
Hindawi Publishing Corporation
International Journal of Digital Multimedia Broadcasting
Volume 2008, Article ID 319063, 18 pages
doi:10.1155/2008/319063

Research Article
Real-Time DVB-MHP Interactive Data Transcoding to Blu-Ray

Sergio Infante and Panos Nasiopoulos

Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall,
Vancouver, BC, Canada V6T 1Z4

Correspondence should be addressed to Sergio Infante, sergioi@ece.ubc.ca

Received 15 April 2008; Revised 30 June 2008; Accepted 23 August 2008

Recommended by M. Roccetti

Digital TV systems are being deployed worldwide, and interactive applications are being offered as part of the services. The
unparalleled success of DVD technology has motivated the development of interactive services for broadcast TV, with DVB-MHP
being the most widely used open standard in the world. Despite the similarities between DVB-MHP-based interactive TV and
the new Blu-ray format, there still exist substantial differences that make the two systems incompatible. In this paper, we analyze
the differences in the DVB-MHP and Blu-ray interactive formats and propose a transcoding scheme to convert live broadcast
interactive TV to a Blu-ray compatible format.

Copyright © 2008 S. Infante and P. Nasiopoulos. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Digital television systems offer many advantages over analog
systems, such as higher definition and interactivity and
are expected to replace the 50-year-old analog TV systems
in the next few years. This change has brought about a
reconceptualization of services and choices. Digital media
systems allow video, audio, and data to be integrated in
a single package or TV service, so that media producers
and distributors can offer an enhanced experience to the
consumer. A very successful example of this integration is the
DVD-Video, which provides multiple enhanced capabilities
through additional streams that complement the primary
video and audio streams and data that support navigation
and menu-based interactivity. The success of DVD-Video
motivated the development of interactive services for broad-
cast TV. Current broadcast interactive TV (iTV) provides
different types of interactivity by enhancing the TV signal
with applications, consisting of software and complementary
data. Current iTV set-top boxes are enabled to receive and
execute the software applications that are broadcast along
with the audio and video.

Several iTV standards have emerged over the past decade.
In 2000, the digital video broadcast (DVB) group released
the multimedia home platform (MHP) [1, 2]. This standard,

better known as the DVB-MHP open standard, specifies the
format and syntax for broadcasting data and software and
defines a set of software libraries that must be included in
the execution engine of the TV set. The proposed execution
engine uses Java technology in an effort to support a
platform-independent execution environment [3, 4]. iTV
systems based on this standard have been deployed around
the world, and DVB-MHP is currently the most widely
used open standard [5]. The DVB group then developed
the globally executable MHP (GEM) specification [6] based
on the DVB-MHP specification. GEM has been used as the
basis for the development of other iTV specifications such
as the open cable applications platform (OCAP) [7] and the
advanced common application platform (ACAP) [8].

More recently, DVD technology has also taken a step
forward. One of the most recent DVD specifications for
supporting high-definition media, the Blu-ray system, has
adopted the GEM specification as the foundation for its
interactive applications [9]. This approach allows for inter-
active features far beyond those offered by the traditional
DVD, and a positive move toward convergence of broadcast
iTV and prerecorded media. However, despite the similarities
between the DVB-MHP and Blu-ray standards, substantial
differences remain that make the two systems incompatible.
On one hand, in a broadcast environment, interactive data

2 International Journal of Digital Multimedia Broadcasting

(iTV software applications) are transmitted along with audio
and video content in a single stream. In this case, interactive
data may be encoded and encapsulated according to the
DVB-MHP broadcasting standards. On the other hand, in
the Blu-ray system, interactive data are stored separately
from the audiovisual content. The audiovisual content is
stored in a format different from the broadcasting transport
stream format, and the interactive data are stored in a single
archive, which is different from the encapsulation format
used in broadcast iTV.

The increasing number of choices in digital services
available to the consumer brings with it an increased number
of required access devices. For iTV, a set-top box is needed
in order to tune, decode, and play iTV. This box and its
remote controller will be added to the current set of TV-
related devices in many homes, which typically consists
of a TV display, tuner device, audio system, and a DVD
recorder/player (soon to be replaced by a Blu-ray player).
Adding an iTV player to this set of devices not only
requires physical space and adds complexity to an already
unmanageable entertainment system, but it also forces the
end user to learn a new set of functions in order to operate
the new device.

The advances in DVD technology and broadcast iTV and
their convergence to common interactivity paradigms point
to a possible simplification of this setup. It is, therefore,
highly desirable to eliminate the added complexity by
converting the real-time iTV content to a Blu-ray compliant
format, so that an additional set-top box is not required.
Such an effort would include transcoding of the interactive
data, the audiovisual data, and the system information from
DVB-MHP to Blu-ray. Up to this date, and to the best of our
knowledge, no work has been published on converting iTV
interactive data to the Blu-ray format.

In this work, we focus on the development of a transcod-
ing scheme that efficiently converts DVB-MHP interactive
data to Blu-ray compliant format. This is the first in-depth
analysis of the differences between the DVB to Blu-ray
standards, which leads to the first attempt to convert the
real-time iTV data to Blu-ray format. In our study, we do
not propose conversion schemes from one standard to the
other, but we rather offer transcoding solutions that aim at
reducing the complexity and computations of the conversion
process, resulting in a real-time implementation.

The rest of this paper is organized as follows. Section 2
presents background information related to iTV and Blu-
ray and also reviews work related to iTV signal processing.
Section 3 compares the two different standards in relation
to the interactive data of each and presents our proposed
transcoding scheme. A performance evaluation of our
method and discussion of results are presented in Section 4.
Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

The multimedia home platform (MHP) is the DVB group’s
specification for iTV. In this specification, an iTV program
consists of Java applications transported together with audio
and video contents [10]. The DVB-MHP establishes recom-

mendations for iTV broadcasting as well as for applications
programming. The iTV broadcasting recommendations are
based on the standards previously defined by DVB [11].
For the applications programming, the DVB-MHP standard
borrows the application model and lifecycle from the JavaTV
technology [1].

The demand for interactive services pushed the DVB
group to develop a new standard for iTV: the globally
executable MHP (DVB-GEM). Although this specification
is based on the DVB-MHP standard, it does not define
any broadcasting mechanisms. For this reason, it can be
implemented in networks that do not follow the DVB
broadcasting standards. In DVB-GEM, two main groups of
iTV are identified based on the way the content is transported
from the producer to the viewer: (1) prerecorded media
(which is called “packaged media” in the specification),
where the content is prerecorded onto a physical carrier, such
as a disc or tape and (2) broadcast media, which refers to
broadcast environments like cable or terrestrial TV [3].

2.1. Broadcast interactive television

iTV content is delivered to the receiver end in the form
of a transport stream. This stream contains audio and
video bitstreams that are encoded according to the formats
specified in the MPEG-2 standards [12, 13]. It also contains
applications which in their basic form are sets of files
organized in directory structures. The basic format and
syntax of the transport stream are established in the ISO/IEC
13818-1 specification (MPEG-2 systems) [14]. The content
and basic format of the stream are depicted in Figure 1.

The audio and video bitstreams are split into packetized
elementary stream (PES) packets. Content other than audio
and video, such as the interactive data, is split into special
packets known as sections. Each PES packet and each section
are split into smaller packets of 188-byte length, which in
turn are inserted in the transport stream (TS). Thus, the
transport stream is a sequence of TS packets. Each TS packet
consists of a 4-byte header and a payload (a fragment of a
PES packet or section). The header contains a packet id (PID)
used for packet content identification (see Figure 1).

The MPEG-2 TS can carry multiple programs. A pro-
gram is a set of associated video, audio, and data with a
common time base [14]. A program is also known as service
in the DVB specifications [15–17]. The multiple programs in
TS are supported by a set of tables, known as service informa-
tion (SI), which are broadcast in the stream and contain data
about the stream’s content. The MPEG-2 standard defines 4
such tables: the program association table (PAT), program
mapping table (PMT), conditional access table (CAT), and
network information table (NIT). In addition to the service
information tables (SIT) established in MPEG-2, a table
that provides the receiver with information regarding the
interactive applications is included in the iTV stream. This
table is known as application information table (AIT) and it
contains a description of the applications in the stream, as
well as management information.

