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In this paper, we shall establish sufcient conditions for the existence, approximate controllability, and Ulam–Hyers–Rassias
stability of solutions for impulsive integrodiferential equations of second order with state-dependent delay using the resolvent
operator theory, the approximating technique, Picard operators, and the theory of fxed point with measures of noncompactness.
An example is presented to illustrate the efciency of the result obtained.

1. Introduction

In applied mathematics, control theory is crucial; it involves
building and evaluating the control framework. Controlla-
bility analysis is used to solve a variety of real-world issues,
such as issues with rocket launchers for satellite and aircraft
control, issues with missiles and antimissile defense, and
issues with managing the economy’s infation rate. Over the
last twenty years, a lot of work has been done for con-
trollability of evolution equations [1–13].

In addition, a key aspect of the feld of mathematical
analysis study is stability analysis. Te concept of Ulam
stability is applicable in various branches of mathematical
analysis and is used in the cases where fnding the exact
solution is very difcult. A number of researchers have been
working on the study of Ulam-type stabilities of diferential
and integrodiferential equations recently, and they have
produced some remarkable fndings, see [14–16], and the
references therein.

During the past ten years, impulsive diferential equa-
tions have attracted a lot of interest. Dynamic systems that
contain jumps or discontinuities are represented using
impulsive diferential equations. In contrast, integrodifer-
ential equations are found inmany scientifc felds where it is
important to include afterefect or delay (for example, in
control theory, biology, ecology, and medicine). In fact, one
always uses integrodiferential equations to describe a model
that has heritable characteristics. As a result, these equations
have attracted a lot of attention (see for instance, [17–23]). In
[24], the authors studied some local and global existence and
uniqueness results for abstract diferential equations with
state-dependent argument.

Second-order nonautonomous diferential systems have
received a lot of interest. Tere is no need to transform
a second-order diferential system into a frst-order system
in order to solve it. Various second-order nonautonomous
diferential systems existence results are presented in
[5, 20, 25–29] and references therein.
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In [30], Balachandran and Sakthivel considered the
following integrodiferential system:

ϑ′(ς) � Zϑ(ς) +(Bu)(ς) + f ς, ϑ(ς), 
ς

0
g(ς, ε, ϑ(ε))dε ,

ϑ(0) � ϑ0, ς ∈ Θ � [0, b],

(1)

where ϑ(·) takes values in a Banach space V with the norm
·‖ ‖ and the control function u(·) is given in L2(Θ, U),
a Banach space of admissible control functions, with U being
a Banach space. g: ∇ × V⟶ V, f: Θ × V × V⟶ V are
given functions, and B is a bounded linear operator from U

into V. Here, ∇ � (ς, ε): 0⩽ ε⩽ ς⩽ b{ }.
In [8], the authors investigated the controllability of the

functional diferential equation with a random efect:

ϑ″(ς, δ) � Zϑ(ς, δ) + ψ(ς, ϑ(9, δ), δ) + Bf(ς, δ), a.e. ς ∈ R+ ≔ [0,∞),

ϑ(0, δ) � j1(δ), ϑ′(0, δ) � j2(δ),

⎧⎨

⎩ δ ∈ 5, (2)

where (5, F, P) is a complete probability space with F being
the event space and P being the probability function (see
[31], for more information), ψ: R+ × Ξ × 5⟶Ξ is a given
function, j1, j2: 5⟶Ξ are given measurable functions,
and (Ξ, | · |) is a real Banach space. f(·, δ) is the control
function defned in L2(R+,Λ), a Banach space of admissible
control functions with Λ being a Banach space, and B is

a bounded linear operator from Λ into Ξ. Te main result is
based upon a generalization of the classical Darbo fxed-
point theorem and the concept of measure of non-
compactness combined with the family of cosine operators.

Arthi and Balachandran et al. [32] considered the fol-
lowing abstract control system:

ϑ″(ς) � Zϑ(ς) + Bu(ς) + f ς, ϑρ ς,ϑς( ) , ς ∈ I � [0, a], ς≠ ςi,

ϑ0 � φ ∈ E, ϑ′(0) � η ∈ V,

△ϑ ςi(  � Ii ϑςi
 , i � 1, 2, . . . , n,

△ϑ′ ςi(  � Θi ϑςi
 , i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where L2(I, U) a Banach space of admissible control
functions with U being a Banach space and B: U⟶ V

being a bounded linear operator; the function ϑς: (− ∞,

0]⟶ V, ϑς(θ) � ϑ(ς + θ), E is the phase space;
0< ς1 < · · · < ςn < a are prefxed numbers; f: I × E⟶ V,

ρ: I × E⟶ (− ∞, a], Ii(·): E⟶ V,Θi(·): E⟶ V are
appropriate functions.

Motivated by the abovementioned works, we derive
some sufcient conditions for the existence, approximate
controllability, and Ulam-type stability for impulsive inte-
grodiferential equations of second order with state-
dependent delay described in the form:

ϑ″(ς) � Z(ς)ϑ(ς) + Ψ ς, ϑρ ς,ϑς( ), (5ϑ)(ς)  + 
ς

0
Υ(ς, ε)ϑ(ε)dε + Pu(ς), if ς ∈ Θ,

ϑ ς+
k(  − ϑ ς−

k(  � ∇k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′ ς+
k(  − ϑ′ ς−

k(  � ∇ k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′(0) � ]0 ∈ V, ϑ(ς) � Φ(ς), if ς ∈ R− ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Θ � [0, T], I � (− ∞, T], Θ � Θ\Θ̂k, and Θ̂k �

ς1, . . . , ςm , with 0 � < ς1 < ς2 < . . . < ςk < ςm+1 � T.
Z(ς): D(Z(ς)) ⊂ V⟶ V, Υ(ς, ε) are closed linear op-
erators on V, with dense domain D(Z(ς)), which is in-
dependent of ς, and D(Z(ε)) ⊂ D(Υ(ς, ε)); the operator 5 is
defned by

(5ϑ)(ς) � 
T

0
K(ς, ε, ϑ(ε))dε. (5)

Te nonlinear term Ψ: Θ × E × V⟶ V,I: R− ⟶
V, and ρ: Θ × E⟶ R are given functions. Te jumps at
the points ςk ∈ (0, T) are given by ϑ(ς+

k ) − ϑ(ς−
k ) and

ϑ′(ς+
k ) − ϑ′(ς−

k ), in the states ϑ and ϑ′, respectively, where
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ϑ(ς+
k ), ϑ(ς−

k ) stand for left and right limits of ϑ at ς−
k . Sim-

ilarly, ϑ′(ς+
k ), ϑ′(ς−

k ) stand for right and left limits of ϑ′ at ς−
k .

Te jumps at the points ς−
k are determined by the nonlinear

functions ∇k, ∇k: V⟶ V, where k � 1, 2, 3, . . . , m. Te
control function u is a given function in the Banach space of
admissible control L2(Θ, U), where U is also a Banach space.
P is a bounded linear operator from U intoV, and (V, ·‖ ‖)

is a Banach space.
Te work is organized as follows: In section two, we

recall some defnitions and facts about the resolvent oper-
ator, Picard operator, and measure of noncompactness. In
section three, we give the existence of mild solutions to the

problem (4). Section four is devoted to approximate con-
trollability of mild solution and section fve to the gener-
alized Ulam–Hyers–Rassias (U-H-R) stability. In the last
section, we present an example to illustrate our main result.

