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Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are
intelligent software defined radios (SDRs) that efficiently utilize the unused regions of the spectrum, to achieve higher data rates.
The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of
incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of
the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality
reduction techniques such as principal component analysis (PCA), kernel PCA, and landmark maximum variance unfolding
(LMVU) on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms
such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter
transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM) is used
for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed,
in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.

1. Introduction

1.1. Cognitive Radio. Cognitive radio (CR) is an intelligent
software defined radio (SDR) technology that facilitates
efficient, reliable, and dynamic use of the underused radio
spectrum by reconfiguring its operating parameters and
functionalities in real time depending on the radio envi-
ronment. Cognitive radio networks promise to resolve the
bandwidth scarcity problem by allowing unlicensed devices
to transmit in unused “spectrum holes” in licensed bands
without causing harmful interference to authorized users [1–
4]. In concept, the cognitive technology configures the radio
for different combinations of protocol, operating frequency,
and waveform. Current research on cognitive radio covers
a wide range of areas; including spectrum sensing, channel
estimation, spectrum sharing, and medium access control
(MAC).

Due to its versatility, CR networks are expected to be
increasingly deployed in both the commercial and military

sectors for dynamic spectrum management. In order to
develop a standard for CRs, the IEEE 802.22 working group
was formed in November 2004 [5]. The corresponding IEEE
802.22 standard defines the physical (PHY) and medium
access control (MAC) layers for a wireless regional area
network (WRAN) that uses white spaces within the television
bands between 54 and 862 MHz, especially within rural
areas where usage may be lower. Details of the IEEE 802.22
standard including system topology, system capacity, and
the projected coverage for the system are given in the next
section.

1.2. The 802.22 System. The IEEE 802.22 is the first standard-
ized air interface for CR networks based on opportunistic
utilization of the TV broadcast spectrum [6, 7]. The
main objective of the IEEE 802.22 standard is to provide
broadband connectivity to remote areas with comparable
performance to broadband technologies such as cable and
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DSL, in urban areas. In this regard, the FCC selected the
predominantly unoccupied TV station channels operating in
the VHF and UHF region of the radio spectrum.

1.2.1. System Topology. The 802.22 system is a point-to-
multipoint wireless air interface consisting of a base station
(BS) that manages a cell comprised of number of users or
customer premises equipments (CPEs) [8]. The BS controls
the medium access and “cognitive functions” in its cell and
transmits data to the CPEs in the downlink, while receiving
data in the uplink direction from the CPEs. The various
CPEs perform distributed sensing of the signal power in
the various channels of the TV band. In this manner, the
BS collects the different measurements from the CPEs and
exploits the spatial diversity of the CPEs to make a decision if
any portion of the spectrum is available.

1.2.2. Service Coverage. Compared to other IEEE 802 stan-
dards such as 802.11, the 802.22 BS coverage range can
reach up to 100 KM, if not limited by power constraints.
The coverage of different wireless standards is shown in
Figure 1. The WRAN has the highest coverage due to higher
transmit power and long-range propagation characteristics
of TV bands.

1.2.3. System Capacity. The WRAN systems can achieve
comparable performance to that of DSL, with downlink
speeds of 1.5 Mbps and uplink speed of 384 Kbps. The
system would thus be able to support 12 simultaneous CPEs,
resulting in an overall system download capacity of 18 Mbps.

The specification parameters of the IEEE 802.22 standard
is summarized in Table 1.

1.3. Smart Grid. Smart grid explores and exploits two-way
communication technology, advanced sensing, metering and
measurement technology, modern control theory, network
grid technology, and machine learning in the power system
to make the power network stable, secure, efficient, flexible,
economical, and environmentally friendly.

Novel control technology, information technology, and
management technology should be effectively integrated to
realize the smart information exchange within the power
system from power generation, power transmission, power
transformation, power distribution, power scheduling to
power utilization. The goal of smart grid is to systematically
optimize the cycle of power generation and utilization.

Based on open-system architecture and shared informa-
tion mode, power flow, information flow, and transaction
flow can be synchronized. In this way, the operation
performance of power enterprises can be increased. From
power customer’s perspective, demand response should be
implemented. Customers would like to participate in more
activities in the power system and power market to reduce
their electric bills.