All the SI tables are carried in MPEG-2 sections and
follow the standard MPEG-2 service information table (SIT)

S. Infante and P. Nasiopoulos 3

Video bitstream Audio bitstream Application programs Channel metadada
Application programs

DVB
Java

PES packet PES packet PES packet PES packet Section Section Section Section

TS packet TS packet TS packet TS packet TS packet TS packet

TS packet TS packet TS packet TS packet TS packet TS packet TS packet TS packet TS packet

188 bytes

Header Payload

Field

Number of bits 8 1 1 1 13 2 2 4

Sync.
byte

Transport
error

indicator

Payload unit
start

indicator

Transport
priority

Packet ID
(PID)

Transport
scrambling

control

Adaptation
field control

Continuity
count

Figure 1: Detailed structure of the MPEG-2 transport stream (TS).

format. According to this specification, the table consists of
fields and descriptors. A descriptor groups fields into sets that
have a common task. For instance, when the fields provide
information related to language, the fields are grouped
together, and the associated descriptor is the name of the
language (e.g., English). Some of the fields may not be
associated with a descriptor. These fields are known as basic
fields. Different descriptors are established in the standards
and specifications documents [1, 6, 14, 17]. Some of them
are optional. In every case, basic fields are mandatory.

The interactive data in an iTV program are structured
as a set of files which constitute the interactive application
(e.g., an executable software program). Some of these files
contain executable code known as byte code. This byte
code is executed by the Java Virtual Machine that is part
of the system software of the iTV receiver. Other files
contain information that is used as a supporting resource, for
instance, background images and text information for news
updates. All these files are organized in directories whose
structure is similar to the one shown in Figure 2.

In DVB-MHP, the directory containing the files of an
application is formatted according to the broadcast interorb
protocol (BIOP), also known as the object carousel protocol
[18–25]. Every file and directory is encapsulated in a
BIOP message, which consists of a message header and a
subheader (see Figure 3). The fields in the BIOP message
header describe general message parameters, such as the size
of the message, while the BIOP subheader fields describe
parameters specific to the type of object in the message. For
example, in the case of directory objects, the corresponding

Applications

MainXlet.class

Menu.class

Ticker.class

TickerData.dat

Images

Background.png

Figure 2: Example of the organization of interactive application
data.

fields indicate the number of elements in the directory. BIOP
messages are grouped in modules with a maximum size
of 64 KB. Each of these modules splits into smaller blocks
known as data blocks. These data blocks are encapsulated
in DSM-CC download protocol messages that are in turn
encapsulated into sections in order to transmit the object
carousel data. The transmission of such object carousel data
is performed cyclically.

In the DSM-CC object carousel, there are two categories
of download protocol messages: the control messages and
the data messages. The control messages are used by the

4 International Journal of Digital Multimedia Broadcasting

Sections DSM-CC
messages

Header

Header

D
ow

n
lo

ad
da

ta
bl

oc
k

(b
lo

ck
1)

D
ow

n
lo

ad
da

ta
bl

oc
k

(b
lo

ck
2)

D
ow

n
lo

ad
da

ta
bl

oc
k

(b
lo

ck
n

)

...
...

M
od

u
le

1
M

od
u

le
2

Object carousel

BIOP
message

BIOP message header
BIOP object sub-header

Applications

BIOP message header
BIOP object sub-header

MainXlet.class

BIOP message header
BIOP object sub-header

Menu.class

BIOP message header
BIOP object sub-header

Ticker.class

BIOP message header
BIOP object sub-header

TickerData.dat

BIOP message header
BIOP object sub-header

Images

BIOP message header
BIOP object sub-header

Background.png

Figure 3: Interactive data format in DVB-MHP.

Table 1: DSM-CC download protocol messages.

Message Function Category

Download server initiate
(DSI)

Advertise or identify a
server (broadcaster) Control

message
Download info indication
(DII)

Inform the client down-
load parameters about
the modules to be trans-
mitted

Download cancel Prematurely terminate
the transmission

Download data block
(DDB)

Transfer data from a serv-
er to client

Data
message

broadcasters to provide information regarding transmission
(i.e., number of modules to be transmitted and size of each
module), while the data messages are used to transfer the
actual data of the modules. Table 1 lists the different messages
for the two categories found in an object carousel, as well as
their corresponding functions.

In order to specify resources that broadcast iTV programs
can access (e.g., a video stream), the DVB group defines a
special type of string known as locator. A locator is a string

that uniquely identifies a resource. In DVB-MHP, the basic
locator string includes DVB specific identifiers such as the
network id (provider of the TV services), the transport stream
id (broadcast channel in the TV network), and the service id
(a specific program in the transport stream), as shown below

dvb://network id.transport stream id.service id. (1)

The network id, transport stream id, and service id are pointers
to the actual address which resides in the service information
tables. An example of an actual DVB locator is

dvb://122.164.73, (2)

where 122, 164, and 73 are the network id, transport stream
id, and service id in hexadecimal notation. This basic locator
identifies a specific service (a program in a broadcast
channel), which contains a unique name for a resource. It is
based on data that can be read from the service information
tables.

2.2. Blu-ray

The Blu-ray format has been developed by the Blu-ray disc
association. According to the Blu-ray specification, the Blu-
ray playback system is able to work in two different modes.
The first mode, known as HDMV, deals with high-definition

S. Infante and P. Nasiopoulos 5

Virtual file system

Virtual package

Disc

Blu-ray Java playback systemLocal
storage

Figure 4: Simplified view of the Blu-ray playback system input.

movie playback and provides functions similar to those
provided by the DVD-video, with some improvements in
text subtitle display, multipages, and pop-up menus. The
second mode in the Blu-ray playback system is oriented to
interactive applications and is known as Java mode or Blu-
ray Java. This mode is based on the globally executable MHP
(GEM) [6, 9]. Because of this, the Blu-ray Java playback
system has most of the elements needed to execute DVB-
MHP applications. The architecture of the Blu-ray Java
playback system is based on the basic architecture of the
DVB-MHP playback system.

In the Blu-ray system model, there are several input
elements, such as the Blu-ray disc and local storage. All
different input elements are abstracted by a layer called
virtual file system (VFS). This layer presents a simplified and
unified view of the input elements to the playback system.
The content in the local storage, optical disc, and any other
storage devices is combined into a virtual package (Figure 4),
in such a way that the application environment is not aware if
the data are stored on local storage, the optical disc, or other
input device.

A Blu-ray program (known in DVD terms as title)
consists of video, associated audio, metadata (data that
describes the content), and Java applications. In contrast to
DVB-MHP, where the program components are stored in the
same stream in Blu-ray, the program components are stored
in different files. These separate files of the same program
are linked by metadata and database files. Every program is
registered in an index table. Each program in the table is
linked to an object that contains management information
associated to the program. The object is linked to audio and
video files, as well as to the files that contain the interactive
application data (Figure 5).

The audio and video files are formatted according to
the Blu-ray audio video (BDAV) stream structure. The
BDAV stream, depicted in Figure 6, is based on the MPEG-2
transport stream. In a BDAV stream, the MPEG-2 TS packet
is extended by adding an extra header, and the packets are
organized in groups called aligned units. The extra header
contains a time stamp, which allows content indexation in
Blu-ray (i.e., scene selection).

A BDAV stream may contain several streams of audio,
video, text, and graphics. For this reason, the basic MPEG-
2 service information tables (SITs) are also included in the
stream to provide information about its content. However,
the content of these tables is restricted. For instance, the
values of the PIDs for the different types of content are
restricted to a range specified in the Blu-ray standard. The
functional equivalent to the DVB-MHP’s AIT is the applica-

tion management table (AMT) [9]. This table describes one
or more applications in a program. Although both the AIT
DVB table and the AMT Blu-ray table are used for the same
purpose, they differ in the way data is organized inside each
table.

The interactivity data for a Blu-ray Java title is stored
in what is known as jar file. The jar files are the functional
equivalents to object carousels in DVB-MHP [9]. A single jar
file contains the files of the application. Its format is based
on the popular zip file [26], which consists of a sequence
of file header, file data, and optional data descriptor fields
stored sequentially in a single file [27] (Figure 7). The header
of each file describes its attributes and parameters needed
for extraction, such as CRC32 checksums and compression
methods.

To uniquely identify resources, locator strings are also
used in Blu-ray. In Blu-ray, the basic identifier is the disc id.
This identifier is a 128-bit number that uniquely identifies
a disc image. Since a disc image contains one or more titles
(or programs), each title in the disc image is identified by a
title number. The basic Blu-ray locator string is formed by
the disc id and the title number, as shown below

bd://disc id.title number, (3)

where disc id is a 32-byte string representing the 128-bit disc
id in hexadecimal notation.

