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In this paper, we shall establish sufficient conditions for the existence, approximate controllability, and Ulam-Hyers—Rassias
stability of solutions for impulsive integrodifferential equations of second order with state-dependent delay using the resolvent
operator theory, the approximating technique, Picard operators, and the theory of fixed point with measures of noncompactness.
An example is presented to illustrate the efficiency of the result obtained.

1. Introduction

In applied mathematics, control theory is crucial; it involves
building and evaluating the control framework. Controlla-
bility analysis is used to solve a variety of real-world issues,
such as issues with rocket launchers for satellite and aircraft
control, issues with missiles and antimissile defense, and
issues with managing the economy’s inflation rate. Over the
last twenty years, a lot of work has been done for con-
trollability of evolution equations [1-13].

In addition, a key aspect of the field of mathematical
analysis study is stability analysis. The concept of Ulam
stability is applicable in various branches of mathematical
analysis and is used in the cases where finding the exact
solution is very difficult. A number of researchers have been
working on the study of Ulam-type stabilities of differential
and integrodifferential equations recently, and they have
produced some remarkable findings, see [14-16], and the
references therein.

During the past ten years, impulsive differential equa-
tions have attracted a lot of interest. Dynamic systems that
contain jumps or discontinuities are represented using
impulsive differential equations. In contrast, integrodiffer-
ential equations are found in many scientific fields where it is
important to include aftereffect or delay (for example, in
control theory, biology, ecology, and medicine). In fact, one
always uses integrodifferential equations to describe a model
that has heritable characteristics. As a result, these equations
have attracted a lot of attention (see for instance, [17-23]). In
[24], the authors studied some local and global existence and
uniqueness results for abstract differential equations with
state-dependent argument.

Second-order nonautonomous differential systems have
received a lot of interest. There is no need to transform
a second-order differential system into a first-order system
in order to solve it. Various second-order nonautonomous
differential systems existence results are presented in
[5, 20, 25-29] and references therein.
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In [30], Balachandran and Sakthivel considered the
following integrodifferential system:

9" () = Z9(¢) + (Bu) (¢) + f(c,f)(c), J:g(c, 8,9(8))de>,
9(0)=9,, ¢e®=[0,b],

1

{ 9"(6,8) = Z9(5,8) + v (5, 9(0,9), ) + Bf (c, ),

9(0,8) = 7,(8), 9'(0,8) = 5, (9),

where (f, F, P) is a complete probability space with F being
the event space and P being the probability function (see
[31], for more information), y: R, x E x f — E is a given
function, j,,j,: F — E are given measurable functions,
and (E,|-]) is a real Banach space. f(:,d) is the control
function defined in L? (R, A), a Banach space of admissible
control functions with A being a Banach space, and B is
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where 9(-) takes values in a Banach space 8 with the norm
|| and the control function u(-) is given in L?(®,U),
a Banach space of admissible control functions, with U being
a Banach space. g: Vx B — B, f: Ox B x B — B are
given functions, and B is a bounded linear operator from U
into B. Here, V = {(¢,¢): 0<e<¢<b}.

In [8], the authors investigated the controllability of the
functional differential equation with a random effect:

.e.¢ceR, = [0,00),
receRo =00 5o, 2)

a bounded linear operator from A into E. The main result is
based upon a generalization of the classical Darbo fixed-
point theorem and the concept of measure of non-
compactness combined with the family of cosine operators.

Arthi and Balachandran et al. [32] considered the fol-
lowing abstract control system:

9 (9= Z9(6) +Bu(9) + (9, (coy): €T =[0nalcts,

Y=9€b,
A9(c) = I,(9,),
AS, (Ci) = ®i(96,')’

where L?(I,U) a Banach space of admissible control
functions with U being a Banach space and B: U — 8
being a bounded linear operator; the function 9. (-oo,
0] — B,9.(0) =9(¢+0), & is the phase space;
0<¢; < - <g,<a are prefixed numbers; f: I X & — B,
prIXxE — (-00,al,1;(-): & — B,0,(:): & — B are
appropriate functions.

9(0)=7neB,

i=1,2,...,n,

(3)

i=1,2,...,n,

Motivated by the abovementioned works, we derive
some sufficient conditions for the existence, approximate
controllability, and Ulam-type stability for impulsive inte-
grodifferential equations of second order with state-
dependent delay described in the form:

9(0) = Z (9O +¥(6.9, (0 (0 + [ Y609+ Pu(e) ifse 6,

9(6i) = 9(sx) = Vi (9(x))>
9 (61) = 9" (6x) = Vi (9(sx)),
9'(0) = v, € B,9(¢) = D (o),

where © = [0,T],T= (-00,T], ®=0\0,, and O, =
{¢iroos6up with  0=<¢ <6< ... <G <Guy =T.
Z(©): D(Z () cB— W, Y(s¢) are closed linear op-
erators on B, with dense domain D (Z (¢)), which is in-
dependent of ¢, and D (Z (¢)) ¢ D(Y (g, €)); the operator f is
defined by

k=1,...,m, (4)
k=1,...,m,
ifceR_,
T
(F9)(¢) = jo F (66 9(e))de. (5)

The nonlinear term ¥: @ x & xB — B, F: R_. —>
B, and p: @ x & — R are given functions. The jumps at
the points ¢ € (0,T) are given by 9(¢f) - 9(¢;) and
9 (¢}) = 9 (), in the states 9 and 9', respectively, where
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9(cf),9(g;) stand for left and right limits of 9 at ¢. Sim-
ilarly, 9' (), 9 (¢;) stand for right and left limits of 9’ at ¢;.
The jumps at the points ¢; are determined by the nonlinear
functions V,,V,: B — B, where k =1,2,3,...,m. The
control function u is a given function in the Banach space of
admissible control L? (®, U), where U is also a Banach space.
&P is a bounded linear operator from U into B, and (B, ||-|)
is a Banach space.