Distributed energy resources, for example, solar energy,
wind energy, and so on, should also play an important
role in the smart grid. Versatile distributed energy resources
can perform the peak power shaving and increase the

Table 1: IEEE 802.22 characteristics.

Parameter Specification

Typical cell radius (km) 30–100 km

Methodology
Spectrum sensing to
identify free channels

Channel bandwidth (MHz) 6, (7, 8)

Modulation OFDM

Channel capacity 18 Mbps

User capacity
Downlink: 1.5 Mbps

Uplink: 384 kbps

stability of the power system. However, distributed energy
generation imposes new challenges on the power system.
Power system planning, power quality issue, and so on
should be reconsidered.

To support the smart grid, a dedicated two-way com-
munications infrastructure should be set up for the power
system. In this way, secure, reliable, and efficient com-
munication and information exchange can be guaranteed.
In addition, the various devices, equipments, and power
generation facilities of the current power system should
be updated and renovated. Novel technologies for power
electronics should be used to build advanced power devices,
for example, transformer, relay, switch, storage, and so on.

To incorporate the smart features into the power system,
computationally intelligent techniques, that is, machine
learning and dimensionality reduction, should be widely
applied. Machine learning is a scientific discipline that is
concerned with the design of algorithms for computers
to imitate the behavior of human beings, which includes
learning to recognize complex patterns and make deci-
sions based on experience, automatically and intelligently.
Dimensionality reduction is the process of reducing the
number of random variables under consideration to con-
trol the degrees of freedom. Several areas for applying
computationally intelligent techniques to the smart grid
have been identified in [9]. These areas are smart sensing
and metering, autonomous control, adaptive protection,
advanced data management and visualization, intelligent
interfaces with distributed resources and market, decision
support systems for system operation, and planning. The
concept of compressing electrical power grids using the
singular value decomposition (SVD) analysis is proposed
in [10] to reduce the network traffic. The main idea is
to determine what parts of the system are more strongly
coupled from the grid admittance matrix [10].

In the smart grid, there will be more than one element,
agent, controller, or decision maker. The control algorithm
for the system with a single agent cannot be well suited
for the distributed control or noncooperative control. From
the multiagent control issue perspective, Game theory gives
a general control methodology to deal with interaction,
competition, and cooperation among decision makers in
the complex system. Game theory is widely used in social
sciences, economics, engineering, and so on. For the smart
grid, the energy consumption scheduling issue has been



International Journal of Digital Multimedia Broadcasting 3

802.22 (proposed) − 18 to 24 Mbps

802.20 (proposed)
GSM, GPRS, CDMA, 2.5 G, 3 G −

10 kbps to 2.4 Mbps

802.16a/d/e − 70 Mbps
LMDS − 38 Mbps

802.15.1 (Bluetooth) − 1 Mbps
802.15.3 > 20 Mbps

RAN
<100 km

WAN
<15 km

MAN
<5 km

LAN
<150 km

11–54 Mbps

802.11a/b/e/g
HiperLAN/2

802.11n (proposed) > 100 Mbps

PAN
<10 km

802.15.3a (UWB) < 480 Mbps
802.15.4 (Zigbee) < 250 kbps

Figure 1: Comparison of 802.22 with other wireless standards.

formulated as a game theory problem [11]. The aim of
scheduling is to reduce the total energy cost as well as PAR
in the load demand [11]. Based on the assumption that
the charge for each subscriber is proportional to his/her
total daily load, the energy consumption game can be solved
distributively with minimum exchanging information [11].
Meanwhile, the unique Nash equilibrium of the energy
consumption game is the optimal solution to the central
scheduling problem [11]. The work in [11] has been
extended by [12]. Different control strategies based on the
degree of information sharing in the network have been
studied [12]. Partial knowledge setting and blind setting
are considered. The proposed distributed stochastic energy
consumption scheduling algorithms can still successfully
exploit the limited information to improve the overall load
profile [12]. In the context of the electrical power system,
auction theory is a popular approach to deal with the power
control issue from an economic point of view. Auction
theory is a kind of game theory that deals with the behavior
of agents in auction markets. Operation of a multiagent
system for microgrid control has been presented in [13].
Auction theory has been exploited as the foundation of
the proposed algorithm, the main idea being that every
distributed energy resource or controllable load decides what
is best for it, taking into account the overall benefit [13].