2.3. Related work

To the best of our knowledge, no work has been published
on converting iTV interactive data to the Blu-ray format.
The closest-related study is presented in [28]. This study
analyzes issues involved in the recording of iTV and proposes
a method for recording the iTV signal. The proposed method
separates the interactive data from the audiovisual content.
The interactive data is stored in a tree structure separate
from the audio and video streams, in order to save disk
space. This method is studied in depth in [29], where a
more specific architecture of a system for recording iTV
is described. The suggested method and architecture are
suitable for enabling personal or digital video recorders
(PVRs/DVRs) to record iTV shows. However, our overall
goal is to achieve compatibility between DVB-MHP-based
broadcast iTV signals and the Blu-ray system, in order to
allow real-time playback of the iTV shows in a Blu-ray device.
In that respect, the method described in the aforementioned
works is not enough, since the format used for storage is not
compliant with the Blu-ray system.

An architecture that improves the interactive data down-
loading process and reduces the iTV application launching
time is proposed in [30]. This architecture relies on a cache
mechanism for the received DSM-CC download protocol
messages. It also supports priority-based scheduling of data
carousel monitoring threads. The work developed in [30]
focuses on the improvement of performance of interactive
data reception in iTV receivers.

In [31], we have analyzed some differences between
the DVB-MHP and Blu-ray standards and proposed a

6 International Journal of Digital Multimedia Broadcasting

Index table

− Title 1

− Title 2
Interactivity data

Programs
BD-J
Java

Blu-ray Java object

Application management
table

Audio, video, graphics
and text structure

Figure 5: Simplified structure of Blu-ray Java title.

4 bytes 188 bytes

Extra
header

MPEG-2
TS packet

192 bytes

Source packet 0 Source packet 1 Source packet 2 · · · Source packet 31

6144 bytes

Aligned unit Aligned unit Aligned unit · · · Aligned unit

Figure 6: BDAV transport stream.

Applications/MainXlet.class

Applications/Menu.class

Applications/Ticker.class

Applications/TickerData.dat

Applications/Images/
Background.png

Jar file

Header

Header

Header

Header

Header

Figure 7: Interactive data format in Blu-ray.

method to transcode DVB-MHP system information to
the Blu-ray standard. This method achieves compatibility
by modifying the service information tables, adapting them
to the constraints imposed by the Blu-ray format. Although
system compatibility is the objective of the study in [31], it
only addresses some of the problems (i.e., system informa-

tion) related to the compatibility between the DVB-MHP
audiovisual content and the Blu-ray audiovisual streams.
However, in order to achieve full compatibility between
real-time iTV and Blu-ray, it is also necessary to process
the interactive data in the DVB-MHP signal and convert
them to compliant Blu-ray format. In this work, we focus
on the development of a scheme that converts DVB-MHP
interactive data to a Blu-ray compliant format.

3. OUR INTERACTIVE DATA TRANSCODING SCHEME

3.1. Overview of the transcoding scheme

The objective of our interactive data transcoding scheme is to
receive the transport stream packets, filter only those sections
containing the interactive data and channel metadata, and
change the interactive data format to a Blu-ray compliant
format. Our transcoder should successfully identify the
appropriate sections, separate them into categories that can
be processed in parallel and independently of each other, and
finally assemble the interactive data that are compliant with
the Blu-ray standard. Figure 8 shows a block diagram of our
proposed transcoder.

The interactive data contained in the different sections
are formatted according to the protocols specified in the
extensions for digital storage media command and control
(DSM-CC), part of the MPEG-2 standard [18–25]. These
sections will be processed by the module transcoder com-
ponent of our DVB-MHP to Blu-ray transcoder shown in
Figure 8. This module will change the DSM-CC formatted
interactive data to a Blu-ray compliant format known as
a jar file [26]. The channel metadata, known as service

S. Infante and P. Nasiopoulos 7

Section filter

Ja
r

AMTJar

DVB-MHP
transport stream

Module
transcoder

Locator
transcoder

AIT
transcoder

DVB
locator

DVB
locator

Blu-ray
locator

Blu-ray
locator

Blu-ray Java
object builder

Blu-ray virtual
file system

B
lu

-r
ay

lo
ca

to
r

A
IT

se
ct

io
n

s

P
SI

/S
I

se
ct

io
n

s

D
SM

-C
C

se
ct

io
n

s

Blu-ray Java
object

Figure 8: Block diagram of the DVB-MHP to Blu-ray interactive
data transcoder.

information (SI) or program specific information (PSI),
follow the format specified in the MPEG-2 standard. In
DVB-MHP streams, individual channel metadata include
the application information table (AIT), which contains
information regarding the interactive applications in the
channel. The sections carrying the AIT will be processed
by the AIT transcoder (see Figure 8), which will generate
the corresponding Blu-ray compliant table known as the
application management table (AMT). The interactive appli-
cations and the AIT may include references to resources in
the channel, such as video streams or interactive data files.
These resources are identified by special strings known as
locators. The locators in the DVB-MHP format must be
converted to the Blu-ray format. In DVB-MHP, locators are
based on information found in the service information (SI)
tables. Our locator transcoder receives SI sections in order
to convert DVB-MHP locators to the Blu-ray equivalent
format. Finally, to make the transcoded content available
to the Blu-ray player, a Blu-ray Java object is built based
on the information generated by the different transcoder
modules. The information generated will be bound to the
virtual file system of the Blu-ray player. In the following
sections, we describe the functions of each of the transcoding
components and, after analyzing the differences of the inter-
active information between the two standards, we propose
techniques to transcode the DVB-MHP interactive data to a
Blu-ray compliant format.

The three main transcoders of our scheme can be
launched in parallel, since DSM-CC, PSI/SI, and AIT data
are separated from the stream by the section filter and each
data category is independent from each other. However,
the module transcoder and the AIT transcoder may be
dependant on the locator transcoder. This happens if locators
are used to identify resources in the interactive data or AIT.

This is not a concerning issue since the information required
by the locator is transmitted very frequently according to the
broadcasting specifications [17].

3.2. Section filter

The section filter component of our transcoder processes
the transport stream packets and extracts only the MPEG-
2 sections that carry interactive data and channel metadata.
These sections, along with audiovisual information, are mul-
tiplexed in the transport stream. To perform multiplexing, a
multiplexer splits sections into fragments that fit the payload
of a transport stream packet, as illustrated in Figure 9. These
packets are inserted into the transport stream.

In order to extract the interactive data, the section filter
must first build the sections that are carried in the transport
stream packets. The header of the transport stream packets
contains a packet id (see Figure 9). The packets with the
same value in the packet id carry information of the same
elementary stream (for instance, packets with packet id =
0014h carry the audio bitstream). The header also contains
a payload unit start indicator (PUSI) flag (see Figure 9). The
value of 1 in this flag indicates that the packet carries the first
fragment payload unit (a section or a packetized elementary
stream packet). When a transport stream packet is received,
the PUSI flag is read to check if a new section is beginning
in the packet. If the PUSI flag is on, then the first three
bytes of the payload are read. A value of 000000h in these
bytes indicates that the payload unit started in the packet is
a packetized elementary stream (PES) packet. In this case,
the packet is discarded, as well as the packets with the same
packet id value, since they will also contain fragments of PES
packets. If the value in the first three bytes of the payload is
different than 000000h, then a buffer is created to store the
new section. The payload of the packet is copied to the first
bytes of the section buffer, and its packet id value is stored
in a variable. This value is compared to the packet id of the
subsequent packets in the stream. The payload of the packets
with the same packet id value is copied after the last bytes
copied in the buffer. This operation is performed until the
section is complete.

Once a complete section has been formed, the value in
the first byte of the section is read. This byte contains the
field known as the table id and indicates the type of section;
in other words, it indicates whether the section is a DSM-CC
section, a PSI/SI section, and\or an AIT section. The table id
values for the different types of sections, the type of data,
and a brief description of each type are shown in Table 2.
Once a section has been categorized by reading the value of
the table id, it is sent to one of the different modules of our
transcoding system.

3.3. Module transcoder

The task of our module transcoder is to convert the modules
containing the DSM-CC formatted files and directories to a
single Blu-ray compatible jar file. In order to perform this
task, the module transcoder first needs to build the DSM-CC
modules (modules 1 and 2 in Figure 3, shown in Section 2).

8 International Journal of Digital Multimedia Broadcasting

H
ea

de
r

Pa
yl

oa
d

Se
ct

io
n

s
h

ea
de

r

MPEG sections

TS packets

Field

Number of bits 8 1 1 1 13 2 2 4

Sync.
byte

Transport
error

indicator

Payload
unit start
indicator

Transport
priority

Packet ID
(PID)

Transport
scrambling

control

Adaptation
field control

Continuity
count

· · ·

· · ·

Figure 9: Sections split into transport stream packets.

Table 2: Table id for different types of sections.