The work is organized as follows: In section two, we
recall some definitions and facts about the resolvent oper-
ator, Picard operator, and measure of noncompactness. In
section three, we give the existence of mild solutions to the

problem (4). Section four is devoted to approximate con-
trollability of mild solution and section five to the gener-
alized Ulam-Hyers-Rassias (U-H-R) stability. In the last
section, we present an example to illustrate our main result.

2. Preliminaries

Let C(®, 2B) be the Banach space of all continuous functions
9 mapping ® into B. Let Oy = [0,¢,],0; = (¢4 Gs1)> Ok =
(6 Gksa] for ke{l,....m+1}Lu(¢") =lim__,.u(c). We
define the space of piecewise continuous functions:

W = PC(I,B) ={u: T—B:ulg €& uly €C(0,B), suchthatu(g,)and
k

(6)

u () existand satisfy u (¢, ) = u (), fork=1,... ,m},

with the norm

915 = sup{I9 QI -

cel

Next, we consider the second-order integrodifferential
system [26]:

V'©=Z @+ [ Yaoyodn esesT "

y(e) =0,y (e) =x € B,
for 0<e<T. We denote V = {(¢,€): 0<e<¢<T}. Let:

(B1) For each 0<e<¢<T,Y(c¢e): D(Z)— DB is
a bounded linear operator, for every y € D(Z), Y (-,-)y
is continuous and

IY (vl <dy] iy ©

for 1>0, g¢ €V.
(B2) There exists Ly >0 where

”Y (CZ’ 5)Y - Y(Cl’ S)V" < LY|C2 - cll”)’" [D(Z))° (10)

forally e D(Z),0<e<¢, <, <T.

(B3) There exists b; >0 such that
S

‘U S(6.&)Y (6, 0)yde] <byy], forally e D(Z).

(11)

Under these conditions, it has been established that there
exists a resolvent operator (7T(c,¢))., associated with
systems (2).

Definition 1 (see [26]). A family of bounded linear operators
(71(6, €)= on W is a resolvent operator for (2) if it verifies
the following:

(a) The map T1: V— Z (D) is strongly continuous;
T(¢,)y is continuously differentiable for all
y € B, (e, ) =0,0/0677(c, €)|-e =1 and 0/0g T
(C) 8)'5:( =-1

(b) Assume 9¢ D (Z). The function (-, )9 is a solution
for systems (6) and (7). Thus,

0’ - I -
a_<2 T(6,e)9=F(¢)T(c, e)9+ L Y (¢, )T (1, £)9dr,

(12)
forall 0<e<¢<T.
By (a), there are M~ >0 and M- >0, such that
(¢, €) €V. (13)

"—[(C)S)HSMT) SAZ[)

0
&—[(C,S)

Moreover,

_ S _ _
G(e, )9 = J Y(¢,) (e, 1)3de, 9e D(Z), 0<r<c<T
(14)

can be extended to 2B where

_ G _ _
T(¢1)9=S(¢, 1) + J S(¢,e)G(&,1)9de, forall 9e .
(15)

Then, there exists L >0 where

”—[(C+ h) T) - —[(C) T)” SL—[Ihl) forall GGt h)T € [0) T]

(16)
Let the state space (&, |||l¢) be a seminorm linear space

of functions mapping (-00,0] into R, and verifying (see
[33]):



(A)) IfYeCand 9, € &, then for ¢ € ©:

(i)9. €&

(i) There exists H >0 where |9(¢)| <H||9 “%

(iii) There exist @, (-) and @, (-): R, — R, with @,
continuous and bounded and D, locally bounded
where

[9]l < @1 ()sup{l9(e)| : 0<e<c}+ D, ()9 -
(17)

PCy(R™,) = {9: R — B: 9|, is continuous, 9(9;), 9(9J-r
J

and the space

Cq = {J € PCyp(R™,®): lim 1(7)existin i}}. (19)
T——00
In the following, consider & = C,.

Lemma 2 (see [34]). Let the following inequality holds:

J(c)Sa(c)+J b3 (ode+ Y BA(G) <20,

0<¢<¢
(20)
where
Ja,b € PC(R",R") ={9 € PC(R",R"),9(¢)>0},
(21)

a is nondecreasing, b(¢) >0, >0,k € N. Then, for ¢ € R,
the following inequality is valid:

A9 <alg) H (1+/3k)exp<ﬁb(e)ds>, G € (G Stern )

0<¢, <¢
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(A,) For the function 9 in (A)),9, is a &-valued
continuous function on R*.
(A;) The space & is
O, * =sup{®, (¢): ¢ € O},
R = max{®,*, d,"}.
For Ig = R\{@ € R7: if ¢ € ®, then (9]- +¢) € é)k}, we
define the ‘space

complete. We denote
®,* = sup {D, (¢): ¢ € B},

;) existwith (6 ) = 9(0,)}. (18)

Definition 3 (see [35]). Let B be a metric _space.
9 : B — WisaPicard operator if there exists 9* € B, such
that