From the discussion of the control algorithm in smart
grid, it is safe to say that pricing-based algorithms, pricing-
based utility functions, and pricing models should be

considered to optimize the system. A quasidynamic pricing
model [14] has been proposed to minimize the electricity
bill of cooperative users. The price comprises of a base price
and a penalty term. Two methods are described. Deadline-
driven continuous variable method is suitable for an energy
cost optimization with less interruptible tasks, while the
time slot-based method is appropriate for more interruptible
tasks [14]. One optimal real-time pricing algorithm has been
mentioned in [15]. Energy pricing is an essential tool to
develop efficient demand-side management strategies [15].
The proposed algorithm can be implemented in a distributed
manner to maximize the aggregate utility of all users and
minimize the cost imposed to the energy provider [15].

1.4. Power System Disturbance Classification. It is critical
for power system operators to discern power system dis-
turbances characteristics in order to take control measures
to ensure power system security and reliability. This issue
has become even more challenging due to the expansion
of power system interconnections and integration of dis-
tributed generators and renewable energy resources [16, 17].
Wide area measurement system (WAMS) implements the
disturbance detection by collecting measurements from local
sensors (wire, cable, or wireless) and managing it on a central
server [18–22].

Power system disturbance classification has been con-
ducted using pattern recognition in [23–25] based on power
system measurements like voltage quality, power flow, or
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frequency. Artificial intelligence, such as neural networks,
and particle swarm optimization have been introduced for
complex signal classification [26, 27]. However, the imple-
mentation of these algorithms is too complicated and not
practical. To circumvent this, a machine-learning method
called support vector machine (SVM) can be employed
to quickly and accurately classify various common power
system disturbances using the frequency data at various
points in the power system. The objective is to eventually
enable automated classification of disturbances, which is
currently easy for a person to accomplish, yet difficult for
a computer. SVM, which was first proposed by Cortes and
Vapnik [28], transforms unknown data from a nonlinear
space to a linear space. Subsequently, any linear algorithm
can be applied to form the knowledge for the machine
operation. SVM can achieve a unique global optimum for
a convex optimization problem. In addition, SVM is not
affected by the uncertainty in the parameters. Due to its
various advantages, SVM is increasingly preferred in the field
of pattern recognition and classification [26, 27].

1.5. Securing the Smart Grid. The smart grid is aimed at
transforming the already aging electric power grid in the
United States into a digitally advanced and decentralized
infrastructure with heavy reliance on control, energy distri-
bution, communication, and security.

In order to develop this infrastructure, a high level of
interconnectivity and reliability among its nodes is required.
Sensors, advanced metering devices, electrical appliances,
and monitoring devices, just to mention a few, will be
highly interconnected allowing for the seamless flow of data.
Reliability and security in this flow of data between nodes, as
shown in Figure 2, is crucial due to the low latency and cyber
attacks resilience requirements of the smart grid.

A distributed interconnection among these nodes will
be ubiquitous, just as finding a similar level of connectivity
among cellular phones or computing nodes in a large
organization. The smart grid environment, however, poses
a new set of communications and security paradigms. Due
to their complexity and importance to the realization of the
smart grid infrastructure, it is extremely important to study
the interactions among the nodes, more specifically, in terms
of their communications and security.

Taking into account that reliability and security will
impose constraints on the majority of the devices connected
to the Smart Grid, if not all, it would be wise to consider
communication standards, protocols, and devices that are
designed from the ground up to be secured, logically and
physically. Since a great portion of the traffic generated
within the grid will be traveling on an unsecured medium
such as the Internet, it is imperative to minimize the amount
of potential security loopholes. Additionally, the human
variable should also be taken into account in the security
model, as part of the security infrastructure.

When it comes to security, communication is key, and
information should be properly disseminated to all the
parties involved, ensuring that everyone has a clear and
common understanding of security needs facilitating their
implementation and operation. Training and informing

users about processes, study of human behavior, and the
perception of events related to the processes is as important
to the entire security equation, as it is to engineer a secured
infrastructure. As a matter of fact, the greatest security threat
to any infrastructure is human error, as opposed to the
technology securing it. Communications in the smart grid
is a key component of the entire infrastructure, and logically
we divide it into two sections, the backbone communications
(interdomain), which will carry communications among
domains such as those shown in Figure 2, and the commu-
nications at the local area network (intradomain) limited
by perimeters such as a customer’s house, or a distribution
facility [29]. It would be important to note that due to
current limitations, the focus of research on our testbed will
be on intradomain communications, without disregard for
future considerations of the interdomain aspect.