Table id Type of data Description

00h PSI/SI Program management table
lists the programs in the
stream and associates them
with the corresponding pro-
gram association table

01h PSI/SI Program association table lists
the different components of
a program (audio, video, and
data streams) and associates
them with a PID

3Bh DSM-CC DSM-CC control message.
Contains DSM-CC messages
for transmission control

3Ch DSM-CC DSM-CC data messages con-
tains DSM-CC messages for
data transmission

74h AIT Application information ta-
ble describes the interactive
applications in the program.

These consist of DSM-CC messages that are transmitted
according to the DSM-CC download protocol (see Table 1 in
Section 2).

In a DVB-MHP stream, a typical sequence of messages
begins with a download server initiate (DSI) message. A
DSI message notifies the receiver that a specific broadcaster
is transmitting information. Following the DSI message,
a download info indication (DII) message is transmitted,
providing data transfer parameters, such as the number
of modules to be transmitted, their IDs, and their sizes.
Then, a sequence of download data block (DDB) messages
is transmitted. Each DDB message contains a fragment of
a module, as depicted in Figure 10. The header of a DDB
message contains the id of the module and a block number
that indicates the number of the specific data block within

the module. Thus, a module M that is split into n data blocks
can be built from the sequence of blocks with module id M
and block numbers from 1 to n.

The process of constructing the modules from the
received DSM-CC messages is known as the download
process. DVB-MHP-based iTV receivers start the interactive
data download process when they receive a download server
initiate (DSI) message. One problem presented by this
approach is that the time when a user tunes to a channel
may not coincide with the time that the broadcaster sends a
DSI message. In this case, the receiver will have to wait until
it receives the announcement of an interactive data transfer,
discarding all the messages received previous to the DSI
message. In order to reduce this waiting time, our module
transcoder implements a buffering mechanism in the form
of a block cache.

Figure 11 shows a possible sequence received by the
receiver when the user tunes to a channel and our block
caching buffer. As mentioned before, a set-top box will
start the download process only after the first DSI message
is received. Therefore, data blocks received previous to a
DSI message will be discarded. In our implementation,
these blocks will be stored in the block cache, as shown in
Figure 11. Since a carousel approach is used for transmitting
DVB-MHP interactive data, there is a high probability that
the same sequence of data blocks will be transmitted after
the DSI message. Therefore, the blocks stored in the block
cache can be used to complement the information received
after a DSI message. In other words, if the user tunes to
a channel when block i of module M is being transmitted,
the sequence of blocks with block numbers from i to n is
received and stored in the block cache. After the DSI message
is received, the download of module M is complete when
the blocks numbered from 1 to i − 1 have been received,
since the remaining set of blocks is already stored in the
block cache. The next step is for the module transcoder to
assemble the module using this full set of blocks. Since our
caching mechanism stores only data blocks, it is simpler

S. Infante and P. Nasiopoulos 9

Module 1 Module 2

Time

M ID Module ID
B No Block number

· · ·

· · ·· · · · · ·DSI DII
DDB

M ID: 1
B No: 1

DDB
M ID: 1
B No 2

DDB
M ID: 1
B No: 3

DDB
M ID: 1
B No: n

DDB
M ID: 2
B No: 1

DDB
M ID: 2
B No: 2

DDB
M ID: 2
B No: 3

DDB
M ID: 2
B No: m

DSI DII
DDB

M ID: 1
B No: 1

Figure 10: A typical sequence of DSM-CC download messages.

Download process starts here
for an iTV receiverTime

B
lo

ck
-c

ac
h

e

M ID Module ID
B No Block number

Module 1

D
D

B
M

ID
:1

B
N

o:
1

D
D

B
M

ID
:1

B
N

o
2

D
D

B
M

ID
:1

B
N

o:
3

· · ·

D
D

B
M

ID
:1

B
N

o:
n

Module 2

D
D

B
M

ID
:2

B
N

o:
1

D
D

B
M

ID
:2

B
N

o:
2

D
D

B
M

ID
:2

B
N

o:
3

· · ·

D
D

B
M

ID
:2

B
N

o:
m

DDB
M ID: 1
B No: 3

· · ·
DDB

M ID: 1
B No: n

DDB
M ID: 2
B No: 1

DDB
M ID: 2
B No: 2

DDB
M ID: 2
B No: 3

· · ·
DDB

M ID: 2
B No: m

DSI DII
DDB

M ID: 1
B No: 1

DDB
M ID: 1
B No: 2

· · ·

Figure 11: A received sequence of DSM-CC commands and the block cache.

than the caching and monitoring mechanism implemented,
presented in [30], which in addition to data blocks stores DSI
messages as well.

Once a complete module has been formed, the next stage
is to convert the assembled module to the jar file format.
According to this format, every file is stored following a
header, which contains parameters for retrieving the file (as
previously shown in Figure 7, Section 2). For this reason, a
jar header is generated by our transcoder for every BIOP
message containing a file object, and the body of the message

is stored following the header. The jar header (called local
file header in the zip file specification) contains a fixed
number of fields. Table 3 shows all the fields in the jar
header, their size, the description, and the value assigned
after transcoding. As can be seen from Table 3, fields 1 to 4
of the header do not depend on DVB-MHP data but rather
have fixed values based on the specification [27]. Fields 5
and 6 do not depend on the DVB- MHP data, but on the
date of creation or modification of the file stored in the jar.
In our transcoding system, when the jar header is created,

10 International Journal of Digital Multimedia Broadcasting

Table 3: Fields in the jar header.

Field Size (bytes) Description Transcoded value

1 Local file header signature 4 Marks the beginning of a new
entry

Fixed to 04034b50h

2 Version needed to extract 2 Zip specification version needed
to extract the file.

Fixed to 0014h (simple file)

3 General purpose bit flag 2 General purpose flags, bit flags
are specified in [27]

Fixed to 0000

4 Compression method 2 Indicates the method used for
file compression

Fixed to 0000 (no compression)

5 Last mod file time 2 Last file modification time Obtained from the system clock

6 Last mod file date 2 Last file modification date Obtained from the system clock

7 crc 32 4 Cyclic redundancy check code Based on file data, calculated using a table
based fast algorithm

8 Compressed size 4 Size of the file after compression Copied from the BIOP object headers

9 Uncompressed size 4 Size of the uncompressed file Copied from the BIOP object headers

10 Filename length 2 Number of bytes in the filename Obtained after the filename is built

11 Extra field length 2 Length of the extra field Fixed to 00 (no extra field)

12 Filename Variable Filename including the path
(directories)

Generated from objects in the carousel

13 Extra field Variable User defined extra fields Not included in the generated header

the date and time are obtained from the system clock and
stored in these fields. The values for fields 8 and 9 in the jar
header are obtained directly from the BIOP message headers.
The size of a file in DBV-MHP is specified in the headers
of the corresponding BIOP file object. In Blu-ray and the
corresponding jar header, this value is stored in uncompressed
size (field 8) and since no compression is applied to the file,
the value is also stored in compressed size (field 9).

The value for field 7 in the jar header must be generated
based on the received information. This field contains an
error-protection code based on the cyclic redundancy check
(CRC) function known as crc 32, which is calculated using
a 32-degree polynomial. In the implementation of our
transcoder, a fast algorithm that uses precalculated tables to
accelerate the polynomial evaluation is used. The field in
the jar header that is the most difficult to obtain from the
corresponding DVB-MHP content is the filename (field 12).
In addition to the name of the file, the filename field must
include the path to the file (in other words, its location in
the directory structure). In the object carousel, the filename
for a specific BIOP file object cannot be obtained directly
from the BIOP message headers. It must be constructed
from information contained in other objects in the carousel
(Figure 12).

As mentioned before, the object carousel is formed by
directory and file objects. Every object in the carousel is
uniquely identified by an object key. Both the object type
and the object key are fields of the BIOP message header.
The body of a message containing a file object is the actual
data of the file, and the size or length of the file is stored in
the BIOP message subheader. The body of a message for a
directory object is a list of the objects in the directory (files
and subdirectories in a regular directory structure). Every

entry in this list is a link to the actual objects and is described
by the name (filename or subdirectory name) of the linked
object; its object type and object key (see Figure 13). The
number of links (also called bindings) in a directory object is
stored in its BIOP message subheader. Thus, for each received
BIOP file object, the name and path must be traced back
in the tree formed by the linked BIOP objects in order to
generate the corresponding filename field for the jar header.
For instance, in the example shown in Figure 12, to obtain
the filename of object (e), the name must be obtained from
the parent directory object (d) and the path must be traced
from object (d) to the root directory object (a) (also called
service gateway). If any of the parent objects of a DVB-MHP
file object has not been received when its corresponding jar
header is created, the filename required in the jar header
cannot be generated. For instance, in the example shown in
Figure 12, if the header for object (e) is created but object (d)
has not been received, the full filename cannot be obtained,
since object (d) contains the filename and the link of the file
object to the rest of the tree structure. In our transcoder, if
the object to be transcoded is not linked to any other received
object, the jar entry (jar header followed by the file content)
with the header partially filled is stored in an associative array
(as shown in Figure 13), where the array element key (index)
is the object key. In this case, the object is recovered later,
when the parent objects are received, and the filename can
be obtained.

