≤ k 􏽚
um,n| |> l{ }∩ |f|< δ{ }

|f|dx + 􏽚
|f|>δ{ }

|f|dx􏼠 􏼡, (55)

for any k, l, δ > 0. Now using (53) in (55), we get

􏽘

N

i�1
􏽚

l<um,n| |< l+k
ai x,

zum,n

zxi

􏼠 􏼡
zum,n

zxi

dx≤ δkC13l
− p−

m − 1( ) + k􏽚
|f|>δ{ }

|f|dx, (56)

where k, δ > 0, l≥ 1, and m, n ∈ N.

4.1.3. Step 3: Basic Convergence

Lemma 8 (see [25], Lemma 3). For i � 1, . . . , N and
m, n ∈ N, if (um,n, bm,n) is a renormalized solution of
(E, fm,n), then there exists a subsequence (m(n))n such that
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posing fn: � fm(n),n, bn: � bm(n),n, un: � um(n),n, there ex-

ists u ∈W
1, p

→
(.)

0 (Ω) such that u ∈ dom(β) a.e. in Ω and the
convergences below hold:

un⟶ u  in measure and a.e.in Ω,

zun

zxi

  converges inmeasure to theweak partial gradi ent of  u,

ai x,
zun

zxi

􏼠 􏼡⟶ ai x,
zu

zxi

􏼠 􏼡  in L1
(Ω) a.e.x ∈ Ω.

(57)

More over, for any k> 0,

ai x,
z

zxi

Tk un( 􏼁􏼠 􏼡⟶ ai x,
z

zxi

Tk(u)􏼠 􏼡  in L1
(Ω)  strongly and in Lpi

′(.)
(Ω)weakly. (58)

4.1.4. Step 4: Strong Convergence

Remark 7. Arguing as in [25] (Lemma 1), we obtain equality
(iii), namely,

lim
l⟶ +∞

􏽚
l<|u|<l+1{ }

ai x,
zu

zxi

􏼠 􏼡
zu

zxi

dx � 0. (59)

To complete the proof of Teorem 3, it remains to verify
(ii). To this end, we choose hl(un)h(u)φ as test function in
(48) to obtain

I
1
n,l + I

2
n,l + I

3
n,l � I

4
n,l, (60)

where

I
1
n,l � 􏽚

Ω
bnhl un( 􏼁h(u)φdx,

I
2
n,l � 􏽚

Ω
􏽘

N

i�1
ai x,

zun

zxi

􏼠 􏼡
z

zxi

hl un( 􏼁h(u)φ􏼂 􏼃dx,

I
3
n,l � 􏽚

Ω
F un( 􏼁.∇ hl un( 􏼁h(u)φ􏼂 􏼃dx,

I
4
n,l � 􏽚

Ω
fnhl un( 􏼁h(u)φ dx.

(61)

Letting n go to ∞ and using Lemma 7, we obtain

lim
n⟶ +∞

I
1
n,l � 􏽚

Ω
bhl(u)h(u)φdx,

lim
n⟶ +∞

I
4
n,l � 􏽚

Ω
fhl(u)h(u)φdx.

(62)

By rewriting as follows:

I
2
n,l � I

2,1
n,l + I

2,2
n,l , (63)

where

I
2,1
n,l � 􏽘

N

i�1
􏽚
Ω

hl un( 􏼁ai x,
zun

zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx,

I
2,2
n,l � 􏽘

N

i�1
􏽚
Ω

hl
′ un( 􏼁h(u)φai x,

zun

zxi

􏼠 􏼡
zun

zxi

dx,

(64)

and reasoning as in [25], we obtain

lim
n⟶∞

I
2,1
n,l � 􏽘

N

i�1
􏽚
Ω

hl(u)ai x,
zu

zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx. (65)

From (56), we deduce that

lim
n⟶∞

I
2,2
n,l

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ h∞

����
����φ∞ δC13l

− p−
m − 1( ) + 􏽚

|f|>δ{ }
|f|dx􏼠 􏼡,

(66)

where n ∈ N and l≥ 1, δ > 0.
Split I3n,l � I3,1

n,l + I3,2
n,l , where

I
3,1
n,l � 􏽚

Ω
hl
′ un( 􏼁h un( 􏼁φF un( 􏼁􏼁.∇undx,

I
3,2
n,l � 􏽚

Ω
hl un( 􏼁F un( 􏼁.∇ h un( 􏼁φ􏼂 􏼃dx.

