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In this paper, oscillation and asymptotic behavior of three-dimensional third-order delay systems are discussed. Some sufcient
conditions are obtained to ensure that every solution of the system is either oscillatory or nonoscillatory and converges to zero or
diverges as t goes to infnity. A special technique is adopted to include all possible cases for all nonoscillatory solutions (NOSs).
Te obtained results included illustrative examples.

1. Introduction

Diferential equations are one of the most important topics in
applied mathematics due to their multiple applications; for
example, see [1–3]. Among these equations are delay dif-
ferential equations (DDEs). DDE is an important type of
diferential equation in which the derivative of a function
depends not only on the current value of the function but also
on its past values with a fnite time delay. Terefore, ordinary
diferential equations (ODEs) are a special case of DDEs. Te
efect of the presence of delay or not afects in one way or
another the behavior of solving diferential equations; for
example, it is not possible to obtain an oscillating solution for
ODEs of the frst order, but in DDEs, this is possible.

Oscillation theory is an important branch of the
applied theory of diferential equations related to the
study of oscillating phenomena in technology and the
natural and social sciences. Tis interest is heightened by
the existence of time delays. Te presence or absence of
oscillatory solutions is one of the most important topics
in oscillatory theory for a given equation or system [4]. In
the 1840s, the development of oscillation theory for ODEs
began when Sturm’s classic work appeared, in which
oscillation comparison theorem were proved for

solutions of homogeneous linear second-order ODE
equations [5]. In 1921, the frst paper on oscillating
functional diferential equations was written by Fite [6].
In 1987, Ladde et al. [7] presented their book’s oscillation
theory of diferential equations with deviating arguments.
In 1991, Győri et al. [8] presented one of the most im-
portant books on oscillation theory in DDE, which in-
cluded many applications, followed by several books
specializing in oscillation; for example, see Bainov and
Mishev [9]. Numerous research studies and theses have
been written about the oscillation and asymptotic be-
havior of DDEs with various orders. Te reader can
see these research studies in [10–18] and the references
cited therein. However, there are few studies (books or
papers) that discuss the concept of oscillation for solving
delay equations such as Ladde et al. [7, 19], Foltynska
[20], Agarwal et al. [21], Mohamad and Abdulkareem
[22], Abdulkareem et al. [23], Akın-Bohner et al. [24],
Špániková [25], and the references cited therein.

Up to our knowledge, there is no research published
dealing with the study of almost oscillation and asymptotic
behavior of three-dimensional delay system (3D-DS) of the
third order; this is the reason why we entered into this type
of research.
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We consider the three-dimensional half-linear system as
follows:

p1(t) y1″(t)( 􏼁
α1􏼐 􏼑
′

� λq1(t)y
α1
2 τ1(t)( 􏼁,

p2(t) y2″(t)( 􏼁
α2􏼐 􏼑
′

� λq2(t)y
α2
3 τ2(t)( 􏼁,

p3(t) y3″(t)( 􏼁
α3􏼐 􏼑
′

� λq3(t)y
α3
1 τ3(t)( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t≥ t0, (1)

Te following hypotheses are assumed to be satisfed:

(i) λ ∈ 1, − 1{ },

(ii) pi,qi ∈ C([t0,∞],R+) for large t,

(iii) τi, σi ∈ C([t0,∞],R), τi(t)≤ t, and
Limt⟶∞τi(t) �∞,

(iv) τi, σi ∈ C([t0,∞],R), τi(t)≤ t, and
Limt⟶∞τi(t) �∞,

(v) αi > 0 is the ratio of two odd integers,
(vi) yi(t) ∈ C2([t0,∞]; R),

pi(t)(yi
″(t))αi ∈ C1([t0,∞]; R), i � 1, 2, 3.

A solution X(t) � (y1(t), y2(t), y3(t))T is said to os-
cillate if at least one component is oscillatory. Otherwise, the
solution is called nonoscillatory.

Tis paper consists of fve sections; in the second and
third sections, the nonoscillatory solutions (NOSs) to the
system (1) are studied with certain conditions. In the fourth
section, the system (1) oscillation is studied with certain
conditions. Finally, we give some examples that illustrate the
results.

2. NOS of System (1), Case λ = 1

In this section, we study the asymptotic behavior of NOS
with λ � 1, which we use in the following sections.

Lemma 1. Suppose that X(t) is a NOS to the system (1) with
λ � 1, and

lim sup
t⟶∞

􏽚
t

t2

􏽚
δ(s)

s

1
pi(v)

􏼠 􏼡

1/αi

dv ds �∞, i � 1, 2, 3.