All the received BIOP messages containing directory
objects are stored in a separate array. When a new directory
object is received, it is stored in this array. Then, the object
keys in the directory objects are searched to verify if any of
the partially filled jar entries can be completed. If the object
key of a partially filled jar entry is found, the tree formed by

S. Infante and P. Nasiopoulos 11

Object type: file
Object key: 3

Size: 4

Object type: file

Object key: 4

Size: 2 KB

Object type: file
Object key: 8

Size: 8 KB

File name required for Jar entry:
/Applications/Images/Background.jpg

Object type: gateway
Object key: 1

Name Type

Applications dir

Bindings: 1

Key

2

Object type: directory

Name Type

MainXlet.class fil

Menu.class fil

Ticker.class fil

TickerData.dat fil

Images dir

Bindings: 5

Key

3

4

5

6

7

Object type: directory
Object key: 7

Name Type

Background.png fil

Bindings: 1

Key

8

(a)
(b)

(c)

(d)

(e)

BIOP

BIOP

BIOP

message header

message sub-header

 message content

KB

.

.

.

Object key: 2

Figure 12: Organization of the example BIOP objects.

(d)

Element
key

Element
data

5

8

12

Jar header
(partially filled)

Element
key

Element
data

1

2

7

Object type: gateway
Object key: 1

Name Type

Applications dir

Bindings: 1

Key

2

Object type: directory
Object key

Name Type

MainXlet.class fil

Menu.class fil

Ticker.class fil

TickerData.dat fil

Images dir

Bindings:

Key

3

4

5

6

7

Object type: directory
Object key: 7

Name Type

Background.png fil

Bindings: 1

Key

8

(a)

(b)

(c)

Array of Jar entries

Array of directory
objects

.

.

.

: 2

5

Jar header

Jar header

Figure 13: Arrays of jar entries and directory objects, with the route for tracing the filename for a jar entry.

the directory objects is traced back to build the full filename
required for the jar entry header (Figure 13). When the full
filename of an object can be built based on the directory
objects in the array, the header of the corresponding jar entry
is completed, and the entry is placed in the jar file. In the
example shown in Figure 12, when object (c) arrives and is
stored in the array of directory object messages, the object
keys in the bindings list of the object can be searched in the
array of jar entries. There is only one key in the bindings list
of (c). When this key is found as the key for element (d),
the object key of (c) is searched in the remaining elements
in the array directory object messages (objects (a) and (b)).

The object key of (c) will be found in the bindings list of
(b), and then the object key of (b) will be searched in the
remaining object of the array. This step is recursive and
is repeated until the root object of the tree (object (a)) is
reached. If a key is not found, then the path of the file cannot
be determined, and the process will be repeated when a new
directory object is received.

3.4. AIT transcoder

This part of our transcoder processes the MPEG-2 sec-
tions that carry the DVB-MHP application information

12 International Journal of Digital Multimedia Broadcasting

table (AIT), and converts them to the equivalent Blu-
ray application management table (AMT). The AIT is a
service information table included in DVB-MHP, and pro-
vides information about the interactive applications being
broadcasted and actions related to their execution state. For
instance, it contains flags that are used to indicate whether
an application must be executed immediately, terminated, or
executed when a button on the remote control is pressed.

The AIT is carried in the MPEG-2 sections and follows
the standard MPEG-2 service information table (SIT) for-
mat. According to the MPEG-2 specification, a service infor-
mation table (SIT) consists of basic fields and descriptors. In
total, there are 10 different types of descriptors. The use of
some specific descriptors in an AIT table is mandatory, while
other descriptors and the associated fields are optional. All
the basic fields are mandatory. The Blu-ray equivalent to the
DVB-MHP AIT is the application management table (AMT).
The AMT has a smaller number of basic fields than an AIT,
and only one type of descriptor. The fields grouped under
this descriptor are equivalent to fields grouped in several
descriptors of the DVB-MHP AIT.

Figure 14 shows the DVB-MHP AIT and the Blu-ray
AMT, as well as their fields and descriptors. The AIT in
Figure 9(a) represents one of many possible combinations
of fields showing only 5 of the 10 possible descriptors. The
position of these descriptors in the table is not fixed; in other
words, fields can be in different positions within the table.
In both tables, there are blocks of fields that can be repeated
several times. In Figure 14, such blocks are marked by letters.
The number of repetitions is usually determined by the field
located just before the block of fields. In the Blu-ray AMT,
the size (in bytes) of each of these blocks of fields must be a
multiple of 2, since the data unit in the Blu-ray read system is
word-based. For this reason, additional empty fields, known
as word alignment fields, are added after each block of fields
in the AMT, as shown in Figure 14(b).

Our approach for transcoding a DVB-MHP AIT to
a Blu-ray AMT is to create AMT fields on a block-by-
block basis. The values of the grey fields in Figure 14(b)
are either transcoded from the corresponding DVB-MHP
or are generated according to the Blu-ray specification.
If an AMT field does not have a corresponding field
in AIT (usually because the descriptor is not present),
then it is assigned a default value-based on the Blu-ray
specification. The first AMT fields are the basic fields length
and number of applications. The length field indicates the
size of the table in bytes. This value is assigned once
the creation of the table has been completed, since it
contains the total number of bytes needed to store the table.
The number of applications field indicates the number of
applications that are going to be described in the table. This
field is equivalent to the application loop length field of the
AIT (field 16 of Figure 14(a)). However, the equivalent field
in AIT field indicates the number of bytes used for describing
the applications, instead of the number of applications.
It is not possible to calculate the number of applications
based only on the number of bytes used, since the use
of some descriptors is optional and the number of fields
used to describe each of the applications is not constant. In

order to calculate the value for the number of applications,
a counter is used. This counter is initialized to 0 and
incremented when a block of AIT fields describing a single
application is read (block a in Figure 14(a)). The value for
application control code is generated as follows. In Blu-ray,
this field can have values that are restricted to a set smaller
than the set of values allowed in DVB-MHP. If in the AIT
the value in this field is greater than the highest allowed in
Blu-ray, the value assigned in the AMT is the highest value
allowed; otherwise, the value assigned is a copy of the value
in AIT. The AMT application type field indicates the type
of application that is described in block a of Figure 14(b).
In the current specification of Blu-ray, only one type of
application is supported, known as Blu-ray Java. For this
reason, the value of this field is always 1, which is the
identifier for the Blu-ray Java application. However, since
DVB-MHP supports more than one application type, it is
necessary to check that the value of the corresponding AIT
field is equivalent to the Blu-ray Java application. If the
value in field 7 in Figure 14(a) is different from 1 (DVB-
Java), then the transcoding process must be stopped since no
Blu-ray compatible application is being transmitted in the
stream. As for fields 6 and 7 of the AMT, they give the id
of the organization that provides the interactive application
(assigned by the DVB group) and the id of the application
(assigned by the organization). Their values are directly
copied from the equivalent AIT fields (fields 17 and 18 in
Figure 9(a)). The value for the AMT descriptor tag is fixed
to 00h, which is the value required by Blu-ray. The value
for descriptor length is obtained once the complete block of
fields, labelled as a in Figure 14(b), has been created, since
it indicates the number of bytes used to store the entire
block. The application profiles count in the AMT indicates
the number of application profiles described in the table. An
application profile is a description of a series of minimum
configurations, providing different capabilities of the MHP
[1]. In other words, it specifies the minimum functions in the
receiver or the player required by the interactive application.
Two different profiles and their respective capabilities are
defined in the DVB-MHP specification and are the same
as defined in the Blu-ray specification. The equivalent field
in the AIT is applications profile length. This field gives the
number of bytes used to specify all the application profiles
in the table. In the AIT, 5 bytes are used for storing a single
application profile (block b in Figure 9(a)). Therefore, in
order to calculate the number of application profiles, which
is the value for the AMT application profiles count, the value
of the AIT application profiles length must be divided by 5.
Once this step is completed, the following fields, shown as
block b in AMT, are directly copied from the corresponding
fields in AIT (see Figure 14). The problem here is that
the generated AMT block b consists of 5 bytes, and word
alignment is needed. For this reason, an extra empty field 1-
byte long is added to this block (see Figure 14(b)).

