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Allen Cahn (AC) equation is highly nonlinear due to the presence of cubic term and also very stif; therefore, it is not easy to fnd its exact
analytical solution in the closed form. In the present work, an approximate analytical solution of the AC equation has been investigated.
Here, we used the variational iteration method (VIM) to fnd approximate analytical solution for AC equation.Te obtained results are
compared with the hyperbolic function solution and traveling wave solution. Results are also compared with the numerical solution
obtained by using the fnite diferencemethod (FDM).Absolute error analysis tables are used to validate the series solution. A convergent
series solution obtained by VIM is found to be in a good agreement with the analytical and numerical solutions.

1. Introduction

Te AC equation is a nonlinear parabolic partial diferential
equation (PDE) which describes natural physical phenom-
enon in materials and multiphase systems. Te model was
frstly developed by Allen and Cahn to study the antiphase
boundary motion in antiphase domain coarsening [1]. Te
AC model is mainly used to study various phase separation
problems in diferent felds of sciences such as crystal
growth, motion by mean curvature fows, image segmen-
tation, and the mixture of two incompressible fuids [2–6]. It
has become a rudimentary mathematical model to discuss
the behavior of phase evolutions and interfacial dynamics in
material sciences [7]. In order to study the phenomenon of
phase transition, a capable and precise method for the so-
lution of AC equation has practical signifcance. Physical
importance of AC equation attracts many researchers to
study the solution of this equation. Since the AC equation is
highly stif and nonlinear, therefore, it is not easy to fnd its

exact analytical or numerical solution. Literature review
reveals that many researchers use diferent numerical and
analytical schemes and techniques to fnd the accurate so-
lutions of AC equation. Tascan and Bekir [8] used the frst
integral method to fnd traveling wave solution of AC
equation. Wazwaz [9] discussed solitons and kink solutions
using the tanh-coth method. Tariq and Akram [10] in-
vestigated new traveling wave solution to the AC equation.
Jeong et al. [11] performed a comparative study of various
numerical techniques for solving the AC equation. Gui and
Zhao [12] studied the traveling wave solutions of AC
equation with a fractional Laplacian. Jeong and Kim [13]
developed an explicit hybrid fnite diference scheme for the
numerical solution of AC equation. Shah et al. [14] proposed
an algorithm based on the fnite element method and im-
plicit fractional-step θ− scheme to study the numerical so-
lution of AC equation. Asif and Hasan [15] used FDM to
obtain numerical solution of AC equation. Shin et al. [16] use
hybrid fnite element method for solving the AC equation.
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Bulut [17] implemented the modifed exponential function
method to fnd analytical hyperbolic function solutions of
AC equation.

In last few years, approximate analytical techniques
attract attention of many researchers to fnd the approximate
solutions of nonlinear PDE’s due to their simplicity and easy
approach. Series of methods have been established by
mathematicians and researchers such as the homotopy
perturbation method (HPM) [18, 19], homotopy analysis
method (HAM) [20–22], variational iteration method
(VIM) [23–25], Adomian decomposition method (ADM)
[26–28], diferential transformmethod (DTM) [29–31], tanh
method (THM) and extended tanh method [32–34], use of
trigamma function [35], Catalan-type numbers [36], and
polynomials [37–39]. Traveling wave solutions are also
prominent techniques in fnding the closed form of solu-
tions. In recent years, many researchers used these tech-
niques to tackle various problems in physics and engineering
[40–42]. Among the above stated methods and others, VIM
is more dominant and power full due to its simplicity and
fast convergence. Literature survey reveals that the AC
equation has not been solved using this method. Terefore,
in this research work, we have used VIM to obtain series
solution of AC equation. Te obtained results are compared
with numerical solution of [15] and analytical hyperbolic
function solution obtained in [17]. We also compare the
VIM solution with traveling wave solution obtained in [8].