(2)
Ten there are only K1‒K8 possible classes:

Proof. Suppose that X(t) is an eventual positive solution to
the system (1) (the case X(t) is an eventually negative is
similar). Ten, from (1), it follows that

p1(t) y1″(t)( 􏼁
α1􏼐 􏼑
′
≥ 0, p2(t) y2″(t)( 􏼁

α2􏼐 􏼑
′

≥ 0, p3(t) y3″(t)( 􏼁
α3􏼐 􏼑
′
≥ 0.

(3)

Tat means p1(t)(y1″(t))α1 , p2(t)(y2″(t))α2 , and
p3(t)(y3″(t))α3 are nondecreasing; hence, there exists t1 ≥ t0
such that p1(t)(y1″(t))α1 ,p2(t)(y2″(t))α2 , and
p3(t)(y3″(t))α3 are eventually positive or eventually nega-
tive. So, eight cases can be discussed, which are as follows:

Now, we discuss the cases in Table 1 successively:

(i) Since pi(t)(yi
″(t))αi > 0 and (pi(t)(yi

″(t))αi )′ ≥
0, i � 1, 2, 3, then pi(t)(yi

″(t))αi is positive non-
decreasing, then there exists bi > 0, t2 ≥ t1 such that
pi(t)(yi

″(t))αi ≥ bi

yi
″(t)≥ b

1/αi

i

1
pi(t)

􏼠 􏼡

1/αi

, t≥ t2. (4)

Integrating (4) from t to δ(t) for some continuous
function δ(t)> t, we obtain

yi
′(δ(t)) − yi

′(t)≥ b
1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds. (5)

We claim that yi
′(t)> 0 for t≥ t3 ≥ t2, otherwise if

yi
′(t)< 0. for t≥ t3 ≥ t2, then (5) becomes

yi
′(t)≤ − b

1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds. (6)

Integrating (6) from t3 to t, we get

yi(t) − yi t3( 􏼁≤ − b
1/αi

i 􏽚
t

t3

􏽚
δ(s)

s

1
pi(v)

􏼠 􏼡

1/αi

dv ds.

(7)

Letting t⟶∞ the last inequality leads to
Limt⟶∞yi(t) � − ∞, which is a contradiction.
Hence the claim was verifed and yi

′(t)> 0 and
yi
″(t)> 0, this case leads to Limt⟶∞yi(t) �∞.

Tat is (y1, y2, y3) ∈ K1.

(ii) Since ζ i(t)(yi
″(t))αi < 0 and (ζ i(t)(yi

″(t))αi )′ ≥
0, i � 1, 2, 3.
Tat is ζ i(t)(yi

″(t))αi , is negative nondecreasing. So
there are bi ≤ 0, i � 1, 2, 3, such that Limt⟶∞
ζ i(t)(yi
″(t))αi � bi ≤ 0, hence ζ i(t)(yi

″(t))α1 ≤bi,

t≥ t2 and so

yi
″(t)≤b1/αi

i

1
ζ i(t)

􏼠 􏼡

1/αi

, t≥ t2. (8)

Integrating (8) from t to δ(t) yields

yi
′(δ(t)) − yi

′(t)≤b1/αi

i 􏽚
δ(t)

t

1
ζ i(s)

􏼠 􏼡

1/αi

ds. (9)

We have two for y3′(t):

(a) If yi
′(t)> 0. For t≥ t3 ≥ t2, Ten the last in-

equality becomes

yi
′(t)≥ − b

1/αi

i 􏽚
δ(t)

t

1
ζ i(s)

􏼠 􏼡

1/αi

ds. (10)

Integrating (10) from t3 to t yields

yi(t) − yi t3( 􏼁≥ − b
1/αi

i 􏽚
t

t3

􏽚
δ(s)

t

1
ζ i(v)

􏼠 􏼡

1/αi

dv ds.

(11)
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As t⟶∞, it follows, either Limt⟶∞yi(t) �

∞, (if bi < 0) or yi(t) is bounded away from
zero (if bi � 0).

(b) yi
′(t)< 0 and yi

″(t)< 0, leads to Limt⟶∞yi(t) �

− ∞, which is a contradiction,
which means X(t) ∈ K2.