2. Preliminaries

Let C(Θ,V) be the Banach space of all continuous functions
ϑ mapping Θ into V. Let Θ0 � [0, ς1], Θk � (ςk, ςk+1],

�Θk �

[ςk, ςk+1] for k ∈ 1, . . . , m + 1{ }, u(ς+) � limς⟶ς+ u(ς). We
defne the space of piecewise continuous functions:

W � PC(I,V) � u : I⟶ V : u | R− ∈ E, u | Θk

∈ C Θk,V , such that u ς−
k(  and

u ς+
k(  exist and satisfy u ς−

k(  � u ςk( , for k � 1, . . . , m,

(6)

with the norm

ϑ‖ ‖W � sup
ς∈I

ϑ(ς)‖ ‖{ }.
(7)

Next, we consider the second-order integrodiferential
system [26]:

c″(ς) � Z(ς)c(ς) + 
ς

ε
Υ(ς, τ)c(τ)dτ, ε≤ ς≤T

c(ε) � 0, c′(ε) � x ∈ V,

(8)

for 0≤ ε≤T. We denote ∇ � (ς, ε) : 0≤ ε≤ ς≤T{ }. Let:

(B1) For each 0≤ ε≤ ς≤T,Υ(ς, ε) : D(Z)⟶ V is
a bounded linear operator, for every c ∈ D(Z),Υ(·, ·)c

is continuous and

Υ(ς, ε)c ≤ ι‖ ‖c
����

����[D(Z)]
, (9)

for ι> 0, ε, ς ∈∇.
(B2) Tere exists LΥ > 0 where
Υ ς2, ε( c − Υ ς1, ε( c

����
����≤ LΥ ς2 − ς1


 c
����

����[D(Z)]
, (10)

for all c ∈ D(Z), 0≤ ε≤ ς1 ≤ ς2 ≤T.
(B3) Tere exists b1 > 0 such that


ς

σ
S(ς, ε)Υ(ε, σ)cdε

�������

�������
≤ b1 c

����
����, for all c ∈ D(Z).

(11)

Under these conditions, it has been established that there
exists a resolvent operator (ℸ(ς, ε))ς≥ε associated with
systems (2).

Defnition 1 (see [26]). A family of bounded linear operators
(ℸ(ς, ε))ς≥ε on V is a resolvent operator for (2) if it verifes
the following:

(a) Te map ℸ: ∇⟶L(V) is strongly continuous;
ℸ(ς, ·)c is continuously diferentiable for all
c ∈ V,ℸ(ε, ε) � 0, z/zςℸ(ς, ε)|ς�ε � I and z/zςℸ
(ς, ε)|ε�ς � − I

(b) Assume ϑ∈ D(Z). Te functionℸ(·, ε)ϑ is a solution
for systems (6) and (7). Tus,

z
2

zς2
ℸ(ς, ε)ϑ � Z(ς)ℸ(ς, ε)ϑ + 

ς

ε
Υ(ς, τ)ℸ(τ, ε)ϑdτ,

(12)

for all 0≤ ε≤ ς≤T.

By (a), there are Mℸ > 0 and Mℸ > 0, such that

ℸ(ς, ε)‖ ‖≤Mℸ,
z

zε
ℸ(ς, ε)

�������

�������
≤ Mℸ, (ς, ε) ∈∇. (13)

Moreover,

G(ς, τ)ϑ � 
ς

τ
Υ(ς, ε)ℸ(ε, τ)ϑdε, ϑ∈ D(Z), 0≤ τ ≤ ς≤T

(14)

can be extended to V where

ℸ(ς, τ)ϑ � S(ς, τ) + 
ς

τ
S(ς, ε)G(ε, τ)ϑdε, for all ϑ∈ V.

(15)

Ten, there exists Lℸ > 0 where

ℸ(ς + h, τ) − ℸ(ς, τ)‖ ‖≤ Lℸ|h|, for all ς, ς + h, τ ∈ [0, T].

(16)

Let the state space (E, ·‖ ‖E) be a seminorm linear space
of functions mapping (− ∞, 0] into R, and verifying (see
[33]):
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(A1) If ϑ ∈ C and ϑ0 ∈ E, then for ς ∈ Θ:

(i) ϑς ∈ E
(ii) Tere exists H> 0 where |ϑ(ς)|≤H ϑς

����
����E

(iii) Tere exist Φ1(·) and Φ2(·): R+⟶ R+ with Φ1
continuous and bounded and Φ2 locally bounded
where

ϑς
����

����E≤Φ1(ς)sup |ϑ(ε)| : 0≤ ε≤ ς{ } +Φ2(ς) ϑ0
����

����E.

(17)

(A2) For the function ϑ in (A1), ϑς is a E-valued
continuous function on R+.
(A3) Te space E is complete. We denote
Φ1∗ � sup Φ1(ς): ς ∈ Θ , Φ2∗ � sup Φ2(ς): ς ∈ Θ ,

ℵ � max Φ1∗,Φ2∗ .

For Iθj
� R\ θj ∈ R− : if ς ∈ Θ, then (θj + ς) ∈ Θ̂k , we

defne the space

PCθ R
−
,V( ) � ϑ: R

− ⟶ V: ϑ | Iθj
is continuous, ϑ θ−

j , ϑ θ+
j  exist with ϑ θ−

j  � ϑ θj  , (18)

and the space

Cθ ≔ ℷ ∈ PCθ R
−
,V( ): lim

τ⟶− ∞
ℷ(τ) exist inV . (19)

In the following, consider E � Cθ.

Lemma 2 (see [34]). Let the following inequality holds:

ℷ(ς)≤ a(ς) + 
ς

0
b(ε)ℷ(ε)dε + 

0≤ςk<ς
βkℷ ς

−
k( , ς≥ 0,

(20)

where

ℷ, a, b ∈ PC R
+
,R

+
(  ≔ ϑ ∈ PC R

+
,R

+
( , ϑ(ς)≥ 0 ,

(21)

a is nondecreasing, b(ς)> 0, βk > 0, k ∈ N. Ten, for ς ∈ R+,
the following inequality is valid:

ℷ(ς)≤ a(ς) 
0<ςk < ς

1 + βk( exp 
ς

0
b(ε)dε , ς ∈ ςk, ςk+1 .

(22)

Defnition 3 (see [35]). Let V be a metric space.
Y : V⟶ V is a Picard operator if there exists ϑ∗ ∈ V, such
that

(i) FY � ϑ∗{ } where FY � ϑ ∈ V: Y(ϑ) � ϑ} is the
fxed point set of Y

(ii) (Yn(ϑ0))n∈N converges to ϑ∗ for all ϑ0 ∈ V

Lemma 4 (see [35]). Let ( V, d, ≤ ) be an ordered metric
space and Y: V⟶ V. We assume the following:

(i) Y is a Picard operator (FY � ϑ∗Y )

(ii) Y is an increasing operator

Ten, we have

(a) ϑ ∈ V, ϑ≤Y(ϑ)⇒ ϑ≤ ϑ∗Y
(b) ϑ ∈ V, ϑ≥Y(ϑ)⇒ ϑ≥ ϑ∗Y

Defnition 5 (see [36]). Let V be a Banach space and ΔV be
the bounded subsets of V. Te Kuratowski measure of
noncompactness is the map ζ: ΔV⟶ [0,∞] given by

ζ(Ω) � inf ϵ> 0: Ω⊆ ∪ n
i�1Ωi and diam Ωi( ≤ ϵ ; hereΩ ⊂ ΔV, (23)

where

diam Ωi(  � sup u − v‖ ‖X : u, v ∈ Ωi . (24)

Lemma 6 ([37]). IfV is a bounded subset of a Banach space
V, then for each ϵ> 0, there is a sequence ϑk 

∞
k�1 ⊂ V such

that

ζ(V)≤ 2ζ ϑk 
∞
k�1(  + ϵ. (25)

Lemma 7 (see [38]). If ϑk 
∞
k�0 ⊂ L1 is uniformly integrable,

then the function ς⟶ α( ϑk(ς) 
∞
k�0) is measurable and

ζ 
ς

0
ϑk(ε)dε 

∞

k�0
 ≤ 2

ς

0
ζ ϑk(ε) 

∞
k�0( dε. (26)

Lemma 8 (see [36]).