The AMT fields application priority, application binding,
and visibility indicate the relative priority between the
applications, if an application must be terminated when the
corresponding title is changed and the visibility to the end
user, respectively. The values of these fields are directly copied

S. Infante and P. Nasiopoulos 13

Syntax Size (bits) Descriptor

1 Table_id 8
2 Section_syntax_indicator 1
3 Reserved_future_use 1
4 Reserved 2
5 Section_length 12

6 Test_application_flag 1
7 Application_type 15

8 Reserved 2
9 Version_number 5

10 Current_next_indicator 1
11 Section_number 8
12 Last_section_number 8
13 Reserved_future_use 4
14 Common_descriptors_length 12
15 Reserved_future_use 4
16 Application_loop_length 12

a

17 Organisation_id 32

18 Application_id 16

19 Application_control_code 8
20 Aeserved_future_use 4
21 Application_descriptors_loop_length 12

22 Descriptor_tag 8
23 Descriptor_length 8

24 Application_profiles_length 8

b

25 Application_profile 16

26 Version.major 8

27 Version.minor 8

28 Version.micro 8

29 Service_bound_flag 1

30 Visibility 2

31 Reserved_future_use 5

32 Application_priority 8

c 33 Transport_protocol_label 8

34 Descriptor_tag 8 Data

descriptor

35 Descriptor_length 8

36 Data_broadcast_id 16

d 37 Application_type 16
38 Descriptor_tag 8

Application

descriptor

39 Descriptor_length 8

e
40 ISO_639_language_code 24
41 Application_name_length 8

f 42 Application_name_char 8

43 Descriptor_tag 8

 application

44 Descriptor_length 8

45 Base_directory_length 8
g 46 Base_directory_byte 8

47 Classpath_extension_length 8
h 48 Classpath_extension_byte 8
i 49 Initial_class_byte 8

50 Descriptor_tag 8 DVB-J.

DVB-J.

 application
descriptor

51 Descriptor_length 8

j 52 Parameter_length 8
k 53 Parameter_byte 8

54 CRC_32 32

DVB-MHP application information table

Application
descriptor

broadcast id

name

location
descriptor

(a)

Syntax Size (bits) Descriptor

1 Length 32

2 Number_of_applications 8

3 Reserved_for_word_align 8

a

3 Application_control_code 8
4 Application_type 4
5 Reserved_for_word_align 8
6 Organization_id 32

7 Application_id 16

8 Descriptor_tag 8

Application
descriptor

9 Reserved_for_word_align 8
10 Descriptor_length 32
11 Reserved_for_future_use 32

12 Application_profiles_count 4

13 Reserved_for_word_align 8

b

14 Application_profile 16

15 Version.major 8
16 Version.minor 8
17 Version.micro 8
18 Reserved_for_word_align 8
19 Application_priority 8
20 Application_binding 2
21 Visibility 2
22 Reserved_for_word_align 8

23 Number_of_application_name_bytes 16

c
24 Application_language_code 24
25 Application_name_length 8

d 26 Application_name_byte 8
e 27 Reserved_for_word_align 8

28 Application_icon_locator_length 8
f 29 Application_icon_locator_byte 8
g 30 Reserved_for_word_align 8

31 Application_icon_flags 16

32 Base_directory_length 8
h 33 Base_directory_byte 8

i 34 Reserved_for_word_align 8

Reserved_for_word_align 8

35 Classpath_extension_length 8
j 36 Classpath_extension_byte 8
k 37

38 Initial_class_name_length 8
l 39 Initial_class_name_byte 8
m 40 Reserved_for_word_align 8

41 Number_of_overall_parameter_bytes 8

n 42 Number_of_parameter_bytes 8
o 43 Parameter_byte 8

p 44 Reserved_for_word_align 8

Blu-ray application management table

(b)

Figure 14: Application information table (AIT) (a) and application management table (AMT) (b).

from the equivalent AIT fields (fields 32, 29, and 30, resp., in
Figure 14(a)). The values of field 23 and field in the block
labelled as c in Figure 14(b) are also directly copied from the
AIT equivalent fields (field 39 and block e in Figure 14(a)).
These fields are used for providing the name and language of
the application. Block f in the AMT (see Figure 14(b)) gives
the filename of the image used as an icon for the application,
and the field application icon locator length indicates the
length of this filename. In the AIT, shown in Figure 14(a),
there is no equivalent to these fields. For this reason, the
AMT block f is not generated, and the value 0 is assigned
to application icon locator length.

The fields of block h in the AMT contain the name of
the initial directory of the application. Since an application

in Blu-ray is stored in a jar file, this field must begin with
the name of the jar, as required in the Blu-ray specification.
The equivalent to this block in the AIT is the block labelled
g in Figure 14(a). This block is copied after the name of the
jar file (which was generated by the module transcoder) in
AMT block h. The base directory length contains the number
of bytes used for storing the base directory block. This field
can be calculated by adding 5 (the length of the jar filename)
to the value of the corresponding field in the AIT (field 45 in
Figure 14(a)).

The block of class path extension byte fields gives
the path to the directory containing libraries used by
the application. The value of this field in the AMT
and the field indicating the size in bytes of the block

14 International Journal of Digital Multimedia Broadcasting

PSI parser

Network_id TS_id Service_id Disc

122 164 254 0123456789abcdef0a1b2c3d4e5f6789

122 164 255 0123456789abcdef0a1b2c3d4e5f6789

Service
information

DVB Locator

(i.e. dvb://122.164.254) Blu-ray Locator

bd://0123456789abcdef0a1b2c3d4e5f6789.0

 itle

0

1

DVB IDs Equivalent Blu-ray IDs

122 170 75 0123456789abcdef0a1b2c3d4e5f678A 0

(A) (B)

T

Figure 15: Locator transcoder mapping table.

(field 35 in Figure 14) are directly copied from their
equivalent fields in AIT (fields 47 and 48 in Figure 14(a)).
The block of initial class name byte fields provides the file
in the application that is used as the starting point in its
execution. This block in the AMT is directly copied from
its equivalent in the AIT (labelled d in Figure 14(b) and i in
Figure 14(a)). In the AMT, the length of this block must be
stored in field 38 (see Figure 14). This field does not exist
in the AIT, but can be calculated, since the descriptor length
(field 44 of AIT) contains the total number of bytes from
field 45 to field 49.

The last block of AMT fields is the block n shown in
Figure 14(b), which contains parameters for the application.
This block is directly copied from the AIT equivalent (block
j in Figure 14(a)). AMT field 41 shows the number of times
this block is repeated. In order to calculate its value, a counter
is used that is incremented every time the block is read.

3.5. Locator transcoder

The locator transcoder converts the DVB-MHP locators to
the Blu-ray locator format. The basic task of this transcoder
is to map the DVB specific identifiers to the unique identifier
of the disc image (disc id) in order to create Blu-ray locators
that are equivalent to DVB-MHP locators. The disc id is
assigned by the content provider. In DVB-MHP, the transport
stream id is also assigned by the content provider. For this
reason, in our transcoder, the pair formed by a network id
and a transport stream id identifiers is equivalent to a Blu-ray
disc id. Thus, when a new pair of network id and transport
stream id is read from the service information tables, a
disc id is created. For the creation of such a disc id, a disc
counter is stored in the transcoder system. This counter is
incremented every time a disc id is created, therefore, every
disc id will have a different value. A disc image contains
several titles that are listed in the index table of the disc
image in Blu-ray. Each title is addressed by a title number,
which is directly equivalent to its position in the index table.
Similarly, in DVB-MHP, a transport stream can contain
several programs. The list of these programs can be found
in the service information tables and can be seen as the
equivalent to the index table; therefore, the position of a
program in the programs list is equivalent to the Blu-ray

Table 4: Sections of the Blu-ray Java object.

Blu-ray Java object
section

Description

Terminal information Contains flags related to title changes
and configuration data.

Cache information This section contains information
indicating the files that must be cached
in order to improve disk performance.

Table of accessible play
lists

Contains information related to the
access control of audiovisual infor-
mation.

Application M
management table

Provides information related to the
applications associated to the title.

Key interest table Contains information related to play-
back control of user generated events
(flags for enabling or disabling input
from buttons related to playback).