(i) Fy = {9"} where Fy={9¢ B: 9 (9) =
ﬁxed point set of %)
(il) (9" (9)),ey converges to 9* for all 9 € B

9} is the

Lemma 4 (see [35]). Let (i},d, <) be an ordered metric
space and ): B — B. We assume the following:

(i) 9 is a Picard operator (Fy = {9%})
(ii) 9 is an increasing operator

Then, we have

(@) 9€ B,I<Y(H) =9<9

(b) e B,9=2Y () =9=9,

Definition 5 (see [36]). Letjﬁ be a Banach space and A~ be
the bounded subsets of 8. The Kuratowski measure of
noncompactness is the map (: A% — [0, 00] given by

(22)
{(Q) =inf{e>0: Q<€ U}, Q, anddiam (Q;) <€}; here Q Ags (23)
where G 9 (o1 00 ¢ 9 00 14
diam (Q;) = sup{llu —vlx: u,v € Q;}. (24) C( {Jo (€) S}k_o) <2 .[0 ¢ (19 (e))ico)de (26)

Lemma 6 ([37]). If B is a bounded subset of a Banach space
B, then for each € >0, there is a sequence {9;}5°, ¢ B such
that

{(B)<20({9%J2,) +e (25)

Lemma 7 (see [38]). If {9 }roo C L' is uniformly integrable,
then the function ¢ — a ({9, (¢)};2,) is measurable and

Lemma 8 (see [36]).

(i) If B c PC(O,B) is bounded, then ((B(c))<
ocpC(EB) for any ¢e©® where B(c) = {ulc): u
eB} ¢ V.

(ii) Ifﬁ is piecewise equicontinuous on ©, then ((B(Q)
is piecewise continuous for ¢ € 0, and

ape (B) = sup{{(B(c)), ¢ € O}, (27)
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(iii) If B c PC(O,B) is bounded and piecewise equi-
continuous, then { (B (¢)) is piecewise continuous for
¢ €0 and

c(Jiﬁ(s)de) <2 r (Be)de ced,  (28)

where apc denotes the Kuratowski measure of
noncompactness in the space PC(0, D).

Theorem 9 (see [39]). Let A be a nonempty, bounded, closed,
and convex subset of a Banach space B and letY): A — A be
a continuous mapping. Assume that there exists a constant
k € [0,1), such that

[ 071(s: )
Oe

e=03 (0) + T(¢, 0)v,

071(s,¢)
B Z O¢

0<g<6

[ S (¢);

The following assumption will be needed throughout the
paper:

(C1)¥: ®x &x B —> Visa Carathéodory function,
and there exist positive constants £, £, and continuous

”\P(C’ 9,9,) =¥ (.95, 94)” < 51‘%11/(“‘91 - ‘93"%') + 521//\21,("92 - ‘94")’

for 9,,9; € &,9,,9, € B. There exists a positive con-
stant Iy, such that for any bounded set Q ¢ 8 and
Q €8, and each ¢ € R, we have

{(¥(c Q0 F QD)) sl“,(( (Q(e) +

e, Vi (9(5)) +

¢(PM) <kl (M),

for any nonempty subset M of A. Then, ) has a fixed point in
set A.

(29)

Theorem 10 (see [40]). Let (QAB, d) be a nonempty complete
metric space with a contraction mapping 9): B — B. Then,
9) admits a unique fixed point x* in B.

3. Existence of Mild Solutions

Definition 11. A function 9 € 9B is called a mild solution of
problem (1) if it satisfies

#6088, 0y (19@) + Fule) e

(30)

> eV (9(cr));  ifce®,

0<g<¢

ifceR_.

nondecreasing functions ¥, y3: ® — (0, +00) such
that

(31)

sup C(Q(T+c))>, (32)

7€ (—00,0]



with

G
v = J ¥ (&,0,0)de < co, vy () <G,
0
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(C2) The function #: Dy x B — VW is continuous,
and there exists & ¢ > 0, such that

(33)
Ve (9 <c
|7 (¢, 6,9,) = H (c.,9,)|| < H |9 — 9|, foreach (¢,¢) € Dy, 34)
9,9, € B.
Let (C4) The functions Q;;, 7B — B are continuous, and
. there exist positive constants Lyi; k= 1,...,m, such
supp {Il# (¢, & O)lI} = Z~ <co. (35) that .
(C3) Assume that (B1)— (B3) hold, and there exist
M-,M->1, (>0, and M >0, such that
071(c,¢) —
177 (6 Olly () < M-, 3 <M-,
€ Y (B) (36)
121 = Mg.
. . Ly
”Q}c (9;) -Q, (94)|| ST" ||93 - 94", forall9;,9, € B,k=1,...,m, (37)
and (i) (Hg) The function ¢ — J_ is continuous from
; e T(p7) into &, and there exists a continuous and
1 kz 1 "Qk“ (0)=Q; < +o0o, (38) bounded function LS: T(p~) — (0, 00) such that
<k<m+
||5<||8SLs(c)||S||g, foreveryc e TT(p). (40)
where
i Vk lfl = l,
Q= Ve ifi=2. (39) Remark 12 (see [41]). The condition (Hg) is verified by

(Cy) Set T(p7) ={p(e,9): (&, 9) € ®X &, p(e, ) <0}
We assume that p: ®x & — R is continuous.
Moreover, we assume the following assumption:

functions continuous and bounded.

Lemma 13 (see [42]). If 9: (00, +00) — B is a function
such that 9, = S, then

19:)l < (@,° + Z°)ISllg + @, sup{|9(H)]; 0 € [0, max{0,}]}, e€ T(p)UO, (41)

where &5 = SUPce(p) Z3(9).