(i) If V ⊂ PC(Θ,V) is bounded, then ζ(V(ς))≤
αPC(V) for any ς ∈ Θ where V(ς) � u(ς): u{

∈V} ⊂ V.
(ii) IfV is piecewise equicontinuous on Θ, then ζ(V(ς))

is piecewise continuous for ς ∈ Θ, and

αPC(V) � sup ζ( �V(ς)), ς ∈ Θ . (27)
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(iii) If V ⊂ PC(Θ,V) is bounded and piecewise equi-
continuous, then ζ(V(ς)) is piecewise continuous for
ς ∈ Θ and

ζ 
ς

a
V(ε)dε)≤ 2

ς

a
ζ(V(ε))dε ς ∈ Θ, (28)

where αPC denotes the Kuratowski measure of
noncompactness in the space PC(Θ,V).

Theorem 9 (see [39]). Let Δ be a nonempty, bounded, closed,
and convex subset of a Banach space V and letY: Δ⟶ Δ be
a continuous mapping. Assume that there exists a constant
k ∈ [0, 1), such that

ζ(YM)≤ kζ(M), (29)

for any nonempty subset M of Δ. Ten,Y has a fxed point in
set Δ.

Theorem 10 (see [40]). Let ( V, d) be a nonempty complete
metric space with a contraction mapping Y: V⟶ V. Ten,
Y admits a unique fxed point x∗ in V.

3. Existence of Mild Solutions

Defnition 11. A function ϑ ∈ V is called a mild solution of
problem (1) if it satisfes

ϑ(ς) �

−
zℸ(ς, ε)

zε

 ε�0
I(0) + ℸ(ς, 0)]0

+ 
ς

0
ℸ(ς, ε) Ψ ε, ϑρ ε,ϑε( ), (5ϑ)(ε)  + Pu(ε) dε

− 
0<ςk<ς

zℸ(ς, ε)
zε


ε�ςk
∇k ϑ ς−

k( (  + 
0<ςk<ς
ℸ ς, ςk( ∇k ϑ ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Te following assumption will be needed throughout the
paper:

(C1) Ψ: Θ × E × V⟶ V is a Carathéodory function,
and there exist positive constants ξ1, ξ2 and continuous

nondecreasing functions ψ1
Ψ,ψ2
Ψ: Θ⟶ (0, +∞) such

that

Ψ ς, ϑ1, ϑ2(  − Ψ ς, ϑ3, ϑ4( 
����

����≤ ξ1ψ
1
Ψ ϑ1 − ϑ3

����
����E  + ξ2ψ

2
Ψ ϑ2 − ϑ4

����
���� , (31)

for ϑ1, ϑ3 ∈ E, ϑ2, ϑ4 ∈ V. Tere exists a positive con-
stant lΨ, such that for any bounded set Ω ⊂ V and
Ως ∈ E, and each ς ∈ R, we have

ζ Ψ ς,Ως, 5(Ω(ς))  ≤ lΨ ζ(Ω(ς)) + sup
τ∈(− ∞,0]

ζ(Ω(τ + ς)) , (32)
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with

Ψ∗ � 
ς

0
Ψ(ε, 0, 0)dε<∞, ψ1

Ψ(ς)≤ ς,

ψ2
Ψ(ς)≤ ς.

(33)

(C2) Te function K: DK × V⟶ V is continuous,
and there exists Kc1

> 0, such that

K ς, ε, ϑ1(  − K ς, ε, ϑ2( 
����

����≤Kc1
ϑ1 − ϑ2

����
����, for each (ς, ε) ∈ DK,

ϑ1, ϑ2 ∈ V.
(34)

Let

supDK
K(ς, ε, 0)‖ ‖{ } � K

∗ <∞. (35)

(C3) Assume that (B1) − (B3) hold, and there exist
Mℸ,

Mℸ ≥ 1, ζ ≥ 0, and MP > 0, such that

ℸ(ς, ε)‖ ‖Υ(V) ≤Mℸ,
zℸ(ς, ε)

zε

�������

�������Υ(V)

≤ Mℸ,

P‖ ‖ � MP.

(36)

(C4) Te functions Qi
k, jV⟶ V are continuous, and

there exist positive constants LQi
k
; k � 1, . . . , m, such

that

Q
i
k ϑ3(  − Q

i
k ϑ4( 

����
����≤

LQi
k

τ
ϑ3 − ϑ4

����
����, for all ϑ3, ϑ4 ∈ V, k � 1, . . . ,m, (37)

and


1≤k≤m+1

Q
i
k

����
����(0) � Q

∗
i < +∞, (38)

where

Q
i
k �
∇k if i � 1,

∇k if i � 2.
 (39)

(CH) Set ℸ(ρ− ) � ρ(ε,φ): (ε,φ) ∈ Θ × E, ρ(ε,φ)≤ 0 .
We assume that ρ: Θ × E⟶ R is continuous.
Moreover, we assume the following assumption:

(i) (HI) Te function ς⟶ Iς is continuous from
ℸ(ρ− ) into E, and there exists a continuous and
bounded function LI: ℸ(ρ− )⟶ (0,∞) such that

Iς
����

����E≤L
I

(ς) I‖ ‖E, for every ς ∈ ℸ ρ−
( . (40)

Remark 12 (see [41]). Te condition (HI) is verifed by
functions continuous and bounded.

Lemma 13 (see [42]). If ϑ: (− ∞, +∞)⟶ V is a function
such that ϑ0 � I, then

ϑε
����

����E≤ Φ2
∗

+ L
I

  I‖ ‖E +Φ1
∗ sup |ϑ(θ)|; θ ∈ [0, max 0, ε{ }]{ }, ε ∈ ℸ ρ−

( ∪Θ, (41)

where LI � supς∈ℸ(ρ− ) L
I(ς).

Now, we defne a measure of noncompactness in the
space W. Let us fx a nonempty bounded subset S of the
space W and × � Θk ∪ Iθk

∩ [− T, 0] . Ten, for v ∈ S,
ϵ> 0, κ1, κ2 ∈×, such that |κ1 − κ2|≤ ϵ, we denote ωT(v, ϵ) the
modulus of continuity of the function v on ×, namely,

ωT
(v, ϵ) � sup e

− κ1v κ1(  − e
− κ2v κ2( 

����
���� ; κ1, κ2 ∈ Θ ,

ωT
(S, ϵ) � sup ωT

(v, ϵ) ; v ∈ S ,

ω0(S) � lim
ϵ⟶0

ωT
(S, ϵ) .

(42)
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Consider the function χPC defned on the family of subset
of W by

χPC(S) � ω0(S) + sup e
− τΣ(ς)ζ(S(ς)) , (43)

with τ > 1 + k≥0(
MℸLQ1

k
+ MℸLQ2

k
),Σ(ς) � 8MℸlΨς and

S(ς) � v(ς) ∈ V ; v ∈ S{ }.
Te function χPC is a sublinear measure of non-

compactness on the space W. For details on the defnition
and properties of the measure of noncompactness on the

space of piecewise continuous functions PC, the reader is
referred to [43].

Theorem 14. Suppose that (C1) − (C4) and (CH) are
verifed. Ten, (1) has at least one mild solution.