File access information Determines read access to the files in
the virtual file system of the player.

title number. When the network id and transport stream id
are read from the service information, the locator transcoder
also reads the list of programs in the transport stream and the
identifier of each program (service id). The three identifiers
are stored in a table. Each row in the table contains a
unique combination of the values of network id, transport
stream id, and service id found in the service information,
as shown in Figure 15(a). In this table, the Blu-ray disc id
and title number equivalent to the DVB-MHP identifiers are
stored in each row (Figure 15(b)). This table is used for fast
mapping of the DVB locator to Blu-ray resources. When a
DVB locator is received by the locator transcoder, it reads the
different ids in the locator and looks for the row that has the
same values in the corresponding IDs. Once the row is found,
the equivalent Blu-ray identifiers are read, and a locator in
the format required by Blu-ray is formed.

3.6. Blu-ray Java object builder

The Blu-ray Java object indicates to the player what audio-
visual content and interactive data belong to a title. It also

S. Infante and P. Nasiopoulos 15

Table 5: Terminal information.

Syntax Size (bits)

1 Length 32

2 Default font filename 8∗5

3 Initial HAVi configuration id 4

4 Menu call mask 1

5 Title search mask 1

6 Reserved for future use 34

Table 6: Application cache information.

Syntax Size (bits)

1 Length 32

2 Number of entries 8

3 Reserved for word align 8

a

4 Entry type 8

5 Ref to name 8∗5

6 Language code 8∗3

7 Reserved for future use 8

contains information about the functions in the player that
can be used for the specific title. When a user selects a title,
the player first reads the Java object and then looks for the
information about the content associated with the title. The
Blu-ray Java object is a unique structure, not present in DVB-
MHP. Our task is to build a Blu-ray Java object for each title.

According to the Blu-ray specification, the Blu-ray Java
object consists of six sections. The different sections of the
Blu-ray Java object and a brief description of each of them
are listed in Table 4.

The first sections in the object are the terminal informa-
tion and the cache information. Tables 5 and 6 show the fields
in these sections and the size of each field. Table 5 contains
information about functions that will be available in the
player while the title is being played. The functions permitted
when broadcast content is played will always be the same;
therefore, the values for the fields in this table are fixed. The
cache information table (Table 6) provides information about
jar files to be stored in the local storage of the player in order
to improve performance. This caching approach is good for
prerecorded media, where the application files never change.
This approach is not suitable for broadcast media; therefore,
no applications will be cached. The fields of block a in Table 6
are not created, and the values for the remaining fields are
fixed.

Table 7 shows the accessible playlists, which link the
audiovisual streams that are going to be played in the title.
In Blu-ray, in order to allow audiovisual content navigation,
the content is split in several streams, each one containing
one section of the audiovisual material (e.g., each stream
can contain a scene in a movie). In contrast to Blu-ray,
in broadcast iTV, the content is always played in the same
sequence that is received and is not split. Therefore, in
this table only, one playlist must be considered. The values
for most of the fields (see Table 7) are fixed, since they

Table 7: Table of accessible playlists.

Syntax Size (bits)

1 Length 32

2 number of acc PlayLists 11

3 access to all flag 1

4 autostart first PlayList flag 1

5 reserved for future use 19

A
6 PlayList file name 8∗5

7 Reserved for word align 8

Table 8: Key interest table.

Syntax Size (bits)

1 VK PLAY 1

2 VK STOP 1

3 VK FAST FWD 1

4 VK REWIND 1

5 VK TRACK NEXT 1

6 VK TRACK PREV 1

7 VK PAUSE 1

8 VK STILL OFF 1

9 VK SECONDARY AUDIO ENABLE DISABLE 1

10 VK SECONDARY VIDEO ENABLE DISABLE 1

11 VK PG TEXTS ENABLE DISABLE 1

12 Reserved for future use 21

describe the parameters necessary to read only one playlist,
and the only field that is filled with a variable value is
play list filename. This field gives the name of the playlist
associated to the title. This name will be the same as the title
number.

The following section in the Blu-ray Java object is
the application management table (AMT), which has been
previously built by the AIT transcoder. The AMT that is
received from the AIT transcoder by the object builder is
copied after the table of accessible playlists. Once the AMT
has been copied to the Blu-ray Java object, the key interest
table (Table 8) is created. This table provides information
about the remote control buttons that will be enabled during
the title playback. Some of these buttons are not useful for
broadcast signal playback. For instance, fast forwarding and
rewind are not possible during playback of a broadcast signal.
All the fields in the table will be set to 0 (button disabled)
except for fields 1, 2, 9, and 10 (play, stop, secondary audio,
and video, resp.).

The last section is the file access info section. This
section contains only 2 fields: the directory paths length
(16 bits), which contains the size of the path string, and
directory paths byte (8 bits, repeated directory paths length
times), which is a block of bytes that contains a path string.
The path string contains the path to the directory, where the
jar files are stored, since the player needs to access the files of
the Java application.

16 International Journal of Digital Multimedia Broadcasting

Table 9: Test results of the interactive data transcoder.

Stream 1 Stream 2 Stream 3

Stream
– Generated using available

software
– Source: DVB-S network

– Source: from a DVB-T
channel

– Single program multiplex
– 19 program multiplex (10

audio only)
– Single program multiplex

Stream data rate (Mbps) 8 38 14

Interactive application data
rate (Mbps)

3.09 0.244 7.12

Interactive application size
(bytes)

41 498 194 253 1 545 513

Number of modules 2 21 37

Average time for building and
transcoding a module
(seconds)

0.007 0.054 0.068

Total transcoding time
straightforward download

Carousel loops 1 1 2.02

Seconds 0.0253 1.1754 3.1316

Total transcoding time
cache-based download

Carousel loops 0.4920 0.8446 0.0203

Seconds 0.0043 0.9692 1.0342

Time improvement by using
cache

Carousel loops 0.508 0.1554 1.997

Seconds 0.0210 0.2062 2.0974

4. PERFORMANCE EVALUATION AND DISCUSSION

An implementation of our interactive data transcoder was
tested using three different iTV streams. One of the streams
was generated by encoding a sample iTV application into
an object carousel and multiplexing it along with a test
audiovisual stream. The encoding of applications and multi-
plexing of the encoded interactive data with the audiovisual
stream were done using tools made available by the open
source community [32]. The second and third streams
were obtained from the iTV development community. The
original source of the second stream is a DVB-satellite
channel belonging to the Astra network. The third stream
belongs to the Cineca Inter-university Consortium and the
source of this stream is a DVB-terrestrial channel.

The characteristics of the test streams and the corre-
sponding transcoding time are presented in Table 9. The
first row of the table gives a brief description of the
streams, including the source and number of programs
in each stream. The second, third, fourth, fifth, and sixth
rows show the stream data rate, the data rate of the
interactive application, the size of the interactive application,
the number of modules used to broadcast the application,
and the average time used for building and transcoding a
module, respectively. The last six rows of the table show
the improvement of the transcoding process when the data
block cache was used. The seventh and eighth rows show
the total transcoding time using a straightforward interactive
data download approach. The ninth and tenth rows show
the total transcoding time using the data block cache. The
eleventh and twelfth rows show the time saved by our data
block caching approach.

We applied the transcoding to full sets of buffered TS
packets. Since each stream was already buffered in a single
file, no transmission delays affected the transcoding time
measurement process. Transcoding time was measured on a
personal computer and spans from the reception of the first
packet containing interactive data to the completion of the
transcoding process. In the results where the carousel loops
are used as a measuring unit, we considered that a DSI/DII
message indicates the beginning of a loop. The carousel loop
spans from the reception of the DSI/DII message to the last
DDB message of the carousel. The first DSI/DII indicates the
beginning of first carousel loop.

We observe that the average transcoding time for a
module for all three streams is very small, allowing for
real-time playback. The difference in times is proportionally
related to the data rate of the interactive stream, which affects
the time for constructing a module, and the complexity of the
interactivity involved. As we can see, the second stream takes
a bit longer but this is directly related to the data rate which
is much slower. Although the third stream is faster than the
first one, it requires a bit more time than the first due to
the complexity of the interactivity and the fact that many
packets were missing from this stream due to transmission
errors. Many of these packets were part of sections containing
interactive data, and for this reason, the building process for
some modules took longer. However, the overall transcoding
process was improved by using the proposed block cache
mechanism, as it can also be observed in Table 9. The block
caching mechanism allowed us to complete the transcoding
process before the first full carousel loop was received. In
carousel loops, the total transcoding time of the first stream
was improved by 50% when the block cache mechanism

S. Infante and P. Nasiopoulos 17

was used. The transcoding time of the second stream was
improved by 16% and the transcoding time of the third
stream by 200%.