(iii) Since p1(t)(y1″(t))α1 < 0,p2(t)(y2″(t))α2 < 0 and
(pi(t)(yi

″(t))αi )′ ≥ 0, that is, pj(t)(yj
″(t))αj are

negative nondecreasing, j � 1, 2, there exists lj ≤ 0,

such that Limt⟶∞pj(t)(yj
″(t))αj � lj ≤ 0. Ten,

pj(t)(yj
″(t))αj ≤ lj, t≥ t2, thus

yj
″(t)≤ l

1/αj

j

1
pj(t)

􏼠 􏼡

1/αj

, t≥ t2, j � 1, 2. (12)

Integrating (10) from t to δ(t) for some continuous
function δ(t)> t, we obtain

yj
′(δ(t)) − yj

′(t)≤ l
1/αj

j 􏽚
δ(t)

t

1
pj(s)

􏼠 􏼡

1/αj

ds. (13)

We claim that yj
′(t)> 0, t≥ t3 ≥ t2, j � 1, 2, for otherwise

if yj
′(t)< 0, t≥ t3 ≥ t2 and yj

″(t)< 0 this implies to yj(t)< 0
and Limt⟶∞yj(t) � − ∞ which is a contradiction. Hence,
yj(t)> 0, yj

′(t)> 0, and yj
″(t)< 0. Now, p3(t)(y3″(t))α3 > 0

and (p3(t)(y3″(t))α3)′ ≥ 0, so p3(t)(y3″(t))α3 , is positive
nondecreasing, then there exists b3 > 0 and t2 ≥ t1 such that

y3″(t)≥ b
1/α3
3

1
p3(t)

􏼠 􏼡

1/α3
, t≥ t2. (14)

Integrating (14) from t to δ(t), we obtain

y3′(δ(t)) − y3′(t)≥ b
1/α3
3 􏽚

δ(t)

t

1
p3(s)

􏼠 􏼡

1/α3
ds. (15)

We claim that y3′(t)> 0 for t≥ t3 ≥ t2, otherwise if
y3′(t)< 0 for t≥ t3 ≥ t2, then the last inequality becomes

y3′(t)≤ − b
1/α3
3 􏽚

δ(t)

t

1
p3(s)

􏼠 􏼡

1/α3
ds. (16)

Integrating (16) from t3 to t

y3(t) − y3 t3( 􏼁≤ − b
1/α3
3 􏽚

t

t3

􏽚
δ(s)

s

1
p3(v)

􏼠 􏼡

1/α3
dv ds. (17)

Letting t⟶∞, then inequality (17) leads to
Limt⟶∞y3(t) � − ∞, which is a contradiction. Hence
y3′(t)> 0 and y3″(t)> 0, this case leads to Limt⟶∞y3(t) �

∞, and so X(t) ∈ K3. Analogously from the subcases (iv-
viii), one can get X(t) ∈ Kn, n � 4, 5, . . . , 8, respectively. □

3. NOS of the System (1), Case λ = −1

In this section, we study the asymptotic behavior of NOS
with λ � − 1, which we use in the following sections.

Lemma 2. Assume that X(t) is NOS of (1) with λ � − 1 and
let (2) hold. Ten there are only L1‒L8 possible classes.

Proof. Suppose that X(t) be an eventual positive solution of
(1), then (pi(t)(yi

″(t))αi )′ ≤ 0, i � 1, 2, 3, t≥ t1 ≥ t0.
Tis means thatpi(t)(yi

″(t))αi is nonincreasing, so from
Table 2, eight subcases can be discussed successively.

(i) p1(t)(y1″(t))α1 > 0,p2(t) (y2″(t))α2 > 0,p3(t)(y3″
(t))α3 > 0.
Since pi(t)(yi

″(t))αi is positively nonincreasing,
there exists li ≥ 0, i � 1, 2, 3 such that,
Limt⟶∞pi(t)(yi

″(t))αi � li ≥ 0, and then there
exists t2 ≥ t1 such that pi(t)(yi

″(t))αi ≥ li, t≥ t2,
therefore,

yi
″(t)≥ l

1/αi

i

1
pi(t)

􏼠 􏼡

1/αi

, t≥ t2. (18)

Integrating (18) from t to δ(t) for some continuous
function δ(t)> t, we obtain

yi
′(δ(t)) − yi

′(t)≥ l
1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds. (19)

We have two cases for yi
′(t).

(a) If yi
′(t)< 0, for t≥ t3 ≥ t2, in that case, we claim

that li � 0 otherwise li > 0, then (19) becomes

yi
′(t)≤ − l

1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds. (20)

Integrating (20) from t3 to t

yi(t) − yi t3( 􏼁≤ − l
1/αi

i 􏽚
t

t3

􏽚
δ(s)

s

1
pi(v)

􏼠 􏼡

1/αi

dv ds.

(21)

As⟶∞ , it follows that Limt⟶∞yi(t) � − ∞,

which is a contradiction, hence li � 0 .
(b) If yi

′(t)> 0, and yi
″(t)> 0, it follows that

Limt⟶∞yi(t) �∞. Tus, X(t) ∈ L1.