Proof. We transform problem (1) into a fxed-point problem
and defne the operator k: W⟶W by

kϑ(ς) �

−
zℸ(ς, ε)

zε

 ε�0
I(0) +ℸ(ς, 0)]0

+ 
ς

0
ℸ(ς, ε) Ψ ε, ϑρ ε,ϑε( ), (5ϑ)(ε)  + Pu(ε) dε

− 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk

∇k ϑ ς−
k( (  + 

0<ςk<ς
ℸ ς, ςk( ∇k ϑ ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Let x : (− ∞, T]⟶ V be the function defned by

x(ς) �

−
zℸ(ς, ε)I(0)

zε

 ε�0
+ ℸ(ς, 0)]0, if ς ∈ Θ,

I(ς), if ς ∈ R− .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

Ten, x0 � I, and for each w ∈W, with w(0) � 0, we
denote the function �w by

�w(ς) �
w(ς), if ς ∈ R+

,

0, if ς ∈ R− .

⎧⎨

⎩ (46)

If ϑ satisfes (3), we can decompose it as
ϑ(ς) � w(ς) + x(ς), which implies ϑς � wς + xς, and the
function w(·) satisfes

w(ς) �


ς

0
ℸ(ς, ε) Ψ ε, wρ ε,wε+xε( ) + xρ ε,wε+xε( ), 5(w + x)(ε)  + Pu(ε) dε

− 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk

∇k (w + x) ς−
k( ( 

+ 
0<ςk < ς
ℸ ς, ςk( ∇k (w + x) ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)
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Set

Δ � w ∈W: w(0) � 0{ }. (48)

Let the operator k: Δ⟶ Δ be defned by

kw(ς) �


ς

0
ℸ(ς, ε) Ψ ε, wρ ε,wε+xε( ) + xρ ε,wε+xε( ), 5(w + x)(ε)  + Pu(ε) dε

− 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk

∇k (w + x) ς−
k( ( 

+ 
0<ςk<ς
ℸ ς, ςk( ∇k (w + x) ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

Te operator k has a fxed point which is equivalent to
say that k has one, so it turns to prove that k has a fxed

point. We shall check that the operator k satisfes all con-
ditions of Darbo’s theorem.

Let Πθ′ � w{ ∈ Δ: w‖ ‖Δ ≤ θ′}, with

Mℸ ξ1ψ
1
Ψ η∗θ′(  + ξ2ψ

2
Ψ �η∗  + Ψ∗ T + MPT

1/2
u‖ ‖L2

+ 
k≥0

LQi
k

+ LQ2
k

  + Q
∗
1 + Q
∗
2
⎞⎠≤ θ′,

(50)

such that η∗θ′ , �η∗ are constants, they will be specifc later.
Te set Πθ′ is bounded, closed, and convex.

Step 1: k(Πθ′) ⊂ Πθ′ .

For w ∈ Πθ′ , ς ∈ Θ and by (C1) − (C3), we have

wρ ε,wε+xε( ) + xρ ε,wε+xε( )

�����

�����
E

≤ wρ ε,wε+xε( )

�����

�����E
+ xρ ε,wε+xε( )

�����

�����E

≤Φ1(ς)sup[0,ε]|w(ς)| + Φ2(ς) + L
I

  I‖ ‖E +Φ1(ς)sup[0,ε] x(θ)‖ ‖

≤Φ∗1θ′ + Φ
∗
2 + L

I
  IE +Φ∗1 Mℸ I0

����
���� + Mℸ ]0

����
���� H

�����

�����IE

≤Φ∗1θ′ + Φ
∗
2 + L

I
+Φ∗1 Mℸ I0

����
���� + Mℸ ]0

����
���� H  I‖ ‖E

� η∗θ′,

(51)

and

5(w + x)(ε)‖ ‖≤ aKc1
θ′ + Mℸ I0

����
���� + Mℸ ]0

����
����  + aK

∗
� �η∗. (52)
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Ten,

kw(ς)
����

����≤Mℸ ξ1ψ
1
Ψ η∗θ′(  + ξ2ψ

2
Ψ �η∗  T + Ψ∗ + MPT

1/2
u‖ ‖L2

+ 
k≥0

LQi
k

+ LQ2
k

  + Q
∗
1 + Q
∗
2
⎞⎠.

(53)

Tus,
kw

����
����Δ ≤ θ′. (54)

Terefore, k(Πθ′) ⊂ Πθ′ , which implies that k(Πθ′) is
bounded.

Step 2: k is continuous.
Let wm m∈N be a sequence such that wm⟶ℷ∗ in Πθ′.
At the frst, we study the convergence of the sequences
(wm

ρ(ε,wm
ε ))m∈N, ε ∈ Θ. If ε ∈ Θ is such that ρ(ε, wε)> 0,

then we have

w
m
ρ ε,wm

ε( ) − ℷ∗ρ ε,ℷ∗ε( )

�����

�����
E
≤ w

m
ρ ε,wn

ε( ) − ℷ∗ρ ε,wm
ε( )

�����

�����
E

+ ℷ∗ρ ε,wm
ε( ) − ℷ∗ρ ε,ℷ∗ε( )

�����

�����
E

≤Φ1
∗

wm − ℷ∗
����

���� + ℷ∗ρ ε,wn
ε( ) − ℷ∗ρ ε,ℷ∗ε( )

�����

�����
E

,
(55)

which proves that wm
ρ(ε,wm

ε )⟶ℷ
∗
ρ(ε,wε)

in E, as
m⟶∞, for ε ∈ Θ where ρ(ε, wε)> 0. If ρ(ε, wε)< 0,
we get

w
m
ρ ε,wm

ε( ) − ℷ∗ρ ε,wε( )

�����

�����
E

� I
m
ρ ε,wm

ε( ) − Iρ ε,ℷ∗ε( )

�����

�����
E

� 0,

(56)

which also shows that wm
ρ(ε,wm

ε )⟶ℷ
∗
ρ(ε,wε)

in E, as
m⟶∞, for every ε ∈ Θ such that ρ(ε, wε)< 0. Ten,
for ς ∈ Θ, we have

kw
m

 (ς) − kw
∗

 (ς)
�����

�����≤Mℸ 
ς

0
‖Ψ ε, w

m
ρ ε,wm

ε( ) + xρ ε,wm
ε +xε( ), H w

m
+ x( (ε) 

− Ψ ε, w
∗
ρ ε,w∗ε( ) + xρ ε,w∗ε +xε( ) , 5 ℷ∗ + x( (ε) 

������dε

+ 
0<ςk<ς
∇k wn(ς)(  − ∇k w

∗
(ς)( 

����
����

+ 
0<ςk<ς

∇k wn(ς)(  − ∇k w
∗
(ς)( 

����
����.

(57)

Since K and Ψ are continuous, we obtain

K ς, ε, w
m

+ x( (ε)( ⟶K ς, ε, ℷ∗ + x( (ε)( , as m⟶ +∞, (58)

and

K ς, ε, w
m

+ x( (ε)(  − K ς, ε, ℷ∗ + x( (ε)( 
����

����≤K∗c1 w
m

(ε) − ℷ∗(ε)
����

����. (59)
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By the Lebesgue-dominated convergence theorem,


ς

0
K ς, ε, w

m
+ x( (ε)(  dε ⟶

[m⟶+∞]

ς

0
K ς, ε, ℷ∗ + x( (ε)( dε. (60)

Ten, by (C1), we get

Ψ ε, w
m
ρ ε,wm

ε( ) + xρ ε,wm
ε +xε( ), 5 w

m
+ x( (ε) 

⟶
[m⟶+∞]

Ψ ε, w
∗
ρ ε,w⋆ε( ) + xρ ε,w∗ε +xε( ) , 5 ℷ∗ + x( (ε) .