We can say that current and emerging technologies in
telecommunications, most of which are expected to fall
in the wireless realm (Wimax, Zigbee, 802.11, etc.), can
accommodate the communications needs of both inter and
intradomain environments, however, not without flaws.
From a security standpoint, these technologies are not
designed to be secure from the ground up. For example,
Zigbee is a standard for short-range communications, and
manufacturers of Zigbee compliant chips produce them
without necessarily considering the security issue. In addi-
tion, chip manufacturers print the chip model on top of
the chip itself as a standard practice. The chip specifications
can therefore be easily downloaded, and potential flaws of
the chip can be easily exploited by attackers. Additionally,
by default, many of these chips do not carry any internal
security features and, therefore, rely on external chips, or on
higher level software applications for this purpose. An easy
access to the external chip by any malicious attacker could
potentially disable any installed security features. This and
other similar scenarios lead us to think that the smart grid
should be driven by technologies and standards that consider
security as their primary concern.

The smart grid has been conceived as being distributed in
nature and heavily dependent on wireless communications.
Today’s SOHO (small office/home office) and enterprise-
graded wireless devices include security features to mitigate
attacks, the vast majority still relying on conventional rule-
based detection. It has been shown that conventional rule-
based detection systems, although helpful, do not have the
capability of detecting unknown attacks. Furthermore, as
presented in [30], these conventional IDSs would not be able
to detect such an attack if it is carefully crafted, since the
majority of these rules are solely based on strict thresholds.

2. Review

2.1. Cognitive Radio Network Testbed. A Cognitive Radio
(CR) network testbed is being built at Tennessee Techno-
logical University [31, 32]. The idea of applying a cognitive
radio network testbed to the smart grid was developed at
Tennessee Technological University in the middle of 2009
in a funded research proposal [33]. Subsequently, this idea
has been strengthened in [31, 34–37]. The objective of this
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Figure 2: Interaction among actors in smart grid domains through secure communication flows and flows of electricity.

testbed is to achieve the convergence of cognitive radio,
cognitive radar, and smart grid [38].

The cognitive radio network testbed being built is unique
and real-time oriented. It is designed to provide much more
stand-alone computing power and reduce the response time
delay. The cognitive radio network testbed is comprised of
tens of nodes, with each node based on a self-designed
motherboard, and commercial radio frequency (RF) boards.
On the self-designed motherboard, there are two advanced
and powerful field programmable gate arrays (FPGAs) that
can be flexibly configured to implement any function.
Therefore, this network testbed can also be applied to the
smart grid.

To our understanding, the benefits of applying cognitive
radio to the smart grid are summarized in Table 2. Firstly,
cognitive radio can operate over a wide range of frequency
bands. It has frequency agility. This feature is especially
useful for smart grid because the frequency spectrum today
is so crowded, and cognitive radio provides the capability of
reusing unused frequency bands for the smart grid. Secondly,
cognitive radio enables high-speed data transmission for
the smart grid. This is due to the wide-band nature of
cognitive radio. The data rate can be as high as tens of
Mbps, in contrast to the ZigBee that can only provide a
data rate of tens to hundreds of kbps. Thirdly, cognitive
radio has the potential to transmit data over a long-distance.
Recently, the federal communications commission (FCC)
has decided to allow using unused TV bands for wireless
communications. The TV bands are ideal for long distance
mass data transmission. Cognitive radio in a wireless regional
area network (WRAN) scenario is designed to utilize the
unused TV bands. Employing cognitive radio, the smart grid
can communicate over a long distance over the air. Fourthly,
cognitive radio boasts of cognitive learning and adaptation
capability. It has the ability to learn the environment, reason

Table 2: Advantages of applying cognitive radio to smart grid.