2. Mathematical Model

Te AC equation is the mathematical model that describes
phase transitions in material science,

zu

zt
� ε2∆u − f(u), (x, t) ∈ Ω ×[0, T], (1)

along with initial conditions (IC’s) and boundary conditions
(BC’s)

u(x, 0) � f(x), u a1, t( 􏼁 � u an, t( 􏼁 � h(t). (2)

In equation (1), ε is the thickness parameter which
represents the width of transition region, andΩ is a bounded
domain. Te term f(u) � F′(u) with F(u) � 1/4(u2 − 1)2

represents double well potential.

3. Basic Idea of VIM

VIM is established by a Chinese scientist Ji-Huan He in 1999
using the concept of optimization and Lagrange multiplier
[23]. In literature, this method is applied to solve large class
of PDE’s [23–25]. Te key advantage of the suggested
technique is that verity of the nonlinear problems can be
solved without linearization or small perturbations. It is very
straightforward in implementation and iterations can be
performed using any symbolic mathematical software like
Maple. Later on, many researchers make several modifca-
tions and use it to solve several mathematical models
[43–51]. In order to elaborate the key notion of VIM, we take
the diferential equation of the form

L[u(x, t)] + N [u(x, t)] � f(x, t), (3)

where “L” represents the linear operator, “N” represents the
nonlinear operator, and f(x, t) is the forcing function. By
using VIM, the constructed correctional functional can be
written as [23–25]

un+1(x, t) � un(x, t) + 􏽚
t

0
λ L un(x, τ)􏼂 􏼃 + N 􏽥un(x, τ)􏼔 􏼕 − f(x, τ)􏼚 􏼛dτ. n � 0, 1, 2, 3 . . . , (4)

where “λ” is the Lagrange multiplier, 􏽥un(x, τ) is the re-
stricted variation, and un(x, τ) shows the nth approximate
solution. Te Lagrange multiplier can be calculated using
optimality conditions and integration by parts. Tere are
some alternative ways to calculate the Lagrange multiplier
discussed in [52]. Te restricted variation gives
δ􏽥un(x, τ) � 0. Te approximate series solution can be ob-
tained after successive iterations for n≥ 0. Finally, we can
write the series solution as

u(x, t) � lim
n⟶∞

un(x, t)􏼂 􏼃. (5)

4. Numerical Experiments

In this section, we have solved the AC equation considering
various IC’s with the help of VIM taking thickness pa-
rameter one, i.e., ε � 1. We compare the converging series
solution with the existing numerical and analytical solutions

through absolute error tables which validates the applica-
bility of VIM. Furthermore, we also discuss the VIM so-
lution of AC equation with the transition layer parameter.
Efect of the transition parameter on concentration is also
studied through plots. CPU time for various iterations in
case of each example is also presented through tables.

4.1. Example 1. Consider the AC equation of the form
[15, 17]

ut(x, t) � uxx(x, t) + u(x, t) − u
3
(x, t), x ∈ [0, 1], t> 0, (6)

with the IC

u(x, 0) � −
12(− 1 + tanh[0.416667(0.3 + 0.848528x)])

24 + 30(1 + tanh[0.416667(0.3 + 0.848528x)])
.

(7)

Taking
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u(x, 0) � u0(x, t) � −
12(− 1 + tanh[0.416667(0.3 + 0.848528x)])

24 + 30(1 + tanh[0.416667(0.3 + 0.848528x)])
. (8)

Te constructed functional for equation (6) using
equation (4) is

un+1(x, t) � un(x, t) + 􏽚
t

0
λ(τ)

zun(x, τ)

zt
−

z
2
􏽥un(x, τ)

zx
2 + 􏽥un(x, τ)􏼒 􏼓

3
− 􏽥un(x, τ)⎡⎢⎣ ⎤⎥⎦dτ, (9)

where “λ(τ)” represents the Lagrange multiplier which can
be calculated via optimality conditions and restricted vari-
ation. Here, 􏽥u(x, τ) shows the restricted variation, i.e.,