(61)

Since ∇k, ∇k are continuous, by the Lebesgue-
dominated convergence theorem, we obtain

kw
m

 (ς) − kw
∗

 (ς)
�����

�����⟶ 0, as m⟶ +∞.

(62)

Tus, k is continuous.
Step 3: k is ζC-contraction.
Let Π be a bounded equicontinuous subset of Πθ′ ,
w ∈ Π, and κ1, κ2 ∈ Θ, with κ2 > κ1, we have


kw κ1(  −


kw κ2( 

������

������

≤ 
κ2

κ1
ℸ κ2, ε( 

����
���� Ψ ε, wρ ε,wε+xε( ) + xρ ε,wε+xε( ), 5(w + x)(ε) 

������

������ + Pu(ε)‖ ‖ dε

+ 
κ1

0
ℸ κ2, ε(  − ℸ κ1, ε( 

����
���� Ψ ε, wρ ε,wε+xε( ) + xρ ε,wε+xε( ), 5(w + x)(ε) 

������

������

+ Pu(ε)‖ ‖)dε + 
0<ςk<κ1

zℸ κ1, ςk( 

zε
−

zℸ κ2, ςk( 

zε

��������

��������
∇k(w + x) ςk

−
( 

����
����

+ 
0<ςk<κ1

ℸ κ1, ςk(  − ℸ κ2, ςk( 
����

����
∇k(w + x) ςk

−
( 

������

������

+


Mℸ 
κ1<ςk<κ2

∇k(w + x) ςk
−

( 
����

���� + Mℸ 
κ1<ςk<κ2

∇k(w + x) ςk
−

( 

������

������

≤ ψ1
Ψ η∗θ′( ξ1 + ψ2

Ψ η∗ ξ2  Mℸ | κ2 − κ1 | + 
κ1

0
ℸ κ2, ε(  − ℸ κ1, ε( 

����
����dε 

+ 
κ2

κ1
K(ε, 0, 0)‖ ‖dε + MP 

ς

0
ℸ κ1, ε(  − ℸ κ2, ε( 

����
����
2

 
1/2

u‖ ‖L2

+ MℸMP κ2 − κ1( 
1/2

u‖ ‖L2 + 
0<ςk<κ1

zℸ κ1, ςk( 

zε
−

zℸ κ2, ςk( 

zε

��������

��������
∇k(w + x) ςk

−
( 

����
����

+ 
0<ςk<κ1

ℸ κ1, ςk(  − ℸ κ2, ςk( 
����

����
∇k(w + x) ςk

−
( 

������

������

+


Mℸ 
κ1<ςk<κ2

∇k(w + x) ςk
−

( 
����

���� + Mℸ 
κ1<ςk<κ2

∇k(w + x) ςk
−

( ‖.

������

(63)
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By the strong continuity of ℸ, we get

kw κ1(  − kw κ2( 
����

����⟶ 0, as κ1⟶ κ2. (64)

Tus, k(Π) is equicontinuous; then, ω0(
k(Π)) � 0.

Now, for w ∈ Π, and for any 9> 0, there exists a sequence
wk 
∞
k�0 ⊂ Π such that for ς ∈ Θ, we have

ζ(k(Π)(ς))≤ ζ 
ς

0
ℸ(ς, ε)Ψ ε, wρ ε,wε( ) + xρ ε,wε+xε( ), 5(w + x)(ε) dε ; w ∈ Π  

+ ζ 
0<ςk < ς

−
zℸ ς, ςk( 

zε
∇k (w + x) ς−

k( ( 

⎧⎪⎨

⎪⎩
⎛⎜⎝

+ℸ ς, ςk( ∇k (w + x) ς−
k( ( ; w ∈ Π

≤ 2ζ 
ς

0
ℸ(ς, ε)Ψ ε, w

k
ρ ε,wk

ε( ) + xρ ε,wk
ε +xε( ), 5 w

k
+ x (ε) dε; w ∈ Π  

+ 
k≥0

MℸLQ1
k

+ MℸLQ2
k

 ζ(Π(ς)) + 9

≤ 
ς

0
4MℸlΨ ζ(Π(θ)) + sup

τ∈(− ∞,0]

ζ(Π(τ + ε)) dε

+
1
τ


k≥0

MℸLQ1
k

+ MℸLQ2
k

 ζ(Π(ς)) + 9

≤ 
ς

0
e
8τMℸlΨεe

− 8τMℸlΨε8MℸlΨζ(Π(ε))dε

+
1
τ


k≥0

MℸLQ1
k

+ MℸLQ2
k

 ζ(Π(ς)) + 9

≤ 
ς

0
8MℸlΨe

8τMℸlΨε sup
ε∈[0,ς]

e
− 8τMℸlΨεζ(Π(ε))dε

+
1
τ


k≥0

MℸLQ1
k

+ MℸLQ2
k

 ζ(Π(ς)) + 9

≤ ζPC(Π) 
ς

0

e8τMℸlΨε

τ
 

′
dε +

1
τ


k≥0

MℸLQ1
k

+ MℸLQ2
k

 ζ(Π(ς)) + 9

≤
e
8τMℸlΨς

τ
1 + 

k≥0

MℸLQ1
k

+ MℸLQ2
k

 ⎛⎝ ⎞⎠ζPC(Π) + 9.

(65)

Since 9 is arbitrary, we get

ζ(k(Π)(ς)) ≤
e
8τMℸlΨς

τ
1 + 

k≥0

MℸLQ1
k

+ MℸLQ2
k

 ⎛⎝ ⎞⎠ζPC(Π).

(66)

Tus,

ζPC(k(Π))≤
1
τ

1 + 
k≥0

MℸLQ1
k

+ MℸLQ2
k

 ⎛⎝ ⎞⎠ζPC(Π).

(67)
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By Teorem 9, it follows that there exists at least one
fxed point ℷ∗ within k. Consequently, the point ℷ∗ + x is
a fxed point for the operator k, which is a mild solution
to (1). □

4. Controllability Results

Defnition 15. Te reachable set of system (1) is given by

ST(Ψ) � ϑ(T) ∈ V : (ϑ) represents amild solution of system (1) . (68)

In case Ψ ≡ 0, system (1) reduces to the corresponding
linear system. Te reachable set in this case is denoted
by Sc(0).

Defnition 16. If ST(Ψ) � V, then the semilinear control
system is approximately controllable on [0, T]. Here,ST(Ψ)

represents the closure ofST(Ψ). Clearly, ifST(0) � V, then
the linear system is approximately controllable.

We defne the operator N: V � L2(Θ,V)⟶ V as
follows:

Nϑ(ς) � Ψ ς, ϑρ ς,ϑς( ), (5ϑ)(ς) ; 0< ς≤T. (69)

It is demonstrated that the approximate controllability of
the linear system extends from the semilinear system, given
certain conditions on the nonlinear component. Let us now
consider the ensuing linear system:

j″(ς) � Z(ς)j(ς) + 
ς

0
Υ(ς, ε)j(ε)dε + Pv(ς), if   ς ∈Θ,

j ς+
k(  − j ς−

k(  � ∇k j ς−
k( ( , k � 1, . . . , m,

j′ ς+
k(  − j′ ς−

k(  � ∇k j ς−
k( ( , k � 1, . . . , m,

j′(0) � ]0 ∈ V, j(ς) � I(ς), if   ς ∈ R− ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(70)

and the semilinear system

ϑ″(ς) � Z(ς)ϑ(ς) + Ψ ς, ϑρ ς,ϑς( ), (5ϑ)(ς)  + 
ς

0
Υ(ς, ε)ϑ(ε)dε + Pu(ς), if   ς ∈Θ,

ϑ ς+
k(  − ϑ ς−

k(  � ∇k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′ ς+
k(  − ϑ′ ς−

k(  � ∇k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′(0) � ]0 ∈ V, ϑ(ς) � I(ς), if   ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(71)

Te following hypotheses must be introduced in order to
demonstrate the main aim of this section, that is, the ap-
proximate controllability of system (5):

(1) [(C5)] Linear system (4) is approximately
controllable

(2) [(C6)] Range of the operator ℵ is a subset of the
closure of range of P, i.e.,

Range(N)⊆Range(P). (72)

Theorem 17. If hypotheses (C1) − (C6) are verifed, then
system (1) is approximately controllable.