(ii) p1(t)(y1″(t))α1 < 0,p2(t) (y2″(t))α2 < 0,p3(t)(y3″
(t))α3 < 0.

then yi
″(t)< 0, i � 1, 2, 3. Since pi(t)(yi

″(t))αi , is
negative nonincreasing, then there exists bi < 0, and
t2 ≥ t1 such that pi(t)(yi

″(t))αi ≤ bi for t≥ t2,
therefore,

yi
″(t)≤ b

1/αi

i

1
pi(t)

􏼠 􏼡

1/αi

, t≥ t2. (22)

integrating (22) from t to δ(t), we obtain

yi
′(δ(t)) − yi

′(t)≤ b
1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds, (23)

We claim that yi
′(t)> 0 for ≥t3 ≥ t2 , otherwise if

yi
′(t)< 0 for t≥ t3 ≥ t2, and yi

″(t)< 0 implies that
Limt⟶∞yi(t) � − ∞, which is a contradiction, thus
yi
′(t)> 0 then (23) becomes
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yi
′(t)≥ − b

1/αi

i 􏽚
δ(t)

t

1
pi(s)

􏼠 􏼡

1/αi

ds. (24)

Integrating (24) from t3 to t

yi(t) − yi t3( 􏼁≥ − b
1/αi

i 􏽚
t

t3

􏽚
δ(s)

s

1
pi(v)

􏼠 􏼡

1/αi

dv ds.

(25)

As⟶∞ , it follows that Limt⟶∞yi(t) �∞. Tus
X(t) ∈ L2.

(iii) p1(t)(y1″(t))α1 < 0,p2(t)(y2″ (t))α2 < 0,p3(t)(y3″
(t))α3 > 0.

Ten, yj
″(t)< 0, j � 1, 2 and y3″(t)> 0. Since

pj(t)(yj
″(t))αi , are negative and nonincreasing,

then there exists bj < 0, and t2 ≥ t1 such that
pj(t)(yj

″(t))αi ≤ bj for t≥ t2, therefore,

yj
″(t)≤ b

1/αi

j

1
pj(t)

􏼠 􏼡

1/αi

, t≥ t2. (26)

Integrating (26) from t to δ(t), we obtain

yj
′(δ(t)) − yj

′(t)≤ b
1/αi

j 􏽚
δ(t)

t

1
pj(s)

􏼠 􏼡

1/αj

ds, (27)

and we claim that yj
′(t)> 0 for ≥t3 ≥ t2 , otherwise if

yj
′(t)< 0 for t≥ t3 ≥ t2, and yj

″(t)< 0 implies that
Limt⟶∞yj(t) � − ∞, which is a contradiction, thus
yj
′(t)> 0 then (27) becomes

yj
′(t)≥ − b

1/αi

j 􏽚
δ(t)

t

1
pj(s)

􏼠 􏼡

1/αj

ds. (28)

Integrating the last inequality from t3 to t yields

yj(t) − yj t3( 􏼁≥ − b
1/αi

j 􏽚
t

t3

􏽚
δ(s)

t

1
pj(v)

􏼠 􏼡

1/αj

dv ds. (29)

As⟶∞ , it follows that Limt⟶∞yj(t) �∞, j � 1, 2.
Concerning p3(t)(y3″(t))α3 > 0 and nonincreasing, so

there exists l3 ≥ 0, such that, Limt⟶∞p3(t)(y3″(t))α3

� l3 ≥ 0, then p3(t)(y3″(t))α3 ≥ l3, t≥ t2 ≥ t1 therefore

y3″(t)≥ l
1/α3
3

1
p3(t)

􏼠 􏼡

1/α3
, t≥ t2. (30)

Integrating the last inequality from t to δ(t) leads to

y3′(δ(t)) − y3′(t)≥ l
1/α3
3 􏽚

δ(t)

t

1
p3(s)

􏼠 􏼡

1/α3
ds, (31)

we have two cases for y3′(t).

(a) If y3′(t)> 0 for t≥ t3 ≥ t2, and y3″(t)> 0, it follows
that Limt⟶∞y3(t) �∞.

(b) If y3′(t)< 0 for t≥ t3 ≥ t2, we claim that l3 � 0, oth-
erwise l3 > 0, then (31) reduced to

y3′(t)≤ − l
1/α3
3 􏽚

δ(t)

t

1
p3(s)

􏼠 􏼡

1/α3
ds. (32)

Integrating (32) from t3 to t

y3(t) − y3 t3( 􏼁≤ − l
1/α3
3 􏽚

t

t3

􏽚
δ(s)

s

1
p3(v)

􏼠 􏼡

1/α3
dv ds.

(33)

As ⟶∞, it follows that Limt⟶∞y3(t) � − ∞,

which is a contradiction. Hence, (y1, y2, y3) ∈ L3.