δ􏽥u(x, τ) � 0. Taking variation on both sides of equation (9),
the equation becomes

δun+1(x, t) � δun(x, t) + δ􏽚
t

0
λ(τ)

zun(x, τ)

zt
−

z
2
􏽥un(x, τ)

zx
2 + 􏽥un(x, τ)􏼒 􏼓

3
− 􏽥un(x, τ)⎡⎢⎣ ⎤⎥⎦dτ, (10)

or

δun+1(x, t) � δun(x, t) + δ􏽚
t

0
λ(τ)

zun(x, τ)

zt
􏼢 􏼣dτ. (11)

Now, using integration by parts, we have

δun+1(x, t) � δun(x, t) + δλ(τ)un(x, t) − 􏽚
t

0
δλ′(τ)un(x, τ)dτ � 0. (12)

Hence, we have the following stationary conditions:

λ′(τ) �0|τ�t,

1 + λ(τ) �0|τ�t,
(13)

which gives

λ(t) � − 1. (14)

Equation (9) becomes

un+1(x, t) � un(x, t) − 􏽚
t

0

zun(x, τ)

zt
−

z
2
un(x, τ)

zx
2 + un(x, τ)( 􏼁

3
− un(x, τ)􏼢 􏼣dτ, n � 0, 1, 2 . . . (15)

For n � 0, 1, equation (15) can be written as

u1(x, t) � u0(x, t) − 􏽚
t

0

zu0(x, τ)

zt
−

z
2
􏽥u0(x, τ)

zx
2 + 􏽥u0(x, τ)􏼒 􏼓

3
− 􏽥u0(x, τ)⎡⎢⎣ ⎤⎥⎦dτ, (16)

u2(x, t) � u1(x, t) − 􏽚
t

0

zu1(x, τ)

zt
−

z
2
􏽥u1(x, τ)

zx
2 + 􏽥u1(x, τ)􏼒 􏼓

3
− 􏽥u1(x, τ)⎡⎢⎣ ⎤⎥⎦dτ. (17)
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Using u0(x, t) from equation (8) to equation (16) and
after integration, we get

u1(x, t) �
− 12(− 1 + tanh(0.1250001 + 0.3535536162x))

(54 + 30 tanh(0.1250001 + 0.3535536162x))

+

8.485286789 tanh(0.1250001 + 0.3535536162x)

54 + 30 tanh(0.1250001 + 0.3535536162x)
􏼠 􏼡

(0.3535536162 − 0.3535536162 tanh(0.1250001 + 0.3535536162x)
2
􏼑

54 + 30 tanh(0.1250001 + 0.3535536162x)
⎛⎝ ⎞⎠ + . . . +

− 12(− 1 + tanh(0.1250001 + 0.3535536162x))

(54 + 30 tanh(0.1250001 + 0.3535536162x))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t.

(18)

Equation (17) gives

u2(x, t) � u1(x, t) − 􏽚
t

0

zu1(x, τ)

zt
−

z
2
􏽥u1(x, τ)

zx
2 + 􏽥u1(x, τ)􏼒 􏼓

3
− 􏽥u1(x, τ)⎡⎢⎣ ⎤⎥⎦dτ. (19)

Using equation (18) in equation (19), we get

u2(x, t) � u1(x, t) − −
1728(− 1 + tanh(0.1250001 + 0.3535536162x))

3

(54. + 30 tanh(0.1250001 + 0.3535536162x))
3􏼢 􏼣t

− 0.5

8.485286789 tanh(0.1250001 + 0.3535536162x)

54. + 30.∗ tanh(.1250001 + 0.3535536162x)
􏼠 􏼡

0.3535536162 − 0.3535536162 tanh (0.1250001 + 0.3535536162x)
2

54 + 30 tanh(.1250001 + 0.3535536162x)
􏼠 􏼡

+ . . . +
1.099693168 × 105(− 1 + tanh(0.1250001 + 0.3535536162x))