Salient features Description

Frequency diversity
CR can operate over unused frequency
bands

Transmission speed
Data rates of up to tens of Mbps can be
achieved

Range
CR can transmit over long distances in a
WRAN scenario

Adaptability
CR has inherent intelligence to adapt to
changes in the environment

Programmability
Built on an SDR platform, the CR can be
selectively programmed

from it, and adapt accordingly. Cognitive radio makes the
smart grid “smarter” and more robust. Fifthly, cognitive
radio is based on the software defined radio (SDR) platform,
which is a programmable radio. Hence, cognitive radio is
capable of performing different applications and tasks. In
addition, security, robustness, reliability, scalability, and sus-
tainability of the smart grid can be effectively supported by
cognitive radio due to its flexibility and reprogrammability.

2.2. Smart Grid Communications. Smart grid technology
has attracted significant research focus in recent years from
the power and communications standpoint [39, 40]. CRs
provide a promising solution to the growing spectrum
scarcity problem by intelligently accessing unused regions
of spectrum originally licensed to primary users (PUs).
One of the key requirements for the smart grid is a
robust and efficient communications infrastructure that can
address both the current and future energy management
needs [41, 42]. With the advent of modern communications
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technologies, and the recently defined IEEE 802.22 standard,
CR networks are believed to be a viable choice for smart grid
applications. The opportunistic access of the TV broadcast
spectrum as outlined in the 802.22 standard can be realized
as one of the cognitive network functions.

3. Examples

In this section, examples are presented employing machine
learning and signal processing techniques for dimensionality
reduction, recovery of smart meter transmissions, power
system disturbances classification, and fuzzy logic-based
intrusion detection. This section is divided as follows.
In Section 3.1, dimensionality reduction techniques such
as PCA, KPCA, and LVMU, in combination with SVM,
are used as a preprocessing tool in a spectrum sensing
application for Wi-Fi signals. The SVM technique is used
for power system disturbances classification in Section 3.2. In
Section 3.3, the sparsity of the smart meter transmissions is
exploited to recover the BPSK-modulated smart meter data,
by employing the recently proposed bayesian compressed
sensing, and compressed sensing kalman filter methods.
Finally, the critical issue of smart grid security is addressed
in Section 3.4, and a possible approach to realize this is
provided using FPGA-based fuzzy logic.

3.1. Dimensionality Reduction Applied to Cognitive Radio
with Experimental Validation. In radar and sensing signal
processing, the control of degrees of freedom (DOF)—
or intrinsic dimensionality—is the first step, called pre-
processing. The network dimensionality, on the other hand,
has received attention in information theory literature.
The techniques of the dimensionality reduction can be
explored to extract the intrinsic dimensionality of the high-
dimensional data.

Dimensionality reduction methods are innovative and
important tools in machine learning [43]. The original
dimensionality data collected from our living world may
contain a lot of features however, usually these features
are highly correlated and redundant with noise. Hence,
the intrinsic dimensionality of the collected data is much
fewer than the original features. Dimensionality reduction
attempts to select or extract a lower dimensionality expres-
sion but retain most of the useful information. In the first
example, both linear methods such as principal component
analysis (PCA) [44], nonlinear methods such as kernel
principal component analysis (KPCA) [45], and landmark
maximum variance unfolding (LMVU) [46, 47] are studied,
by combining them with the support vector machine (SVM)
[48–53]—the latest breakthrough in machine learning, in the
context of spectrum sensing for cognitive radio.

Measured Wi-Fi signals with high signal-to-noise ratio
(SNR) are employed in the first example. The DOF of
the Wi-Fi signals is extracted by three dimensionality
reduction techniques in this example. The advantages of
applying dimensionality reduction techniques are verified by
comparing with the results obtained without dimensionality
reduction.

3.1.1. Wi-Fi Signal Measurements. Wi-Fi time-domain sig-
nals have been measured and recorded using an advanced
digital phosphor oscilloscope (DPO) whose model is Tek-
tronix DPO72004 [54]. The DPO supports a maximum
bandwidth of 20 GHz and a maximum sampling rate of
50 GS/s. It is capable of recording up to 250 M samples per
channel. In the measurements, a laptop accesses the Internet
through a wireless Wi-Fi router, as shown in Figure 3. An
antenna with a frequency range of 800 MHz to 2500 MHz
is placed near the laptop and connected to the DPO. The
sampling rate of the DPO is set to 6.25 GS/s. Recorded time-
domain Wi-Fi signals are shown in Figure 4. The duration of
the recorded Wi-Fi signals is 40 ms.