Now, we define a measure of noncompactness in the
space 7. Let us fix a nonempty bounded subset S of the
space %' and x = @, U {Iekﬂ [-T, 0]}. Then, for veS§,
€>0,%;, k, €X,such that |k, — x,| <€, we denote w” (v, €) the
modulus of continuity of the function v on x, namely,

o' (v,€) = sup{||e_K1v(K1) —e (K, K1k, € @},
w' (S,e) =sup{w’ (v,e); ve S},
wy(8) = lim {w" (S, e)}.
(42)
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Consider the function y - defined on the family of subset
of " by

Xoc (8) = 0y () + sup{e (S ()}, (43)

with 7>1+ Y. (M_‘LQi + M-[LQi),Z(q) =8M--ly¢ and
S()={v(c) eB;veS}

The function yp- is a sublinear measure of non-
compactness on the space 7. For details on the definition
and properties of the measure of noncompactness on the

(069
Oe

&=

OS (0) + (5, 0)v,

space of piecewise continuous functions PC, the reader is
referred to [43].

Theorem 14. Suppose that (Cl) — (C4) and (Cy) are
verified. Then, (1) has at least one mild solution.

Proof. We transform problem (1) into a fixed-point problem
and define the operator k: #" — % by

[ TG (¥(88 0y (@) + Fule) e

k9 (¢) = 1 (44)
071(s¢) - S - .
-2 — Vi) + Y o)V (9(s)): ifce®,
0<g<¢ £=G;. 0<g<¢
L S(¢); if¢eR_.
~ w(c), ifgeR",
Let x: (—00,T] — B be the function defined by w(c) = 0 e R (46)
, ifceR_.

_8—[(c, &) (0)

30 bl
Os e=0 + 716 0%

if¢ce®,
x(¢) =
S(c)’ lfc € R_.
(45)
Then, x, =S, and for each w € 7', with w(0) =0, we
denote the function @ by

071(s,¢)
B Z o€

0<g<g

e=¢y,

w(6) = 1

0<g, <¢

L B (9);

. J'; (g, g)(‘I’(s, Wy (sw,+x,) +

If 9 satisfies (3), we can decompose it as
9(¢) = w(g) + x(g), which implies 9. = w +x, and the
function w(-) satisfies

xp(s,wgrxt)’ F(LU + X) (£)> + 9“(8))(18

Vie((w +x) (i)

(47)

+ Z (6 ) Vi (w+x)(gp)); ifce®,

ifceR_.
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Set Let the operator k: A — A be defined by

A={w e W w(0) =0} (48)

' J; (s, €)<‘I’<8, W (s,ex,) F Xp (ca,e,) F (W + %) (s)) + @u(s))ds

_ Z 071 (C) 8)

fw(@=] &< *

Vie (W + ) (6¢))

£=Gy.

(49)

+ Z T(6 ) Vi (w+x)(cp)); ifce®,

0<6i<¢

I (¢); ifceR_.

The operator k has a fixed point which is equivalent to  point. We shall check that the operator k satisfies all con-
say that k has one, so it turns to prove that k has a fixed  ditions of Darbo’s theorem.

Let [Ty = {w € A: |wl||, <6}, with

M (&g (1) + &y (7)) + )T + Mo T |lul| -

(50)
+ Z(LQ:‘ + LQi) +Q) +Q; |<¥,
k=0 ‘
such that 7, 1" are constants, they will be specific later. For w € Ily, ¢ € ® and by (C1) — (C3), we have

The set ITy is bounded, closed, and convex.

Step 1: k(ITy) c I,

||wp (e,w£+x£) + xp (s,w£+x£) %

<

+
&

Wy (eanre) s + 1% (ewers) s
<@, (sup(olw ()] +(@, () + Z%) ISl + @, (Isup g lx (O]
<070 +(D; + 35)“88 + @7 (M]S| + M7||1/0||)H||Sg

< @10 +[@) + L% + O] (M]S| + M |v | ) H]ISls

¥
= g>

(51)

and

IF (w+x) (o)l <af, (6" + M||So| + M||v||) +ax™ =7 (52)
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Then,
licw @) < MA((&v () + &3 (7)) T+ + Mg T Jull 2
. (53)
+Z(LQ}; +LQ§> +Q +Q, |
k=0
Thus, Step 2: k is continuous.
icw]|,, < 6. (54) Let {w,,},,n be @ sequence such that w,, — 1* in I,
B B At the first, we study the convergence of the sequences
Therefore, k(Ily) € ITy, which implies that k(ITy) is (Wl ey I mens € € ©. If £ € O is such that p(e,w,) >0,
bounded. then we have

o <[ ey - Jﬁ(swm) +||JZ (eup) = 3

"w? () ~ 2

(55)
<®,"|w,,
which proves that wi, . — 3, in &, as which also shows that wi, . — 3, in &, as
m — 00, forse@wherep(s,w)> If p(e,w,) <0, m —> 00, foreveryse®suchthatp(s,w)<0 Then,
we get for ¢ € ®, we have
M _ _ o~m _
[y = 3 el =185 ey = S
(56)

”(me) (¢) —(Rw*) (C)” <M+ J; I \I’<£, wZ“(s,w;n) + X, (curex,) H(w" +x) (s))