3
􏼐

(54 + 30 tanh(0.1250001 + 0.3535536162x))
4

⎛⎝ ⎞⎠

(0.3535536162 − 0.3535536162 tanh(0.1250001 + 0.3535536162x)
2
􏼑

(54 + 30 tanh(0.1250001 + 0.3535536162x))
4

⎛⎝ ⎞⎠

tanh(0.1250001 + 0.3535536162x)

(54 + 30 tanh(0.1250001 + 0.3535536162x))
4􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t
2

+ . . . .

(20)

Similarly, for n � 2, 3, 4, ..., we can get u3(x, t), u4
(x, t), u5(x, t), ....

4.1.1. Absolute Error Analysis. Table 1 shows absolute error
analysis between the solutions obtained by the modifed ex-
ponential function method [17], fnite diference method [15],
and variational iteration method. Absolute error is calculated
for fourth and ffth iterations of the variational iteration

method. It is clear from Table 1 that error decreases with the
increase of the number of iterations. Te desired and accurate
result can be obtained by performing more iterations.

4.2. Example 2. In this section, we consider the AC equation
(8).

ut(x, t) � uxx(x, t) + u(x, t) − u
3
(x, t), x ∈ [0, 1], t> 0,

(21)
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with the IC

u(x, 0) � −
1

1 + e
− (

�
2

√
/2)x+C

, (22)

where C0 is the integrating constant. Taking

u(x, 0) � u0(x, t) � −
1

1 + e
− (

�
2

√
/2)x+C

. (23)

Using equation (23) in equation (21) and after in-
tegration, we get

u1(x, t) � u0(x, t) −
3
2

e
− (

�
2

√
/2)x+C

1 + e
− (

�
2

√
/2)x+C

􏼒 􏼓
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠t. (24)

Similarly, using equation (24) in equation (19), we get

u2(x, t) � u1(x, t) −
9
32

t
2
e

− (
�
2

√
/2)x+C

− 8e
− (

�
2

√
/2)x+C

+ 3t
2
e

−
�
2

√
x+2C

− 4e
− 2

�
2

√
x+4C

− 8e
−

�
2

√
x+2C

− 8e
− (3

�
2

√
/2)x+3C

− 4􏼒 􏼓

1 + e
− 3

�
2

√
/2x+C

􏼒 􏼓
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

Similarly, for n � 2, 3, 4, ... we can get
u3(x, t), u4(x, t), u5(x, t), ....

4.2.1. Absolute Error Analysis. Table 2 represents the ab-
solute error between traveling wave solution [8] and the
series solution obtained by using VIM. Absolute error is
estimated for fourth and ffth iterations of VIM solution.Te
decreasing observation of error indicates the convergence of
series solution. Higher accuracy can be attained by per-
forming more iterations.

4.3. Example 3. Here, we consider ε-version of AC equation
of the form [51]

ut(x, t) � ε2uxx(x, t) + u(x, t) − u
3
(x, t), x ∈ [0, 1], t> 0,

(26)

with initial profle containing the transition layer thickness
parameter.

u(x, 0) �
1
2

1 − tanh
x

2
�
2

√
ε

􏼠 􏼡􏼢 􏼣. (27)

In order to implement VIM, taking

u(x, 0) � u0(x, t) �
1
2

1 − tanh
x

2
�
2

√
ε

􏼠 􏼡􏼢 􏼣, (28)

the correctional functional for equation (26) will take the
form

un+1(x, t) � un(x, t) − 􏽚
t

0

zun(x, τ)

zt
− ε2

z
2
􏽥un(x, τ)

zx
2 + 􏽥un(x, τ)􏼒 􏼓

3
− 􏽥un(x, τ)⎡⎢⎣ ⎤⎥⎦dτ. n � 0, 1, 2 . . . . (29)