Analogously from the subcases (iv-viii), one can get
X(t) ∈ Ln, n � 4, 5, . . . , 8, respectively. □

4. Main Results of System (1)

In this section, some theorems and corollaries are estab-
lished, which ensure that all bounded solutions of system (1)
are either oscillatory or nonoscillatory and converge to zero
as t⟶∞. On the other hand, all unbounded solutions of
system (1) are either oscillatory or nonoscillatory diverge to
infnity when t⟶∞.

Theorem 2. Suppose that λ � 1, and (2) holds in addition to

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
pi(v)

􏽚
δ(v)

v
qi(w)dw􏼠 􏼡

1/αi

dv ds �∞,

T≥ t0, i � 1, 2, 3.

(34)
Ten every bounded solution of system (1) oscillates.

Proof. Suppose that (1) has NOS X(t), so by Lemma 1, from
Table 3, there is only the class K2, can occur for t≥ t1 ≥ t0,
that is,

yi(t)> 0, yi
′(t)> 0, yi

″(t)< 0, i � 1, 2, 3. (35)

Table 1: Te eight cases of p2(t)(y2″(t))α2 , t≥ t1, i � 1, 2, 3, can occur in (1).

(i) p1(t)(y1″(t))α1 > 0 p2(t)(y2″(t))α2 > 0 p3(t)(y3″(t))α3 > 0
(ii) p1(t)(y1″(t))α1 < 0 p2(t)(y2″(t))α2 < 0 p3(t)(y3″(t))α3 < 0
(iii) p1(t)(y1″(t))α1 < 0 p2(t)(y2″(t))α2 < 0 p3(t)(y3″(t))α3 > 0
(iv) p1(t)(y1″(t))α1 < 0 p2(t)(y2″(t))α2 > 0 p3(t)(y3″(t))α3 < 0
(v) p1(t)(y1″(t))α1 > 0 p2(t)(y2″(t))α2 < 0 p3(t)(y3″(t))α3 < 0
(vi) p1(t)(y1″(t))α1 > 0 p2(t)(y2″(t))α2 > 0 p3(t)(y3″(t))α3 < 0
(vii) p1(t)(y1″(t))α1 < 0 p2(t)(y2″(t))α2 > 0 p3(t)(y3″(t))α3 > 0
(viii) p1(t)(y1″(t))α1 > 0 p2(t)(y2″(t))α2 < 0 p3(t)(y3″(t))α3 > 0
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Since y1(t), y2(t), y3(t), are increasing, so there exists
ci > 0, i � 1, 2, 3 and t2 ≥ t1 such that yi(t)≥ ci, t≥ t2.

Integrating the frst equation of system (1) from t to δ(t) for
some continuous function δ(t)> t, leads to

p1(δ(t)) y1″(δ(t))( 􏼁
α1 − p1(t) y1″(t)( 􏼁

α1 � 􏽚
δ(t)

t
q1(s)y

α1
2 τ1(s)( 􏼁ds,

y1″(t)≤ − c2
1

p1(t)
􏽚
δ(t)

t
q1(s)ds􏼠 􏼡

1/α1
.

(36)

Integrating (36) from t to δ(t) yields

y1′(δ(t)) − y1′(t)≤ − c2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(v)dv􏼠 􏼡

1/α1
ds.

(37)

Ten,

y1′(t)≥ c2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(v)dv􏼠 􏼡

1/α1
ds. (38)

Integrating the above inequality from t2 to t, we get

y1(t) − y1 t2( 􏼁≥ c2 􏽚
t

t2

􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(w)dw􏼠 􏼡

1/α1
dv ds, (39)

As t⟶∞ concerning (34), it follows from (23) that
Limt⟶∞y1(t) �∞, which is a contradiction. Similarly, it
can be shown that Limt⟶∞y2(t) �∞, Limt⟶∞y3(t) �∞,
which is a contradiction.

Tis leads to the solution X(t) oscillates. □

Theorem 3. Suppose λ � − 1, (2) and (34) hold. Ten every
bounded solution of (1) oscillates or tends to zero as t⟶∞.

Proof. Suppose that system (1) has NOS X(t) so by Lemma
1, Table 2, there is only the possible case L1 to consider for
t≥ t1 ≥ t0:

yi(t)> 0, yi
′(t)< 0, yi

″(t)> 0, i � 1, 2, 3. (40)

Since y1(t), y2(t), y3(t), are positive and decreasing, so
there exists li ≥ 0, i � 1, 2, 3 such that Limt⟶∞yi(t) � li, we

Table 2: Te classes of all NOS of (1) with λ � − 1.