-y <e, <w;(£,wg) + xp(s,w;‘+x£)>’ F(Q" +x) (s))“ds

57
£ Y Ve (@, () - Vi (w” ()] (57)
0<gx<g
£ [ (w,(9) - Vi (w” ().
0<g<g
Since # and ¥ are continuous, we obtain
K (66 (W +x)(e) — H (66 (37 +x)(), asm— +oo, (58)

and

”%(c, & (W +x)(e) - F(c,6 (3" +x) (s))“ S.%:l me (e) =" (e)". (59)
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By the Lebesgue-dominated convergence theorem,

r F (¢ e (W"+x)(e)de —> r F(¢e (2" +x)(e)de. (60)
0 0

[m—+00]

Then, by (C1), we get

‘I’(s, w;”(&w?) + X (cwmex, ) F (W + ) (s))

e ¥y ) 200)

[m—+00]

Since V,V, are continuous, by the Lebesgue- Thus, k is continuous.

dominated convergence theorem, we obtain Step 3: k is {.-contraction.

H(kw [kw (c " — 0, asm — +00. Let II be a bounded equicontinuous subset of Ilg,
w €11, and %, %, € ©®, with x, > x,, we have
(62) 1> "2 2 1

Jiw (1) - k)

< J: "—l (13, 8)”(“‘1’(5 Wy (sw,+x,) T Xp (cwix,) F (w+ x) (s))” +|Pu (£)||>dg

+ J:l |77 (0 ) = T (5, s)||<||‘1’<s Wy (cawprx)  Xp (e, F(WHX) (s))"

, 07 (xy,
(g; %) KZ Sk H"V (w+x) (g )

071
+[|Pu (e)|)de + Z "

0<g <t

D RICRAER(CRA]| ACTEICS]

0<g <t

Y w0l Y w0

K <G <K, Ky <G <K, (63)

< [W\ly (g )81 + W\ZP(E*)EZ]<M‘[ I, —xy | + J:l "—[(be) - —[(Kns)”dS)

) Iy 1/2
+J ||%(e,0,0)||ds+M9(J0 ||-[(K1,s)—-r(,<2,€)||2> lule

07 (x,,

a-[ K , G
+ MMy (x, = ) llull e + Y | 1S)

x)
TR

0<gi <K,

3 s - Tl 960

0<g <Ky

+My Y Vw0 Ma Y Vel 0 ()l

K1 <G <K, K <G <Ky
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By the strong continuity of 71, we get Thus, k(IT) is equicontinuous; then, w, k(1) = 0.
_ _ Now, for w € I, and for any g > 0, there exists a sequence
|lkw(K1) - Ikw(;c2)|| — 0,as6) — K. (64) {wk},(:zo C II such that for ¢ € ®, we have

(RO <L(]] 6 OP(80, () * %, ey P+ 00 (@) e we T} )
+ (( { Z (—48—[ (acg’ Ck)Vk (w+x)(5;))
0<g, <¢

+ (6 e Vi (w+ ) (1))); w e IT})
< 2((“: (s, e)‘I’(s, w’;(s)w,;) + X, (cwkix,) F(wk + x) (s))ds; we H})

# 3 (Falgy + Malp JETT(O) + 0
k=0

SJC4MTZW(((H(0))+ sup ((H(T+e)))ds
0

7€ (—00,0]

1 ~
- M-L~ + ML~ 11
+ T};)( Tbq + M5 Qk)(( () +e (65)

G
< I SMbveSTMalveg nr 17 (TT (e))de
0

+ % Z(ZVI-[LQL + M—[LQi)((H(C)) +e
k>0

13
< J 8M—[l\yeSTMjl"s sup e ™M (11 (e))de
0 e€[0,]

s % (WL, + Mol J{(T1(6) + 0
k>0

13 8TMlye\ ! _
S(PC(H)j (e - )d£+%Z(M-[LQ}(+M-[LQi)C(H(c))+Q

0 k>0

eSTMjl\Pc _
< 1+ Z(MjLQ; + MjLQi> {pe (1) + @.

v k>0

Since g is arbitrary, we get Thus,

_ 8TMly¢ . _ _

k=0 k>0
(66) (67)
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By Theorem 9, it follows that there exists at least one
fixed point 1* within k. Consequently, the point 1* + x is
a fixed point for the operator k, which is a mild solution
to (1). O

International Journal of Differential Equations

4. Controllability Results

Definition 15. The reachable set of system (1) is given by

S (V) ={9(T) € B: (9) represents a mild solution of system (1)}. (68)

In case ¥ = 0, system (1) reduces to the corresponding
linear system. The reachable set in this case is denoted
by &.(0).

Definition 16. If (V) =B, then the semilinear control
system is approximately controllable on [0, T]. Here, S'+ ()
represents the closure of & (V). Clearly, if §1(0) = £, then
the linear system is approximately controllable.