One concern about the block caching mechanism is the
memory usage. The worst case scenario for memory usage
in the block cache occurs when the iTV channel is tuned
in right after a DSI/DII message has been transmitted. In
this case, the complete set of DDB messages is received
and stored in the cache, and the memory used by the
block caching mechanism is equivalent to the size of the
application. An average iTV application does not exceed
1 MB in size. Large applications grow up to 2 MB. This size is
low compared to the minimum amount of memory required
by the Blu-ray specification (256 MB [9]). Furthermore, the
whole transcoding process is performed using Blu-ray local
storage. When data in the block cache are transcoded, the
transcoded data are then stored in the same storage unit. The
memory used by the caching mechanism is equivalent to the
memory used by transcoded data. Therefore, the memory
usage in the whole transcoding scheme remains constant.

The results of our transcoding were tested by successfully
playing back the interactive streams using a Blu-ray player.

5. CONCLUSIONS

We have developed a mechanism for transcoding a DVB-
MHP interactive data stream to a Blu-ray compliant format.
This is the first published work on converting iTV interactive
data to Blu-ray. An interactive data downloading process
is necessary in order to perform the transcoding of the
interactive application. A simple cache mechanism that
improves the efficiency of this process is proposed. This
mechanism takes advantage of the interactive information
received before the arrival of the corresponding transmission
parameters and is simpler than the mechanism proposed
in previous works. Performance evaluations show that our
cache mechanism improved the performance by up to 200%.

The downloaded DSM-CC object carousel is converted
to the Blu-ray compliant jar file format. In order to accelerate
the conversion process, an associative array of DSM-CC
directory objects and an associative array of partially con-
verted DSM-CC file objects are used. The use of these arrays
allows the conversion of file objects prior to the arrival of the
objects that describe the directory structure. The metadata
tables that describe the applications and their corresponding
parameters are also transcoded. In order for the Blu-ray
system to be able to access the transcoded content, the
appropriate Blu-ray metadata files are generated.

Although only interactive data were transcoded by
our scheme, our results prove that compatibility between
broadcast iTV and the Blu-ray system is possible, since the
content originally available in the iTV stream has been made
available to the Blu-ray system. For a complete DVB-MHP
to Blu-ray transcoding system, our future work will focus on
the development of a full conversion scheme for audiovisual
content.

Making DVB-MHP iTV content compatible with the
Blu-ray format and allowing Blu-ray devices to playback the
most widely used open standard for iTV not only reduce

complexity, but they are also cost effective for manufacturers
and consumers. Manufacturers can benefit by offering a
device capable of both prerecorded media and iTV playback,
and users will appreciate the resulting simplicity and cost
savings.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. The
author would like to thank the Mexican Science and Tech-
nology National Council (CONACyT) and the Universidad
Autónoma de Baja California for their support.

REFERENCES

[1] “DVB Multimedia Home Platform (MHP) Specification
1.0.3,” European Telecommunications Standards Institute TS
102 812, 2003.

[2] J. Piesing, “The DVB multimedia home platform (MHP) and
related specifications,” Proceedings of the IEEE, vol. 94, no. 1,
pp. 237–247, 2006.

[3] K. Arnold and J. Gosling, The Java Programming Language,
Addison-Wesley, Reading, Mass, USA, 2nd edition, 1997.

[4] J. Gosling and H. McGilton, The Java Language Environment,
Sun Microsystems, Mountain View, Calif, USA, 1996.

[5] A. Lugmar, S. Niiranen, and S. Kalli, Digital Interactive TV
and Metadata: Future Broadcast Multimedia, Springer, Berlin,
Germany, 2004.

[6] European Broadcasting Union, Digital Video Broadcasting
Group, “GEM 1.0.2: Digital Video Broadcasting (DVB); Glob-
ally Executable MHP (GEM),” European Telecommunications
Standards Institute TS 102 819 V1.3.1, 2005.

[7] Society of Cable Telecommunications Engineers, “SCTE
Application Platform Standard OCAP 1.0 profile,” SCTE 90-
1, 2005.

[8] Advanced Television Systems Committee, “ATSC Standard:
Advanced Common Applications Platform (ACAP),” ATSC
A/101, 2005.

[9] Blu-Ray Disc Association, “System Description Blu-Ray Disc
Read-Only Format, Part 3: Audio Visual Basic Specifications,”
2006.

[10] S. Morris and A. Smith-Chaigneau, Interactive TV Standards:
A Guide to MHP, OCAP and Java TV, Focal Press, Oxford, UK,
2005.

[11] U. H. Reimers, “DVB—the family of international standards
for digital video broadcasting,” Proceedings of the IEEE, vol. 94,
no. 1, pp. 173–182, 2006.

[12] Moving Picture Experts Group, “Information technology—
generic coding of moving pictures and associated audio
information: video,” ISO/IEC 13818-2:2000, 2000.

[13] Moving Picture Experts Group, “Information technology—
generic coding of moving pictures and associated audio
information: audio,” ISO/IEC 13818-3:2000, 2000.

[14] Moving Picture Experts Group, “Information technology—
Generic coding of moving pictures and associated audio
information: systems,” ISO/IEC 13818-1:2000, 2000.

[15] European Telecommunications Standards Institute, “Imple-
mentation guidelines for the use of video and audio coding
in broadcasting applications based on the MPEG-2 transport
stream,” Tech. Rep. TS 101 154, ETSI, Cedex, France, June
2005.

18 International Journal of Digital Multimedia Broadcasting

[16] European Telecommunications Standards Institute, “Specifi-
cation for the use of video and audio coding in DVB services
delivered over IP,” Tech. Rep. TS 102 005, ETSI, Cedex, France,
July 2007.

[17] Digital Video Broadcasting, “Specification for Service Infor-
mation (SI) in DVB systems,” European norm.

[18] Moving Picture Experts Group, “Generic coding of moving
pictures and associated audio information—part 6: extension
for digital storage media command and control (DSM-
CC),” International Standards Organization/International
Electrotechnical Comission 13818-6, 1997.

[19] European Telecommunications Standards Institute, “Imple-
mentation guidelines for Data Broadcasting,” Tech. Rep. TR
101 202, ETSI, Cedex, France, 2003.

[20] V. Balabanian, L. Casey, N. Greene, and N. C. Adams,
“An introduction to digital storage media—command and
control,” IEEE Communications Magazine, vol. 34, no. 11, pp.
122–127, 1996.

[21] R. J. Crinon, D. Bhat, D. Catapano, G. Thomas, J. T. Van Loo,
and G. Bang, “Data broadcasting and interactive television,”
Proceedings of the IEEE, vol. 94, no. 1, pp. 102–118, 2006.

[22] European Telecommunications Standards Institute, “DVB
specification for data broadcasting,” Tech. Rep. TS 101 192,
ETSI, Cedex, France, June 1999.

[23] R. J. Crinon, “DSM-CC object carousel for broadcast data ser-
vices,” in Proceedings of the 16th IEEE International Conference
on Consumer Electronics (ICCE ’97), pp. 246–247, Rosemont,
Ill, USA, June 1997.

[24] H. Zhang, T. Jiang, Z. Gu, and S. Zheng, “Design and
implementation of broadcast file system based on DSM-
CC data carousel protocol,” IEEE Transactions on Consumer
Electronics, vol. 50, no. 3, pp. 929–933, 2004.

[25] E. M. Schwalb, iTV Handbook: Technologies and Standards,
Prentice-Hall, Englewood Cliffs, NJ, USA, 2003.

[26] Sun Microsystems, “Jar File Specification,” 1999.
[27] PKWare, “Zip File Format Specification Version 6.3.0,” 2006.
[28] P. Newton, D. Kelly, J. Tan, J. Shi, and L. Gan, “Recording

interactive TV,” IEEE Transactions on Consumer Electronics,
vol. 51, no. 2, pp. 540–544, 2005.

[29] J. Tan, J. Shi, L. Gan, D. Kell, and P. Newton, “Solutions and
systems for recording interactive TV,” in Procedings of the 7th
International Symposium on Optical Storage (ISOS ’05), vol.
5966 of Proceedings of SPIE, pp. 1–7, Zhanjiang, China, April
2005.

[30] D.-H. Park, T.-Y. Ku, and K.-D. Moon, “Real-time carousel
caching and monitoring in data broadcasting,” IEEE Transac-
tions on Consumer Electronics, vol. 52, no. 1, pp. 144–149, 2006.

[31] Z. Mai, P. Nasiopoulos, R. K. Ward, and S. Infante, “Real-time
DVB-MHP to blu-ray system information transcoding,” IEEE
Transactions on Consumer Electronics, vol. 54, no. 2, pp. 639–
647, 2008.

[32] Cineca Interuniversity Consortium, “Just DVB-It,” May 2007,
http://www.cineca.tv/labs/mhplab/JustDVb-It 2.0.html.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