Classes Sign of y
(j)

i (t) Behavior when t⟶∞

n y1′ y2′ y3′ y1″ y2″ y3″ yi, i � 1, 2, 3

L1
+ + +

+ + +
yi⟶∞

− − − pi(t)(yi
″(t))αi⟶ 0

L2 + + + − − − yi⟶∞

L3
+ + +

− − +
yi⟶∞

+ + − yj⟶∞, j � 1, 2, and p3(t)(y3″(t))α3⟶ 0

L4
+ + +

− + −
yi⟶∞

+ − + yj⟶∞, j � 1, 3, and p2(t)(y2″(t))α2⟶ 0

L5
+ + +

+ − −
yi⟶∞

− + + yj⟶∞, j � 2, 3, and p1(t)(y1″(t))α1⟶ 0

L6
+ + +

+ + −
yi⟶∞

− − + y3⟶∞ p1,2(t)(y1,2″(t))α1,2⟶ 0

L7
+ + +

− + +
yi⟶∞

+ − − y1⟶∞ p2,3(t)(y2,3″(t))α2,3⟶ 0

L8
+ + +

+ − +
yi⟶∞

− + − y2⟶∞ p1,3(t)(y1,3″(t))α1,3⟶ 0
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claim that li � 0, otherwise li > 0 hence yi(t)≥ li > 0 for
t≥ t2 ≥ t1.

Integrating the frst equation of (1) from t to δ(t) yields:

p1(δ(t)) y1″(δ(t))( 􏼁
α1 − p1(t) y1″(t)( 􏼁

α1 � − 􏽚
δ(t)

t
q1(s)y

α1
2 τ1(s)( 􏼁ds,

p1(t) y1″(t)( 􏼁
α1 ≥ l

α1
2 􏽚

δ(t)

t
q1(s)ds,

(41)

y1″(t)≥ l2
1

p1(t)
􏽚
δ(t)

t
q1(s)ds􏼠 􏼡

1/α1
. (42)

Integrating (42) from t to δ(t), we get

y1′(δ(t)) − y1′(t)≥ l2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(s)dv􏼠 􏼡

1/α1
ds.

y1′(t)≤ − l2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(s)dv􏼠 􏼡

1/α1
ds.

(43)

Integrating (43) from t2 to t, we get

y1(t) − y1 t2( 􏼁≤ − l2 􏽚
t

t2

􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(s)dw􏼠 􏼡

1/α1
dv ds. (44)

As t⟶∞ we get from (44) Limt⟶∞ y1(t) � − ∞, which
is a contradiction. Similarly, Limt⟶∞ y2(t) �

− ∞, Limt⟶∞ y3(t) � − ∞. Ten Limt⟶∞ yi(t) � 0,

i � 1, 2, 3. □

Corollary 4. Suppose that λ � 1, then (2) and (21) hold.
Ten every solution of system (1) is either oscillatory or
Limt⟶∞|yi(t)| �∞, i � 1, 2, 3.

Proof. Suppose that system (1) has a nonoscillatory solution
X(t), let yi(t)> 0, t≥ t0, i � 1, 2, 3. So by Lemma 1 and
Table 3, there are only the possible classes K1 − K8 to
consider for t≥ t1 ≥ t0. If X(t) is bounded, then by Teorem

2, it follows that X(t) is oscillatory. Otherwise, X(t) is
unbounded. □

Case 1. Suppose that X(t) ∈ K1. By Lemma 1, it follows
Limt⟶∞yi(t) �∞, i � 1, 2, 3.

Case 2. Suppose that X(t) ∈ K2. By Teorem 2,
Limt⟶∞yi(t) �∞, i � 1, 2, 3..

Case 3. Suppose that X(t) ∈ K3. Since y1(t), y2(t), y3(t),
are increasing, so there exists ci > 0, i � 1, 2, 3 and t2 ≥ t1 such
that yi(t)≥ ci, t≥ t2.

Integrating the frst equation of system (1) from t to δ(t)

for some continuous function δ(t)> t, leads to

p1(δ(t)) y1″(δ(t))( 􏼁
α1 − p1(t) y1″(t)( 􏼁

α1 � 􏽚
δ(t)

t
q1(s)y

α1
2 τ1(s)( 􏼁ds,

y1″(t)≤ − c2
1

p1(t)
􏽚
δ(t)

t
q1(s)ds􏼠 􏼡

1/α1
.

(45)

Integrating the (45) from t to δ(t), yields y1′(δ(t)) − y1′(t)≤ − c2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(v)dv􏼠 􏼡

1/α1
ds.

(46)
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Ten,

y1′(t)≥ c2 􏽚
δ(t)

t

1
p1(s)

􏽚
δ(s)

s
q1(v)dv􏼠 􏼡

1/α1
ds. (47)

Integrating the last inequality from t2 to t, we get

y1(t) − y1 t2( 􏼁≥ c2 􏽚
t

t2

􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(w)dw􏼠 􏼡

1/α1
dv ds, (48)

As t⟶∞ concerning (34), it follows from (30) that
Limt⟶∞y1(t) �∞.