Proof. Te mild solution of system (4) corresponding to the
control v is given by

j(ς) �

−
zℸ(ς, ε)

zε

 ε�0
I(0) + ℸ(ς, 0)]0 + 

ς

0
ℸ(ς, ε)Pv(ε)dε

− 
0<ςk < ς

zℸ(ς, ε)
zε


ε�ςk
∇k j ς−

k( (  + 
0<ςk<ς
ℸ ς, ςk( ∇k j ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(73)
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Assume the following system:

ϑ″(ς) � Z(ς)ϑ(ς) + Ψ ς, ϑρ ς,ϑς( ), (5ϑ)(ς)  + 
ς

0
Υ(ς, ε)ϑ(ε)dε

+Pv(ς) − Ψ ς, jρ ς,jς( ), (5j)(ς) , if ς ∈Θ,

ϑ ς+
k(  − ϑ ς−

k(  � ∇k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′ ς+
k(  − ϑ′ ς−

k(  � ∇k ϑ ς−
k( ( , k � 1, . . . , m,

ϑ′(0) � ]0 ∈ V, ϑ(ς) � I(ς), if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

Since Nϑ ∈ Range(P), there exists a control function
u ∈ L2(Θ, U) such that

Nϑ − Pu‖ ‖≤ ϵ, for given ϵ> 0. (75)

Now, assume that ϑ is the mild solution of system (1)
corresponding to (v − u) given by

ϑ(ς) �

−
zℸ(ς, ε)

zε

 ε�0
I(0) +ℸ(ς, 0)]0 + 

ς

0
ℸ(ς, ε)(Nϑ + P(v − u))(ε)dε

− 
0<ςk<ς

zℸ(ς, ε)
zε


ε�ςk
∇k ϑ ς−

k( (  + 
0<ςk<ς
ℸ ς, ςk( ∇k ϑ ς−

k( ( ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

Ten, if ς ∈ R− , we get j(ς) − ϑ(ς)
����

���� � 0. And, for ς ∈ Θ, we have

j(ς) − ϑ(ς)
����

����≤ 
ς

0
ℸ(ς, ε)‖ ‖ (Pu(ε) − Nϑ(ε))‖ ‖dε+ 

0<ςk<ς

zℸ(ς, ε)
zε

| ε�ςk

�������

����������

× ∇k j ς−
k( (  − ∇k ϑ ς−

k( ( 
����

����

+ 
0<ςk<ς
ℸ ς, ςk( 

����
����

∇k j ς−
k( (  −

∇k ϑ ς−
k( ( 

����

������

≤ 
ς

0
ℸ(ς, ε)‖ ‖ (Pu(ε) − Nj(ε))

����
����dε

+ 
ς

0
ℸ(ς, ε)‖ ‖ (Nj(ε) − Nϑ(ε))

����
����dε

+


Mℸ 
0<ςk<ς

LQ2
k

j ς−
k(  − ϑ ς−

k( 
����

����

+ Mℸ 
0<ςk<ς

LQ1
k

j ς−
k(  − ϑ ς−

k( 
����

����.

(77)
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Now, for any ς ∈Θ, we defne the function 5(ς) �

supε∈[0,ς] j(ε) − ϑ(ε)
����

����, and from the defnition of the
function ρ and Lemma 13, we obtain

jρ ε,jε( ) − ϑρ ε,ϑε( )

�����

�����≤Φ1
∗ supθ∈(0,ε) j(θ) − ϑ(θ)

����
����≤Φ1

∗
5(ε).

(78)

Ten,

5(ς)≤MℸT
1/2ϵ + Mℸ ξ1Φ1

∗
+ ξ2Kc1

T  
ς

0
5(ε)dε + 

0<ςk<ς

MQ∗LQ2
k

+ MℸLQ1
k

 5 ς−
k( . (79)

Terefore, according to Lemma 2, we get

5(ς)≤ ϵMℸT
1/2

e
Mℸ ξ2Kc1T+ξ1Φ1∗ T


0<ςk<ς

1 + MQ∗LQ2
k

+ MℸLQ1
k

 . (80)

By taking suitable control function u, we make
j(ς) − ϑ(ς)

����
���� arbitrary small. Terefore, the reachable set of

(4) is dense in the reachable set of (70), which is dense in V

due to (C5). Hence, the approximate controllability of (70)
implies that of the semilinear control system (4). □

5. Ulam–Hyers–Rassias Stability Results

Let ∇1,∇2,∇3 ≥ 0 and ] ∈ C(Θ,R+) be nondecreasing and
consider the following inequalities:

ℷ″(ς) − Z(ς)ℷ(ς) − Ψ ς, ℷρ ς,ℷς( ), (Hℷ)(ς)  − 
ς

0
Υ(ς, ε)(ℷ(ε))dε

�������

�������
≤ ](ς), ς ∈Θ,

ℷ ς+
k(  − ℷ ς−

k(  − ∇k ℷ ς
−
k( ( 

����
����≤∇1, k � 1, . . . , m,

ℷ′ ς+
k(  − ℷ′ ς−

k(  − ∇k ℷ ς
−
k( ( 

����
����≤∇2, k � 1, . . . , m,

ℷ(ς) − I(ς)‖ ‖≤∇3, if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(81)

Let the space be

X � u ∈ PC
2
(I,V): u(ς) | Θ

∈ D(Z) . (82)

Te following concepts are inspired by papers [14, 15]
and references therein.

Defnition 18. Equation (1) is generalized U-H-R stable with
respect to (],∇1,∇2,∇3), if there exists θΨ,∇,] > 0, such that
for each solution j ∈ X of inequality (6), there exists a mild
solution j∈W of equation (1), with

j(ς) − j(ς)‖≤ θΨ,∇,] ∇1 + ∇2 + ∇3 + ](ς)( , ς ∈ I.
����� (83)

Remark 19. A function j ∈ X is a solution of inequality (6) if
and only if there exist ℘1,℘2 ∈ PC(I,V) and λk, λk ∈ R, such
that

(a1) ℘1(ς)
����

����≤ ](ς); ς ∈Θ, λk ≤∇1, λk ≤∇2 and ℘2(ς)
≤∇3; ς ∈ R− ,

(a2) ℷ″ − Z(ς)ℷ(ς) � Ψ(ς, ℷρ(ς,ℷς), (Hℷ)(ς)) + 
ς
0 Υ(ς,

ε)ℷ(ε)dε + ℘1(ς), if ς ∈Θ,

(a3) ℷ(ς+
k ) − ℷ(ς−

k ) � ∇k(ℷ(ς−
k )) + λk, k � 1, . . . , m,

(a4) ℷ′(ς+
k ) − ℷ′(ς−

k ) � ∇k(ℷ(ς−
k )) + λk, k � 1, . . . , m,

(a5) ℷ(ς) � I(ς) + ℘2(ς), if ς ∈ R− .
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Remark 20. If ℷ ∈ X is a solution of inequality (6) then ℷ is
a solution of the following integral inequality:

ℷ(ς) +
zℸ(ς, ε)

zε

 ε�0
I(0) − ℸ(ς, 0)]0 − 

ς

0
ℸ(ς, ε) Ψ ε, ℷρ ε,ℷε( ), (5ℷ)(ε)  + Pu(ε) dε

�������

+ 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk
∇k ℷ ς

−
k( (  − ℸ ς, ςk( ∇k ℷ ς

−
k( (  

����������

≤Mℸ 
ς

0
](ε)dε + Mℸ∇1 + Mℸ∇2, if ς ∈ Θ,

ℷ(ς) − I(ς)‖ ‖≤∇3, if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

We also need the following additional assumption to
discuss about stability:(C]). We assume that for a non-
decreasing function ] ∈ C( Θ,V), there exists c] > 0, such
that


ς

0
](ε)dε≤ c]](ς). (85)

Theorem 21. If (C1) − (C4), (CH), and (C]) are satisfed,
with

Mℸ ξ1Φ1
∗

+ ξ2Kc1
T T + 

0<ςk<ς

MℸLQ2
k

+ MℸLQ1
k

 < 1,

(86)

then, equation (1) is generalized U-H-R stable with respect to
(],∇1,∇2,∇3).