(67)

Passing to limit as n goes to ∞, we get

lim
n⟶∞

I
3,1
n,l � 􏽚

Ω
hl(u)F(u).∇[h(u)φ]dx,

lim
n⟶∞

I
3,2
n,l � 􏽚

Ω
hl
′(u)h(u)φF(u).∇udx.

(68)

For all δ > 0 and l≥ 1, letting n⟶∞ in (60), we obtain
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I
1
l + I

2
l + I

3
l + I

4
l + I

5
l � I

6
l , (69)

where

I
1
l � 􏽚
Ω

bhl(u)h(u)φdx,

I
2
l � 􏽘

N

i�1
􏽚
Ω

hl(u)ai x,
zTk+1(u)

zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx,

I
3
l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ h∞

����
����φ∞ δC4l

− p−
m − 1( ) + 􏽚

|f|>δ{ }
|f|dx􏼠 􏼡,∀δ > 0,

I
4
l � 􏽚
Ω

hl
′(u)h(u)φF(u).∇udx,

I
5
l � 􏽚
Ω

hl(u)F(u).∇[h(u)φ]dx,

I
6
l � 􏽚
Ω

fhl(u)h(u)φdx.

(70)

Let k> 0 such that supph ⊂ [− k, k]. Replacing u by
Tk(u) and passing to limit, as l goes to∞, in each term of
(69), we get

lim
l⟶∞

I
1
l � 􏽚
Ω

bh(u)φdx, (71)

lim
l⟶∞

I
2
l � 􏽘

N

i�1
􏽚
Ω

ai x,
zu

zxi

􏼠 􏼡
z

zxi

[h(u)φ]dx, (72)

lim
l⟶∞

I
3
l

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ‖h‖∞‖φ‖∞ 􏽚

|f|>δ{ }
|f|dx􏼠 􏼡,∀δ > 0, (73)

lim
l⟶∞

I
4
l � 0, (74)

lim
l⟶∞

I
5
l � 􏽚
Ω

F(u).∇[h(u)φ]dx, (75)

lim
l⟶∞

I
6
l � 􏽚
Ω

fh(u)φdx. (76)

Tanks to (72)–(76), we pass to the limit in (69) as
δ⟶∞, to get (32).

4.2. Proof ofTeorem 2. We highlight that the uniqueness is
more delicate and it is necessary to have additional
hypothesis.

Here we assume that β is strictly increasing, and we
prove a uniqueness result for renormalized solution of the
problem (E, f) where f ∈ L1(Ω).

Proposition 2. Let f, 􏽥f∈ L1(Ω) and (u, b) and (􏽥u, 􏽥b) be
renormalized solutions of (E, f) and (E, 􏽥f), respectively.
Ten, the following comparison principle holds:

􏽚
Ω

(b − 􏽥b)sign+
0(u − 􏽥u)dx≤􏽚

Ω
(f − 􏽥f)sign+

0(u − 􏽥u)dx.

(77)

Proof. Let δ, l> 0, H+
δ be the Lipschitz approximation of the

sign+
0 function.
Te fact that (u, b), (􏽥u, 􏽥b) are renormalized solutions

implies that Tl+1(u), Tl+1(􏽥u) ∈W
1, p

→
(.)

0 (Ω)∩ L∞(Ω) for
l> 0. Hence, H+

δ(Tl+1(u) − Tl+1(􏽥u)) is an admissible test
function.