Now, similarly, it can be shown that Limt⟶∞y2(t) �

∞, by Lemma 2.2, limt⟶∞y3(t) �∞.

Other cases can be handled in the same way.Te proof is
complete.

Corollary 5. Suppose that λ � − 1, i � 1, 2, 3, and (2), (40)
are held. Ten every solution of system (1) is either oscillatory
or converges to zero or tends to infnity as t⟶∞.

Proof. Suppose that system (1) has a NOSX(t) so by Lemma
2 Table 2, there are only the possible cases L1 − L8 to consider

for t≥ t1 ≥ t0. If X(t) is bounded, then by Teorem 2, it
follows that X(t) is either oscillatory or X(t)⟶ 0 as
t⟶∞. If X(t) is unbounded, then from Table 2, we
conclude that Limt⟶∞yi(t) �∞, i � 1, 2, 3. □

5. Examples

In this section, some examples illustrate the obtained results
of the system (1).

Example 1. Consider the delay system as follows:

y
‴
1 (t) �

1
2
y2(t − 3π),

y
‴
2 (t) �

1
4
y3(t − π)

y
‴
3 (t) �

1
8
y1(t − 2π),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t≥ 0,

αi � 1,pi(t) � 1, i � 1, 2, 3, τ1(t) � t − 3π, τ2(t) � t − π, τ3(t) � t − 2π,

q1(t) �
1
2
,q2(t) �

1
4
,q3(t) �

1
4
, letδ(t) � 2t.

(49)

Obviously, to see that

Table 3: Te classes of all possible NOS of system (1) with λ � 1.

Classes Sign of y
(j)

i Behavior as t⟶∞

n y1′ y2′ y3′ y1″ y2″ y3″ yi
K1 + + + + + + yi⟶∞
K2 + + + − − − pi(yi

″(t))αi⟶ 0 yi⟶∞
K3 + + + − − + pj(yj

″(t))αj⟶ 0, j � 1, 2 y3⟶∞
K4 + + + − + − y2⟶∞, pj(yj

″(t))αj⟶ 0, j � 1, 3
K5 + + + + − − y1⟶∞, pj(yj

″(t))αj⟶ 0, j � 2, 3
K6 + + + + + − y1,2⟶∞ p3(y3″(t))α3⟶ 0,

K7 + + + − + + y2,3⟶∞, p1(y1″(t))α1⟶ 0,

K8 + + + + − + y1,3⟶∞, p2(y2″(t))α2⟶ 0,
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􏽚
∞

T

1
pi(t)

􏼠 􏼡

1/αi

dt � 􏽚
∞

T
dt �∞, T≥ 0,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(w)dw􏼠 􏼡

1/α1
dv ds �

1
2
Lim
t⟶∞

􏽚
t

T
􏽚
2s

s
􏽚
2v

v
dw dv ds �∞,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p2(v)

􏽚
δ(v)

v
q2(w)dw􏼠 􏼡

1/α2
dv ds �

1
4
Lim
t⟶∞

􏽚
t

T
􏽚
2s

s
􏽚
2v

v
dw dv ds �∞,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p3(v)

􏽚
δ(v)

v
q3(w)dw􏼠 􏼡

1/α2
dv ds �

1
8
Lim
t⟶∞

􏽚
t

T
􏽚
2s

s
􏽚
2v

v
dw dv ds �∞.

(50)

Hence all conditions of Teorem 2 are satisfed, so
according to Teorem 2, every bounded solution of system
(49) is oscillatory. For instance,

(1/2 sin t/2, 1/4 cos t/2, 1/4 sin t/2)T, has an oscillatory so-
lution, as shown in Figure 1.

Example 2. Consider the delay system as follows:

e
− t/2

y1″(t)( 􏼁
1/3

􏼔 􏼕
′

� −
11

18
�
93

√ e
− t/2− 2/9

y2
1/3

(t − 2),

e
− t/3

y2″(t)( 􏼁
1/5

􏼔 􏼕
′

� −
2

5
�
95

√ e
− 3/10t− 3/10

y
1/5
3 (t − 3)

e
− t

y3″(t)( 􏼁
3/5

􏼔 􏼕
′

� −
13

10
��
645

√ e
− 11/10t− 1/5

y
3/5
1 (t − 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t≥ 0,

p1(t) � e
− t/2

,p2(t) � e
− t/3

,p3(t) � e
− t

, τ1(t) � t − 2, τ2(t) � t − 3, τ3(t) � t − 1,

q1(t) � −
11

18
�
93

√ e
− t/2− 2/9

,q2(t) � −
2

5
�
95

√ e
− 3/10t− 3/10

,q3(t) � −
13

10
��
645

√ e
− 11/10t− 1/5

,

α1 �
1
3
, α2 �

1
5
, α3 �

3
5

.