Proof. Let j be a solution of (6) and ĵ∈W be the mild
solution of (1) with ĵ(0) � j(0) � I(0) and
j′(0) � j′(0) � ]0.

Ten, we get

ĵ(ς) �

−
zℸ(ς, ε)

zε

 ε�0
I(0) + ℸ(ς, 0)]0

+ 
ς

0
ℸ(ς, ε) Ψ ε, ĵρ ε,̂jε( ), (5ĵ)(ε)  + Pu(ε) dε

− 
0<ςk<ς

zℸ(ς, ε)
zε


ε�ςk
∇k ĵ ς−

k(   + 
0<ςk<ς
ℸ ς, ςk( ∇k ĵ ς−

k(  ; if ς ∈ Θ,

I(ς); if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(87)

On the other hand, we get
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j(ς) +
zℸ(ς, ε)

zε

 ε�0
I(0) − ℸ(ς, 0)]0

�������

− 
ς

0
ℸ(ς, ε) Ψ ε, jρ ε,jε( ), (5j)(ε)  + Pu(ε) dε

+ 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk
∇k j ς−

k( (  − ℸ ς, ςk( ∇k j ς−
k( (  

����������

≤Mℸc]](ς) + Mℸ∇1 + Mℸ∇2, ; if ς ∈ Θ,

j(ς) − I(ς)
����

����≤∇3, if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(88)

Hence, for ς ∈ Θ, we have

j(ς) − ĵ(ς)
�����

����� � j(ς) +
zℸ(ς, ε)

zε

 ε�0
I(0) − ℸ(ς, 0)]0

�������

− 
ς

0
ℸ(ς, ε) Ψ ε, ĵρ ε,̂jε( ), (5ĵ)(ε)  + Pu(ε) dε

+ 
0<ςk<ς

zℸ(ς, ε)
zε

ε�ςk

∇k ĵ ς−
k(   − 

0<ςk<ς
ℸ ς, ςk( ∇k ĵ ς−

k(  

− 
ς

0
ℸ(ς, ε) Ψ ε, jρ ε,jε( ), (5j)(ε)  + Pu(ε) dε

+ 
ς

0
ℸ(ς, ε) Ψ ε, jρ ε,jε( ), (5j)(ε)  + Pu(ε) dε

+ 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk
∇k j ς−

k( (  − ℸ ς, ςk( ∇k j ς−
k( (  

− 
0<ςk<ς

zℸ(ς, ε)
zε

 ε�ςk
∇k j ς−

k( (  − ℸ ς, ςk( ∇k j ς−
k( (  

����������

≤Mℸc]](ς) + Mℸ∇1 + Mℸ∇2 + Mℸ 
ς

0
ξ1 jρ ε,jε( ) − ĵρ ε,ĵε( )

������

������E

+ ξ2Kc1
T j(ε) − ĵ(ε)

�����

�����dε

+ Mℸ 
0<ςk<ς

LQ2
k

j ς−
k(  − ĵ ς−

k( 
�����

�����

(89)

Let Δς � [ςk, ςk+1], and

PCℷ R,R
+

(  � ℷ : I⟶ R
+
: w | R− ∈ PCθ, w | Δς

is continuous and

ℷ ς−
k( , ℷ ς+

k(  exist with ℷ ς−
k(  � ℷ ςk( .

(90)
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For ℷ ∈ PCℷ(
I,R+), let

Wℷ(ς) �

Mℸc]](ς) + Mℸ∇1 + Mℸ∇2

+ Mℸ 
ς

0
ξ1(ℷ(ρ(ε, ℷ(ε + θ)) + θ)) + ξ2Kc1

Tℷ(ε)dε

+ 
0<ςk<ς

MℸLQ2
k

+ MℸLQ1
k

 ℷ ς−
k( , if ς ∈ Θ, and θ ∈ R−

,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(91)

Now, we will prove thatW is a Picard operator. For that,
let ς ∈I and ℷ1, ℷ2 ∈ PC(I,R+), if ς ∉ Θ, we get |Wℷ1(ς)
− Wℷ2(ς)| � 0, and if ς ∈Θ, we have

Wℷ1(ς) − Wℷ2(ς)


≤ Mℸ ξ1Φ1
∗

+ ξ2Kc1
T T + 

0<ςk<ς

MℸLQ2
k

+ MℸLQ1
k

 ⎛⎝ ⎞⎠ ℷ1 − ℷ2


. (92)

Terefore, W is a contraction; hence, from Teorem 10,
there exists a unique ℷ∗ in FW, and from Defnition 3, we
deduce that W is a Picard operator.

Furthermore, we have

ℷ∗(ς) � Mℸc]](ς) + Mℸ∇1 + Mℸ∇2

+ Mℸ 
ς

0
ξ1 ℷ
∗
(ρ(ε, w(ε + θ)) + θ)(  + ξ2Kc1

Tℷ∗(ε)dε

+ 
0<ςk<ς

MℸLQ2
k

+ MℸLQ1
k

 ℷ∗ ς−
k( .

(93)

We can see that ℷ∗ is an increasing function and (ℷ∗)′ is
nonnegative.

So, for ς ∈I and θ ∈ R− , we have

ℷ∗ ρ ς, ℷ∗(ς + θ)(  + θ( ≤ ℷ∗(ς + θ)≤ ℷ∗(ς). (94)

Ten,

ℷ∗(ς)≤Mℸc]](ς) + Mℸ∇1 + Mℸ∇2 + Mℸ 
ς

0
ξ1 + ξ2Kc1

T ℷ∗(ε)dε

+ 
0<ςk<ς

MℸLQ2
k

+ MℸLQ1
k

 ℷ∗ ς−
k( .