We define the operator 4: B =1%(0,B) — B as
follows:

W96 =¥(6:9, (o FOO): 0<c<T.  (69)

It is demonstrated that the approximate controllability of
the linear system extends from the semilinear system, given
certain conditions on the nonlinear component. Let us now
consider the ensuing linear system:

19 = Z @10+ [ Y(Ge@de+ Pr(o if ¢ B,

9(6) = 7990+ ¥(6 9, (cay (190 + [ Y(6.09(de + Fu(9) if ¢ €6,

9(c) = 9(ci) = Vi (9(ci)),
9 (6) = 9" (6k) = Vi (9(si):
9'(0) = v, € B,9(c) = (o),

The following hypotheses must be introduced in order to
demonstrate the main aim of this section, that is, the ap-
proximate controllability of system (5):

(1) [(C5)] Linear
controllable

(2) [(C6)] Range of the operator N is a subset of the
closure of range of &, i.e.,

system (4) 1is approximately

071(s:8)
Oe

ORI Al

0<ge <

[ ()

7(6) = 1(6) = Vi (5 (s0)): k=1,...,m,
7' () = 7' (s) = Vi (5 (50)): k=1,...,m,
7' (0) =7, €B,7(¢) =3 (0), ifceR,,
(70)
and the semilinear system
k:I,...,m, (71)
k=1,...,m,
if ce R_.
Range (/) € Range (). (72)

Theorem 17. If hypotheses (C1) — (C6) are verified, then
system (1) is approximately controllable.

Proof. The mild solution of system (4) corresponding to the
control v is given by

e=03 (0) + 1(5, 0)v, + J; T(¢, ) Pv(e)de

= ViU + D T(ea)Vi () ifgeo, (73)

0<g<g

ifceR_.
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Assume the following system:

+ (6 = ¥(5 1y (o1 (FDO)
9(k) = 9(ck) = Ve (9(sx))>

9 () = 9" (6k) = Vi (9(s):
[ 9'(0) = v, € B,9(c) = (o),

Since /9 € Range (%), there exists a control function
u € L?(0,U) such that

|9 — Pu| <e, for given € > 0. (75)

(970 = (990 +¥(6.9, (o), (D 0) + [ Y(c.09(Nde

13
ifc €O,

(74)
k=1,...,m,
k=1,...,m,
ifceR_.

Now, assume that 9 is the mild solution of system (1)
corresponding to (v —u) given by

' _8—[ (6.¢) =03 (0) + (5, 0)vy + Jc T, ) (NI + P(v—u))(e)de
oe 0
= 4 071(g, _ = _ .
" "z 99 V(9 + PYRCTACCY if¢ e o, 76
L S (¢); if¢eR_.
Then, if ¢ € R_, we get ||7(c) - 9(¢)|| = 0. And, for ¢ € ©, we have
(s,
11()-9(9)] < jc 171G O(Pule) - F9()der Y Ta(c I
0 0<g<g €
x Vi (7 (s)) = Vi (8 (s))|
DN RICES]| EATICO ERACICN
0<¢<¢
< [ 1 oll@ute - @) (77)

N jo 176 (A7 (&) — H9() | de

M5 Y Lg|s

0<6<¢

+ M- Z LQi”]

0<6<¢

(50) - 9(s0)|

(50) = 9(s0)|.
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Now, for any ¢ €0, we define the function £(¢) =
supse[o’d" ](s)—9(e)||, and from the definition of the
function p and Lemma 13, we obtain

| <@, supge o071 (0) - 9(6) | <@, F (o).
(78)

170 1) = 5 (e

International Journal of Differential Equations

Then,

< — _
F()<M-T" e+ M—[(EICDI* + EZWCIT) jo F(e)de + Z (M@*LQi + M‘[LQI]()F(C]()- (79)

Therefore, according to Lemma 2, we get

0<¢x<¢

F(C)SeM_[TI/ZeM*[(Ezn%’qTJrfﬁDl*)T H 1+M~@*LQi +M—|LQ11<). (80)

By taking suitable control function u, we make
” 71(¢) - 9(c)|| arbitrary small. Therefore, the reachable set of
(4) is dense in the reachable set of (70), which is dense in 8
due to (C5). Hence, the approximate controllability of (70)
implies that of the semilinear control system (4). O

@ = 2300 - ¥(6:3, (0 @) - [ Y@

I3 (se) = 3(s) = Ve (A ()] < Vs
13 (66) = ' (s) = Vi (A (6))] < Vs
12(¢) = (< Vs,

Let the space be
X ={u e PC*(I,B): u(9)lg € D(Z)}. (82)

The following concepts are inspired by papers [14, 15]
and references therein.

Definition 18. Equation (1) is generalized U-H-R stable with
respect to (v, V,,V,, V,), if there exists 0y v, > 0, such that
for each solution j €X of inequality (6), there exists a mild
solution je % of equation (1), with

1109 = 7N <Oy g, (V, +V, 4 V3 +9(0), s T (83)

0<6<¢

5. Ulam-Hyers—Rassias Stability Results

Let V|,V,,V;>0 and v € C(®,R,) be nondecreasing and
consider the following inequalities:

<v(¢), €O,
k=1,...,m, (81)
k=1,...,m,
ifceR_.

Remark 19. A function j €X isa solution of inequality (6) if
and only if there exist g, o, € PC(I,B) and A, A, € R, such
that

(@) Jor (D] <7(e); ¢ €8, A, <V,, 1, <V, and g, (q)
<Vi3i6eR,,

(@) 1" = Z(93(0) =¥ (6 Yy HH() + [{ Y (6
€)1 (e)de + g, (¢),if ¢ €O,

(a3) J(c;)—l(c;)=Vk(J(c;))+)t;i k=1,...,m,
(a) V() -1 () =V Q) + M k=1,...,m,
(as) 1(¢) =B (¢) +,(¢), ifgeR..
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Remark 20. If 1 €X is a solution of inequality (6) then 1 is
a solution of the following integral inequality:
( 0 1(g, ¢
Hj(c) N a(z 9| 5(0) - T(c,0)v, - JO (s s)(‘I’(s, Y () (FJ)(£)> N %(s)>de
071(¢, €) _ = _
+ Z < 9e = Vk (3(sk)) = (s i) Vi (J(Ck)))“
Jd 0<g<g (84)

L 113 (¢) =T (I < Vs,

We also need the following additional assumption to
discuss about stability:(C,). We assume that for a non-
decreasing function v € C(®,B), there exists ¢, >0, such
that

r y(e)de <, (6). (85)
0

Theorem 21. If (C1) — (C4), (Cy), and (C,) are satisfied,
with

[ 071(c8)
oe

=03 (0) + (s, 0)7,

C —_— o~
SM—[J v(e)de + MV, + M-V,, ifce O,
0

if¢ceR_.