The recorded 40 ms Wi-Fi signals are divided into 8000
slots, with each slot lasting 5 μs. These slots can be viewed
as spectrum sensing slots. The time-domain Wi-Fi signals
within the first 1 μs of every slot are then transformed into
the frequency domain using the Fast Fourier Transform
(FFT), which is equivalent to FFT-based spectrum sensing.
In this paper, the frequency band of 2.411–2.433 GHz is
considered. The resolution in the frequency domain is
1 MHz. Therefore, for each slot, 23 points in the frequency
domain can be obtained, of which 13 points will be selected
in the following experiment.

3.1.2. Experimental Validation. SVM will be exploited to
classify the states (busy li = 1 or idle li = 0) of the measured
Wi-Fi data with or without dimensionality reduction, given
the true states. SVM will classify the states of the spectrum
data at different time slots.

The DOF of the Wi-Fi frequency domain signals is
extracted using the original 13 dimensions. The flow chart
of the SVM processing combined with dimensionality
reduction methods, including data processing, is shown in
Figure 5.

The false alarm rate obtained by combining SVM with
dimensionality reduction and employing only SVM is shown
in Figure 6. The results are averaged over 50 experiments. In
each experiment, the number of training sets is 200, and the
number of testing sets is 1800.

The original dimension of the frequency domain data is
varied from 1 to 13 for the SVM method. In addition, the
SVM method is combined with the extracted dimensions
from 1 to 13, obtained with dimensionality reduction.

In the whole experiment, a Gaussian RBF kernel with
2σ2 = 5.52 is used for KPCA. The parameter k = 3,
in which k is the number of nearest neighbors of yi (xi)
(including both training and testing sets) for LMVU. The
optimization toolbox SeDuMi 1.1R3 [55] is applied to solve
the optimization step in LMVU. The SVM toolbox SVM-
KM [56] is used to train and test the SVM processes. The
kernels selected for SVM are heavy-tailed RBF kernels with
parameters γ = 1, a = 1, and b = 1. These parameters are
kept constant for the whole experiment.

Experimental results show that with dimensionality
reduction, the spectrum sensing performance is much
better with fewer features than that without dimensionality
reduction.
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Figure 3: Setup of the measurement of Wi-Fi signals.
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Figure 4: Recorded Wi-Fi signals in time domain.

3.2. Classifying Power System Disturbances Using SVM. Due
to the large variability exhibited by the few power system
disturbance data sets available, data sets are generated
mathematically in this section for training purposes. In this
way, a large number of data sets can be generated and used in
training to ensure accurate SVM models.

Based on frequency and time domain analysis, and
derived from typical disturbances, mathematical models for
each disturbance can be formulated by the following signal
equations:

(i) generation trip,

u(t) = sin(ω0t) + α1e−c1(t11−t12) sin
(
β1ω0(t11 − t12)

)
+ · · ·

α2e−c2 (t21−t22) sin
(
β2ω0(t11 − t12)

)
+ · · · ,

(1)

(ii) line trip,

u(t) = (1− α(u(t2)− u(t1))) sin(ω0t), (2)

(iii) frequency oscillation,

u(t) = sin(ω0t) + αe−c(t−t1) sin
(
βω0(t − t1)

)∏
(t2 − t1),

(3)

where various terms are defined as follows: time window∏
(t2 − t1) = u(t2)− u(t1),ω0 is a random frequency of basic

frequency fluctuation, α is an additional signal factor, β is an
additional frequency factor, c is the time constant, and t is
the time period.

After carefully selecting the obtained parameters, such as
amplitude, angles, frequency, and time period of each sub-
frequency component, enough examples can be generated by
manipulating these parameters by random deviation within
a tolerance range. Figures 7, 8, and 9 are the mesh patterns of
200 mathematical examples for the generation trip, line trip,
and frequency oscillations, respectively.

SVM is a linear classifier in the parameter space, but it
becomes a nonlinear classifier as a result of the nonlinear
mapping of the space of the input patterns into the high-
dimensional feature space [27]. Training an SVM model is
a quadratic-optimization problem [57, 58]. The hyperplane
represented by 〈ω, x〉+ b = 0 is constructed, so that the mar-
gin between the hyperplane and nearest point is maximized,
where ω is the vector of hyperplane coefficients, b is a bias
term, and 〈·〉 denotes the inner product of two vectors.