For n � 0, 1, equation (29) gives

Table 1: Absolute error between numerical results obtained by FDM, analytical solution obtained by using the tanh function method, and
series solution obtained by VIM at t � 0.01.

xi

Numerical solution
(FDM)

Tan hyperbolic
functions solution

(uTHFS)

Solution by VIM
after four and fve

iterations

Absolute error
in case
of FDM

|uTHFS − uFDM|

Absolute error
in case
of VIM
after four

iterations |uTHFS − u4|

Absolute error
in case
of VIM
after fve

iterations |uTHFS − u5|
u4 u5

0.00 0.184247 0.184258 0.184163 0.184218 1.06626 × 10− 5 9.3825 × 10− 5 4.0028 × 10− 5

0.01 0.183187 0.183197 0.183105 0.183158 1.06500 × 10− 5 9.2078 × 10− 5 3.9320 × 10− 5

0.02 0.182131 0.182142 0.182051 0.182103 1.06370 × 10− 5 9.0363 × 10− 5 3.8625 × 10− 5

0.03 0.181080 0.181091 0.181002 0.181052 1.06236 × 10− 5 8.8678 × 10− 5 3.7940 × 10− 5

0.04 0.180034 0.180044 0.179957 0.180007 1.06098 × 10− 5 8.7025 × 10− 5 3.7268 × 10− 5

0.05 0.178992 0.179003 0.178917 0.178966 1.05956 × 10− 5 8.5401 × 10− 5 3.6607 × 10− 5

0.06 0.177955 0.177966 0.177882 0.177929 1.05810 × 10− 5 8.3807 × 10− 5 3.5957 × 10− 5
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u1(x, t) �
1

8 cosh2(x
�
2

√
/4ε)

4 cosh2
x

�
2

√

4ε
􏼠 􏼡 − 4 sinh

x
�
2

√

4ε
􏼠 􏼡cosh

x
�
2

√

4ε
􏼠 􏼡 + 3t􏼢 􏼣,

u2(x, t) �
1

6144(sinh(x
�
2

√
/4ε) + cosh(x

�
2

√
/4ε))cosh6(x

�
2

√
/4ε)

− 1024 cosh7
x

�
2

√

4ε
􏼠 􏼡 + 1024 sinh

x
�
2

√

4ε
􏼠 􏼡cosh6

x
�
2

√

4ε
􏼠 􏼡

+ 1728t
2

+ 2304t + 3840􏼐 􏼑cosh5
x

�
2

√

4ε
􏼠 􏼡

+ 1728 sinh
x

�
2

√

4ε
􏼠 􏼡 t

2
+
4
3

t −
4
27

􏼒 􏼓cosh4
x

�
2

√

4ε
􏼠 􏼡

− 1728 cosh3
x

�
2

√

4ε
􏼠 􏼡t

2
+ − 81t

4
− 432t

3
􏼐 􏼑cosh

x
�
2

√

4ε
􏼠 􏼡

− 81 sinh
x

�
2

√

4ε
􏼠 􏼡t

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(30)

Table 2: Absolute error between the VIM solution and traveling wave solution at C � 4.0 and t � 0.01.

xi

Traveling wave solution
(uTWS)

Solution by VIM after four and fve
iterations

Absolute error in
case of VIM

after four iterations
|uTWS − u4|

Absolute error in
case of VIM

after fve iterations
|uTWS − u5|

u4 u5

− 5 − 0.0005415497601 − 0.0005415497570 − 0.0005415497601 3.1 × 10− 12 0.00000
− 4 − 0.001097714003 − 0.001097713996 − 0.001097713993 7.00 × 10− 12 1.00 × 10− 12

− 3 − 0.002223780506 − 0.002223780417 − 0.002223780437 8.90 × 10− 11 6.910 × 10− 11