(51)

It is clear that

􏽚
∞

T

1
p1(t)

􏼠 􏼡

3

dt � 􏽚
∞

T
e

t/6dt �∞, 􏽚
∞

T

1
p2(t)

􏼠 􏼡

5

dt � 􏽚
∞

T
e

t/15dt �∞,

􏽚
∞

T

1
p3(t)

􏼠 􏼡

5/3

dt � 􏽚
∞

T
e
3t/5dt �∞, T≥ 0.

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(w)dw􏼠 􏼡

1/α1
dv ds �

11
18

�
93

√
e

(/) Lim
t⟶∞

􏽚
t

T
􏽚
2s

s
e

v/2
􏽚
2v

v
e

− 1/2wdw􏼠 􏼡

3

dv ds �∞,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p2(v)

􏽚
δ(v)

v
q2(w)dw􏼠 􏼡

1/α2
dv ds �∞,

lim sup􏽚
t

T
􏽚
δ(s)

s

1
p3(v)

􏽚
δ(v)

v
q3(w)dw􏼠 􏼡

1/α3
dv ds

t⟶∞

�∞.

(52)
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Hence all conditions of Teorem 3 satisfes, so according
to Teorem 3, every bounded solution of (1) oscillates or
tends to zero as t⟶∞. Te solution (e− t/3, e− t/3, e− t/2)T

has an nonoscillatory solution tends to zero as t⟶∞, as
shown in Figure 2.

Example 3. Consider the delay system as follows:

y1″(t)( 􏼁
3/5

􏼔 􏼕
′

�
3

5
�
85

√ e
3/5

y2
3/5

(t − 1),

e
− t/3

y2″(t)( 􏼁􏽨 􏽩
′

�
2
3
e

− 1/3t
y3(t − 2)

y3″(t)( 􏼁
1/3

􏼔 􏼕
′

�

�
33

√

3
ey

1/3
1 (t − 3),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t≥ 0,

p1(t) � 1,p2(t) � e
− t/3

,p3(t) � 1, τ1(t) � t − 1, τ2(t) � t − 2, τ3(t) � t − 3,

q1(t) �
3

5
�
85

√ e
3/5

,q2(t) �
2
3
e

− 1/3t
,q3(t) �

�
33

√

3
e,

α1 �
3
5
, α2 � 1, α3 �

1
3

.

(53)

It is clear that

0 5 10 15 20 25 35
time

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

fu
nc
tio

n

30

y1
y2
y3

Figure 1: Te solution of (1/2 sin t/2, 1/4 cos t/2, 1/4 sin t/2)T of system (49).
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Figure 2: Te solution of (e− t/3, e− t/3, e− t/2)T of system (51).
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Figure 3: Te solution of (et, 2et, 3et)T of system (53).
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􏽚
∞

0

1
p1(t)

􏼠 􏼡

5/3

dt � 􏽚
∞

0

1
p3(t)

􏼠 􏼡

3

dt � 􏽚
∞

0
dt �∞, 􏽚

∞

0

1
p2(t)

􏼠 􏼡

5

dt � 􏽚
∞

0
e

t/3dt �∞,

Limsup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p1(v)

􏽚
δ(v)

v
q1(w)dw􏼠 􏼡

1/α1
dv ds �

3e3/5

5
�
85

√􏼠 􏼡

5/3

Lim
t⟶∞

􏽚
t

T
􏽚
2s

s
􏽚
2v

v
dw dw􏼠 􏼡

5/3

dv ds �∞,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p2(v)

􏽚
δ(v)

v
q2(w)dw􏼠 􏼡

1/α2
dv ds �∞,

lim sup
t⟶∞

􏽚
t

T
􏽚
δ(s)

s

1
p3(v)

􏽚
δ(v)

v
q3(w)dw􏼠 􏼡

1/α3
dv ds �∞.

(54)

Hence all conditions of Corollary 5 satisfy, so according
to Corollary 5, every solution of (1) oscillates or tends to zero
or tends to infnity as t⟶∞. Te nonoscillatory solution
(et, 2et, 3et)T rose to infnity as t⟶∞. as shown in
Figure 3.

 . Conclusions

(i) Knowing and calculating all possible cases of pos-
itive solutions of the third-order three-dimensional
half-linear system with delay equations.

(ii) Oscillation: this trend revolves around studying and
obtaining the necessary and sufcient conditions for
obtaining the oscillation of positive solutions for
a three-dimensional half-linear system with delay
equations of the third order.

(iii) Asymptotic behavior: the required sufcient con-
ditions were drawn in this direction to obtain the
convergence to zero or divergence of all NOS of the
half-linear systems of DDEs in the third order when
t⟶∞. All the obtained results are included with
illustrative examples.
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