(95)

From Lemma 2, we get

ℷ∗(ς)≤ Mℸc]](ς) + Mℸ∇1 + Mℸ∇2 e
Mℸ ξ1+ξ2Kc1T ς


0<ςk<ς

1 + MℸLQ2
k

+ MℸLQ1
k

 . (96)
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In particular, if ℷ(ς) � j(ς) − ĵ(ς)
����

����, then we have
ℷ(ς)≤Wℷ(ς), and applying the abstract Gronwall lemma,
we obtain ℷ(ς)≤ ℷ∗(ς). It follows that

j(ς) − ĵ(ς)
�����

�����≤ Mℸc]](ς) + Mℸ∇1 + Mℸ∇2 e
Mℸ ξ1+ξ2Kc1T ς

× 
0<ςk<ς

1 + MℸLQ2
k

+ MℸLQ1
k

 .
(97)

Now, if ς ∈ R− , we get

j(ς) − ĵ(ς)
�����

����� � j(ς) − I(ς)
����

����

≤∇3.
(98)

Ten, if we put

θΨ,∇,] �

Mℸc] + Mℸ + Mℸ + 1 e
MℸLf ξ1+ξ2Kc1T ς

× 
0<ςk < ς

1 + MQ∗LQ2
k

+ MℸLQ1
k

 , if ς ∈Θ,

1, if ς ∈ R− .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(99)

Tus, we have for all ς ∈I

j(ς) − j(ς)‖≤ θΨ,∇,] ∇1 + ∇2 + ∇3 + ](ς)( ,
����� (100)

which implies that (4) is generalized U-H-R stable with
respect to (],∇1,∇2,∇3). □

 . An Example

Consider the following class of partial integrodiferential
system:

z
2](ς, x)

z
2ς

�
z
2](ς, x)

z
2
x

+ 
ς

0
Γ(ς − ε)

z
2](ε, x)

z
2
x

dε

+ 
− ς

− ∞

e
− 8τ ](ς + σ(ς, ](ς + τ, x)), x)‖ ‖L2

129 (ς + τ)
2

+ 2ς + 1 
dτ

+ 
1

0

cosh(ς) ln π + e
− ς2

 (1 + ](ε, x))

222 1 + 2ς2 + ε2 e
11ς dε + σ(ς)](ς, x)

+L(ς, x), if ς ∈ I\ 1, 2, . . . , 8{ } and x ∈ (0, π),

∇] ςk, x(  � αk 
ςk

0
](ε, x)dε; k � 1 : 8, andx ∈ (0, π),

∇
z](ς, x)

zς

 ς�ςk
  � βk 

ςk

0
](ε, x)dε; k � 1 : 8, andx ∈ (0, π),

](ς, 0) � ](ς, 1) � 0, for ς ∈ I,

z](ς, x)

zς

 ς�0
� ]1(x), ](ς, x) � I(ς, x), if ς ∈ R− andx ∈ (0, π),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(101)
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where I � [0, 1], σ: Θ × R⟶ R, L: [0, 1] × [0, π]⟶
[0, π], αk, βk ∈ (0, e− π/17).

Let

H ≔ L
2
(0, π) � u : (0, π)⟶ R : 

π

0
| u(x) |

2dx<∞ ,

(102)

be the Hilbert space with the scalar product
〈u, v〉 � 

π
0 u (x)v(x)dx, and the norm

u‖ ‖2 � 
π

0
|u(x)|

2dx 
1/2

, (103)

and the phase space E be BUC(R− ,H), the space of
bounded uniformly continuous functions endowed with the
following norm: ψE � sup− ∞<τ≤0

����
����ψ(τ)L2 ,ψ ∈ E. It is well

known thatE satisfes the axioms (A1) and (A2) with K � 1
and Φ1(ς) � Φ2(ς) � 1 (see [41]). We defne Z induced on
H as

Zc � c″, andD(Z) � c ∈ H
2
(0, π) : c(0) � c(π) � 0 .

(104)

Ten, Z is the infnitesimal generator of a cosine
function of operators (C0(ς))ς∈R on H associated with sine
function (S0(ς))ς∈R. In addition, Z has discrete spectrum
which consists of eigenvalues − n2 for n ∈ N, with corre-
sponding eigenvectors wn(x) � 1/

���
2π

√
einx. Te set

wn: n ∈ N  is an orthonormal basis of H. Applying this
idea, we can write

Zc � 
∞

n�1
− n

2
c, wn wn, c ∈ D(Z). (105)

Te cosine family associated with Z is given by
(C0(ς))ς∈R:

C0(ς)c � 
∞

n�1
cos(nς) c, wn wn, ς ∈ R, (106)

and the sine function is given by

S0(ς)c � 
∞

n�1

sin(nς)
n

c, wn wn, ς ∈ R. (107)

Tus, C0(ς)
����

����≤ 1 and S0(ς) is compact for all ς ∈ R. We
defne Z(ς)c � Zc + σ(ς)c on D(Z). Clearly, Z(ς) is
a closed linear operator. Terefore, Z(ς) generates
(S(ς, ε))(ς,ε)∈∇ such that S(ς, ε) is compact and self-adjoint
for all (ς, ε) ∈∇ � (ς, ε): 0≤ ε≤ ς≤ 1{ } (see [26]).

We defne the operators Λ(ς, ε): D(Z) ⊂H↦H as
follows:

Λ(ς, ε)c � Γ(ς − ε) Zc, for 0≤ ε≤ ς≤ 1, c ∈ D(Z).

(108)

Te assumption (C4) holds under more suitable con-
ditions on the operator Γ. Furthermore, (B1) − (B3) are
fulflled. Ten, there exists a resolvent compact operator
[26, 44].

Now, let P: U⟶H be defned by Pu(ς)(x)

� L(ς, x), x ∈ [0, π], u ∈ U, whereL: [0, 1] × [0, π]⟶H

is linearly continuous, and for I ∈ BUC(R− , H), we put
ρ(ς,I)(]) � σ(ς, ](ς + τ, x)), such that (CI) holds, and let
ς⟶ Iς be continuous on ℸ(ρ− ).

We put ](ς)(x) � ](ς, x), for ς ∈ [0, 1], and defne

Ψ ς, ϑ1, ϑ2( (x) � 
− ς

− ∞

e
− 8τ ϑ1(ς + σ(ς, ](ς + τ, x)), x)

����
����L2

129 (ς + τ)
2

+ 2ς + 1 
dτ +

cosh(ς)ϑ2(ς)(x)

e
11ς ,

ϑ2(ς)(x) � 5 ϑ1( (x) � 
1

0

ln π + e
− ς2

  1 + ϑ1(ε, x)( 

222 1 + 2ς2 + ε2 
dε,

∇k ϑ1 ς−
k( ( (x) � αk 

ςk

0
ϑ1(ε, x)dε,

∇k ϑ1 ς−
k( ( (x) � βk 

ςk

0
ϑ1(ε, x)dε.

(109)

Tese defnitions allow us to depict system (7) in the
abstract form (4).

Now, for ς ∈ [0, 1], we have

Ψ ς, 81(ς), 82(ς) 


≤
1 − e

− 16π

258(ς + 1)
2

1
2

81
����

����E  + cosh(ς)e− 11ς
82(ς)


 . (110)
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So, ψi+1(ς) � ς/1 + i; i � 0, 1 are continuous non-
decreasing functions, and we have

ξ1 �
1 − e

− 16π
 (1 − (1 + π)

− 3


258
�
3

√ ,

ξ2 �
1
4

�������������������������
1
330

241 −
55 + 120e

2
+ 66e

4

e
24 



.

(111)

And for any bounded set Π ⊂H, and Πς ∈ E, we get

ζ Ψ ς,Πς, 5(Π(ς))  ≤ ξ1 + ξ2( ζ(Π(ς)). (112)

Now, about K,∇k, ∇k, we obtain

K ς, ε, 81(  − K ς, ε, 82( 
����

����2≤
ln(π + 1)

222
81 − 82

����
����2,

∇k 81(  − ∇k 82( 
����

����2≤ αk 81 − 82
����

����2,

∇k 81(  − ∇k 82( 
����

����2≤ βk 81 − 82
����

����2.

(113)

Now, similar reasoning as in [28], if the corresponding
linear system is approximately controllable, then system (7)
is approximately controllable.

Furthermore, we have

Mℸ ξ2Kc1
T + ξ1Φ1

∗
 T + 

0<ςk < ς

MℸLQ2
k

+ MℸLQ1
k

 ≤ 0, 0239. (114)

Tus, all the assumptions of Teorem 21 are fulflled.
Consequently, the mild solution of problem (101) is gen-
eralized U-H-R stable.
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