− 2 − 0.004499794675 − 0.004499793394 − 0.004499794109 1.281 × 10− 9 5.66 × 10− 10

− 1 − 0.009084075273 − 0.009084065692 − 0.009084070631 9.581 × 10− 9 4.642 × 10− 9

0 − 0.01825307504 − 0.01825299748 − 0.01825303736 7.756 × 10− 8 3.768 × 10− 8

1 − 0.03633741749 − 0.03633679823 − 0.03633712022 6.1926 × 10− 7 2.9727 × 10− 7

2 − 0.07104238533 − 0.07103762964 − 0.07104015939 4.75569 × 10− 6 2.22594 × 10− 6

3 − 0.1342747341 − 0.1342406215 − 0.1342595369 3.4116 × 10− 5 1.51972 × 10− 5

4 − 0.2392905691 − 0.2390661759 − 0.2391995376 2.24393 × 10− 4 9.10315 × 10− 5

5 − 0.3894877140 − 0.3880553670 − 0.3889625354 1.43235 × 10− 3 5.251786 × 10− 4

0.6

0.5

0.4

0.3u 
(x

, t
)

0.2

0.1

0
0 0.2 0.4

x
0.6 0.8 1

ε = 0.01
ε = 0.03

ε = 0.05
ε = 0.08

Figure 1: Efect of the transition parameter ε on concentration u(x, t) for t � 0.5.
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Further iterations can be performed for n � 2, 3, · · · up to
required accuracy.

4.3.1. Relation between the Transition Parameter and
Concentration. Study of relation between the transition
parameter and concentration plays an important role in
engineering processes, especially formation of alloys and
multiphase systems. Figures 1 and 2 depict the efect of the
transition parameter ε on concentration of binary fuids in
binary alloys. Figure 1 explores that concentration increases
as we increase the values of the transition parameter.
Physically larger estimations of transition variable upsurges

the rate of difusion and, therefore, concentration increases.
Figure 2 indicates the increasing behavior of concentration
with the passage of time for the fxed value of transition
parameter. In fact, at fxed difusion rate, the concentration
of molecules in the lower concentrated region increases with
the time when difusion takes place from the higher con-
centrated region to the lower concentrated region and thus
concentration enhances.

5. Conclusion

In the present work, the VIM is efectively applied to obtain
an approximate analytical solution of the AC equation. Te
ACmodel is solved for diferent kinds of initial conditions. A
series solution obtained using VIM is compared with the
numerical results obtained by using FDM and analytical
solutions obtained by the traveling wave solution method
and the tanh function method. Computed results are il-
lustrated via absolute error tables, and a good agreement of
the results is observed. Decreasing behavior of error in
Tables 1 and 2 validates the application of VIM for solving
highly nonlinear PDE’s. Results are compared after fourth
and ffth iterations of VIM. Te error tables show the
congregating behavior of series solution to the analytical
solution and numerical solution. CUP time for diferent
iterations in case of every example is tabulated through
Tables 3–5. A mathematical software Maple is used to
perform iterations and absolute error calculations.
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Table 3: CPU timing for diferent iterations of Example 1.
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4th 25.85
5th 725.35
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3rd 2.43
4th 452.73
5th 1374.76
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3rd 0.62
4th 1.45
5th 326.23

International Journal of Diferential Equations 7



Abduvalieva contributed to formal analysis and code vali-
dation. Ali Shokri analyzed and interpreted the data and
contributed to funding acquisition.

References

[1] M. Allen and J. W. Cahn, “A microscopic theory for antiphase
boundary motion and its application to its applicationto
antiphase domain coarsening,” Acta Metallurgica et Materi-
alia, vol. 27, 1979.

[2] A. Shah, M. Sabir, and P. Bastian, “An efcient time-stepping
scheme for numerical simulation of dendritic crystal growth,”
European Journal of Computational Mechanics, vol. 25, no. 6,
pp. 475–488, 2016.
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