Taking h � hl and writing the renormalized equalities
corresponding to solutions (u, b) and (􏽥u, 􏽥b), respectively,
with test function H+

δ(Tl+1(u) − Tl+1(􏽥u)) and adding up
both results, we get

I
1
l,δ + I

2
l,δ + I

3
l,δ + I

4
l,δ + I

5
l,δ � I

6
l,δ , (78)

where

I
1
l,δ � 􏽚

Ω
bhl(u) − 􏽥bhl(􏽥u)H

+
δ􏼐 􏼑 Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

I
2
l,δ � 􏽘

N

i�1
􏽚
Ω

hl
′(u)ai x,

zu

zxi

􏼠 􏼡
zu

zxi

− hl
′(􏽥u)ai x,

z􏽥u

zxi

􏼠 􏼡􏼠 􏼡.H
+
δ Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

I
3
l,δ �

1
δ

􏽘

N

i�1
􏽚

K
hl(u)ai x,

zu

zxi

􏼠 􏼡 − hl(􏽥u)ai x,
z􏽥u

zxi

􏼠 􏼡􏼠 􏼡
z

zxi

Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

I
4
l,δ � 􏽚

Ω
hl
′(u)F(u).∇u − hl

′(􏽥u)F(􏽥u).∇􏽥u( 􏼁H
+
δ Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

I
5
l,δ �

1
δ
􏽚

K
hl(u)F(u) − hl(􏽥u)F(􏽥u)( 􏼁.∇ Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

I
6
l,δ � 􏽚

Ω
fhl(u) − 􏽥fhl(􏽥u)􏼐 􏼑H

+
δ Tl+1(u) − Tl+1(􏽥u)( 􏼁dx,

(79)

with K � 0<Tl+1(u) − Tl+1(􏽥u)< δ􏼈 􏼉. Reasoning as in [21],
i.e., neglecting the positive part of I3l,δ and using the fact that

F is locally Lipschitz continuous, we can pass to the limit as
δ⟶ 0.
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Using the condition (iii) of Teorem 3, we pass to limit
as l⟶∞ to obtain (77).

To end the proof, we assume f � 􏽥f. Ten, following the
same lines as in [40], we obtain

􏽚
Ω

(b − 􏽥b)sign+
0(u − 􏽥u)dx≤ 0,

u � 􏽥u, b � 􏽥b a.e.  in Ω.

(80)

□

5. Example

An example that is covered by our assumption is the fol-
lowing anisotropic p

→
(.)-harmonic problem: set

ai x,
zu

zxi

􏼠 􏼡 �
zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)− 2
zu

zxi

,where pi(.) � p  for  any  i � 1, . . . , N,

β(u) � (u − 1)
+

− (u − 1)
−

, F � Fi( 􏼁i�1,...,N: R⟶ R
N

.

(81)

Ten, we have the problem

ll(u − 1)
+

− (u − 1)
−

− 􏽘
N

i�1

z

zxi

zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pi(x)− 2
zu

zxi

􏼠 􏼡 + div F(u) � f in Ω,

u � 0 on zΩ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(82)

ai(x, ξ) are Carathéodory functions satisfying the
growth condition (4), the coercivity (6), and the mono-
tonicity condition (5).

Since all the hypothesis of Teorem 2 are fulflled,
problem (82) has at least one solution for all ∈ L1(Ω) .

6. Conclusion

In the present study, we investigated the existence and
uniqueness of solution of a class of anisotropic nonlinear
elliptic problems defned with inclusion equation and
Dirichlet boundary condition. Governing equations are
solved by using the technic of monotone operators in
Banach spaces and approximation methods. Te novelty of
this work relies on transposing nonlinear PDEs from clas-
sical (Lebesgue and Sobolev) spaces into generalized Leb-
esgue and Sobolev spaces with variable exponents. Te main
conclusions of this work are given as follows:

(1) When the components of the vector
p
→

(.) � (p1(.), . . . , pN(.)) are able to vary, the
problem (E, f) admits an unique renormalized so-

lution in the anisotropic Sobolev space W
1, p

→
(.)

0 (Ω).
Moreover if the graph is a nondecreasing function,
the solution is unique.

(2) Te main result of this study extends the previous
works in [25, 32] in the context of anisotropic space
with variable exponent.
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[37] H. Brezis, Opérateurs maximaux monotones et semigroupes de
contraction dans les espaces de Hilbert, North Holland,
Amsterdam, Netherlands, 1973.
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