M+(§,0," +EH T)T+ ) MLy + MTLQi> <1,

0<¢<¢

(86)

then, equation (1) is generalized U-H-R stable with respect to
(v) Vl) Vz, v3)'

Proof. Let j be a solution of (6) and je€ %" be the mild
solution of (1) with  7(0)=7(0)=S(0) and
7'(0) = 5 (0) = »,.

Then, we get

* J: G 8)<\P<€’ Jp (e (Fj)(8)> + 9’b¢(£)>de

7(6) =1 .
07 (c o o
- a<z G+ Y Tew(@): ifce 8,
0<g,<¢ 0<g<c
[ 5 (0); foeR.

On the other hand, we get
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071(g¢€) Hence, for ¢ € ©, we have

Oe

rHJ(c)+

e=03 (0) — T(¢, 0)v,

B J 0 e s)(“’(s’ Jo(ey (F1) <s>) + %(a)de

] y 071(g,€)
+
0<ck<c( O¢

<SM-c,v(¢) + MoV, + M- V,,; ifce ©,

e Vi (7 (60)) = T(6 ) Vi (ck))>H

| [7(0) -S| <V, if¢eR .
(88)

071(s, €)
oe

-] =0+ 05 (0) ~ (6. 0%

- [ oy D@ )+ Pue))de

N Z 071(s,€)

V(7)) = D (e w)Vi(i ()

0<¢g<¢ 0<g<¢

=Gy,

_ J; (s, s)(‘P(s, Jo(es) (Fy) (s)) + @u(@)ds

* J o 16 5)<‘1’<£’ Jp(eay (FI) (5)) + %(e>)ds

(89)
071(¢, ) - v -
¢ ¥ (TR @) - 16T 06
0<g<g
071(¢,€) - g -
-y (T o=, Vi (7 (5%)) = T(6 k) Vic (](Ck)))H
0<¢g<¢
—~ C o
SM—[CVV(C) + M-V, + M4V, + M+ JO fl Jp(s,?e) - ]P(S’js)”g
+ 67 T|j(€) —j(s)“ds
+ M1 Y L) - ()
0<g<¢
Let ZC = [Ck) Ck+1]’ and
PC, (R,R) = {J: I — R": w|g € PCyw|; iscontinuous and (90)

1(6x)> 2 () exist with 3 (g ) = ()}
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For 1 € PC,(I,R"), let

( Mc,v(¢) + M-V, + M-V,

13

+ M- J EQ(p(e1(e+0) +6) + &7, T2 ()de
0

W1i(g) = 1 . B

- <M-iLQi +M-[LQi)](c,;), ifce ®andfe R,

0<g<¢

L 0, otherwise.

Now, we will prove that 7" is a Picard operator. For that,
let ¢ €I and 13,1, € PC(I,RY), if ¢ ¢ ©, we get |77 (c)
W3, (¢)| =0, and if ¢ €0, we have

0<¢<¢

1773, () - 73, Q)| < <M7(£1<D1* XTI+ Y <1\7T7LQi +M-[LQ’1€)>|JI N

Therefore, 7 is a contraction; hence, from Theorem 10, Furthermore, we have
there exists a unique 1* in Fy, and from Definition 3, we
deduce that 7" is a Picard operator.

1°(¢) = M—c,v(¢) + MoV, + M.V,

+ M- J; E (Y (plew(e+0) +0) + 7, T ()de

+ ) (M?LQi+M7LQ}(>J* (¢)-

0<6<¢

T (p(6 2" (c+0)+0)<2" (c+0) <27 (g).

We can see that 1* is an increasing function and (2*)' is
nonnegative. Then,
So, for ¢ eIand 6 € R™, we have

—_— c *
3°(¢) <M—c,v(¢) + MoV, + MV, + M~ Jo(fl + EZWCIT)J (e)de
+ ) (mLQ; +M7LQ11>]* (s¢)-

0<gx<g

From Lemma 2, we get

1°(¢) £ (M—c,7(¢) + MV, + ]\’/IV-,VZ)eMT(gl’rfz‘%flT)c [](1+ M-Lg + M-,LQ}(>.

0<¢<¢

17

(91)

(92)

(93)

(94)

(95)

(96)
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In particular, if 1(¢) = ”](c) -7 (c)l , then we have
1(¢) <?'1(c), and applying the abstract Gronwall lemma,
we obtain 1(¢) <1* (¢). It follows that

|16 =30 < (Mne,v(0) + MV, + I A GRS ol

__ (97)
x ]] (1 + MLy +M-,LQ1>.
0<g<¢ g g
Now, if ¢ € R™, we get Thus, we have for all ¢ €I
HORNIO B IORSIO] 8) 179 = 1@< By5, (Vi + V2 + V5 +9(9),  (100)
<Vs. which implies that (4) is generalized U-H-R stable with
respect to (v,V,,V,,V;). O

Then, if we put

(Mac, + M+ M7 + 1)eM1Lf(fl+WclT)c 6. An Example

— o Consider the following class of partial integrodifterential
Ovyy =1 x [] (1 + Mg Ly +M7LQi>, if ¢ €0,

system:
0<gp <
1, ifceR_.
(99)
(2 2 c 2
5] v(zc,x) =a v(zc,x)+J r(c_e)a v(zs,x)d‘g
o°¢ 0°x 0 0°x

.\ J‘*C 6_81"1/(q +0(¢v(c+T1, X)), x)”LZ
o 129((g+ 1) + 26+ 1)

de + 0 (¢)v (¢ x)

1 cosh (¢) 1n<7'[ + e_&) (1+v(e x))
Jo 222(1+2¢" +&%)e'¢

1 +Z (s x), if¢eI\{1,2,...,8}and x € (0, m), (101)

G
VY (G x) = oy J ' v(e,x)de; k=1: 8,and x € (0, 7),
0

=(0v(¢,x) Sk —

V( 3 c=ck) =B JO v (¢, x)de; k=1:8,andx € (0,7),
v(5,0)=v(c1) =0, forg eI,

a >

% 0 =1 (%), 7(¢, x) = T (g, x), if¢e R_andx € (0,m),
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where I=10,1],0: ®xR — R, Z: [0, 1] x [0,7] —
[0, 7], o, By € (0,e77/17).
Let

%::LZ(O,rr)z{u: 0,7) — R: JO |u(x)|2dx<oo},

(102)
be the Hilbert space with the scalar product
{u, vy = .[o u (x)v(x)dx, and the norm

12
= | etorax) (103)
0

and the phase space & be BUC(R™,%#), the space of
bounded uniformly continuous functions endowed with the
following norm: ||1//;g = Sup_OO<TS0”l//(T)L2,1{/ € &. It is well
known that & satisfies the axioms (A,) and (A,) with K =1
and @, (¢) = O, (c) =1 (see [41]). We define Z induced on
Z as

Zy=y",and D(Z) ={y € H* (0,7): y(0) = y(m) = 0}.

(104)

Then, Z is the infinitesimal generator of a cosine
function of operators (C, (¢)).r on H associated with sine
function (S, (¢)).cr- In addition, Z has discrete spectrum
which consists of eigenvalues —#n? for n € N, with corre-
sponding eigenvectors w,(x) = 1/y/2me™. The set
{w,: n € N} is an orthonormal basis of %. Applying this
idea, we can write

(105)

Zy = Z ~ i {pw,)w,, yeD(Z)
n=1

—S‘r |

19, (¢ + 0 (6, v(c+1,%)),x)| 2

19

The cosine family associated with Z is given by
(CO(C))CER:

[ee]
Co(o)y = Z cos(ng)(y,w,)w,, ¢e€R, (106)
n=1
and the sine function is given by
< sin (rg)
Sy =) o pw)w, GER (107)

n=1

Thus, ”CO (c)” <1and S, (¢) is compact for all ¢ € R. We
define Z(Q)y=Zy+a(c)y on D(Z). Clearly, Z(q) is
a closed linear operator. Therefore, Z(g) generates
(S(6,€)) (¢e)ev such that S(g, ¢) is compact and self-adjoint
for all (¢, &) €V ={(g,&): 0<e<c¢<1} (see [26]).

We define the operators A(g,€): D(Z) Cc H — I as
follows:

Ag ey = T(c—s);%y, for0<e<¢<1l,y € D(Z).

(108)

The assumption (C4) holds under more suitable con-
ditions on the operator I'. Furthermore, (Bl) — (B3) are
fulfilled. Then, there exists a resolvent compact operator
[26, 44].

Now, let P U — # be defined by PPu(c)(x)
=Z(¢x),x € [0,7],u € U, where &: [0,1] X [0,71] —
is linearly continuous, and for § € BUC(R™, H), we put
p(6,J) (v) = 0(s,v(¢ + 7, x)), such that (Cg) holds, and let
¢ — S, be continuous on T(p7).

We put v(¢) (x) = v(¢, x), for ¢ € [0,1], and define

dr+ cosh ()9, (¢) (x)

¥(69,,9,)(x) = J

129((c+1’) +2c+1) e

1ln<ﬂ + e_<2> (1+9(&x)

11¢

9,(0)(x) = £(9,) (x) = j
0
V(3 (6) (0 = ai [ 91 (e 0,

T(9, (50000 = e [ 91 (e

These definitions allow us to depict system (7) in the
abstract form (4).

|‘I’(c,%1 > A (C))| 258( +1)

222(1+2¢° + %)

( ”%1" >+cosh(c)e_nc(|%2(c)|).

de,
(109)

Now, for ¢ € [0, 1], we have

(110)



20
So, ¥;1(¢)=¢/1+i;i=0,1 are continuous non-
decreasing functions, and we have
; (1-e")1-(1+m7)
L 258+/3 ’
(111)

gL L (50 55 + 120e” + 66e”
274 \330 e '

And for any bounded set IT ¢ #, and II, € &, we get
{(¥(o T F(IT(Q)))) < (&) + &) (TT()) (112)

Mo(6,H T+E®,)T+ Y ML + MTLQ}() <0,0239.

0<¢, <

Thus, all the assumptions of Theorem 21 are fulfilled.
Consequently, the mild solution of problem (101) is gen-
eralized U-H-R stable.
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