Therefore, the classification function is f (x;ω,b) =
〈ω, x〉 + b. An n-class classifier is constructed using the
maximum value of the function fi j(x;ω,b) = 〈ωij , x〉 + bi j ,
k = 1, . . . ,n. For SVM, the problem can be solved by training
data xki , where i = 1, . . . ,m data points.

Thus, the mathematical function between class i and class
j is represented by the following equations:

fi j(x;ω,b) =
〈
ωij , x

〉
+ bi j

Minimize:
1
2

〈
ωij ,ωT

i j

〉
+
C

n

N∑

n=1

ξ
i j
n

Constraints: y
i j
n

(〈
ωij ,ωT

i j

〉
+ bi j

)
≥ 1− ξ

i j
n ,

where ξ
i j
n ≥ 0,

y
i j
n =

⎧
⎨

⎩

+1 if yn = ith class,

−1 if yn = jth class.

(4)

The machine-learning package Weka is used to classify
the data using an SVM multiclass algorithm. After being
transformed to the Weka format, the input data includes
three categories: generation trip, oscillation, and line trip.
The data contains 200 examples of each category which is
then divided into 2 equal sized groups. The first set is used
for training, and the second set is used for verification. The
verification results are as follows: generation trip can be
classified with a success rate of 0.985, compared to 0.853 for
the line trip, and 0.626 for the frequency oscillation.

3.3. Compressed Sensing-Based Smart Meter Reading. Com-
pressed sensing, also known as compressive sensing, com-
pressive sampling, or sparse sampling, is a technique for
finding sparse solutions to underdetermined linear systems
[59–63]. The concept of applying compressed sensing to
smart meter reading was first proposed in [64]. A smart
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meter is an intelligent electrical meter that conveys infor-
mation to the central power station regarding significant
changes in the power load either through two-way wireless or
power line communications. Since the power consumption
in a particular home does not dynamically vary, the number
of smart meters simultaneously transmitting is very small
compared to the total number of meters in a particular
cognitive smart grid network. As a result, the sparsity of the
smart meter data transmission to the central processing node
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Figure 7: Mesh patterns of 200 examples for generation trip.

or access point (AP) was exploited in [64] for applying the
principle of compressed sensing. However, in [64], it was
assumed that the noise is bounded. In this paper, the newly
proposed techniques of Bayesian compressive sensing [65],
and compressed sensing kalman filter [66] are applied for
smart meter reading when the noise is Gaussian distributed.

3.3.1. Bayesian Compressed Sensing. Consider an N-dimen-
sional signal y that is compressible in some basis function
A, that is, y can be accurately reconstructed with a small
number K of basis-function coefficients, where K � N .
In other words, the basis coefficient vector s is a sparse
vector with a majority of components close to 0. Compressive
sensing states that it is possible to recover these basis-
function coefficients with fewer measurements M < N of
y. This is accomplished by a linear transformation of y
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Figure 9: Mesh patterns of 200 examples for frequency oscillation.

onto an M × N matrix H to generate an M-dimensional
measurement vector z. Mathematically, z can be represented
as

z = yTAH. (5)

Since we have y = As, (5) becomes

z = Hs. (6)

The expression in (6) is an underdetermined system;
hence, the estimate of s is ill conditioned. However, since s
is sparse with respect to A, (6) can be solved as a l1 norm
minimization problem as follows:

ŝ = arg min
s

[
‖z −Hs‖2

2 + λ‖s‖1

]
. (7)

The scalar λ decides the weightage given to the Euclidean
error and the sparseness constraints in the first and second
terms of (7), respectively.

The above optimization problem can be solved using
many linear programming techniques such as basis pursuit
(BP) [67], matching pursuit (MP) [68], and orthogonal
matching pursuit (OMP) [69]. In [65], a Bayesian approach
is employed to estimate s from the compressed measure-
ments z. Hence, by imposing a Laplace sparseness prior on s,
and assuming a Gaussian likelihood model for z, the solution
for (7) becomes a maximum a posterior (MAP) estimate for
s.
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5 10 15 20 25

M
SE

Number of active meters

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Figure 12: MSE achieved by CSKF for different number of active
meters.



10 International Journal of Digital Multimedia Broadcasting

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5

Sparsity of data transmitted for K = 20

Tr
an

sm
it

te
d

an
d

re
co

ve
re

d
si

gn
al

am
pl

it
u

de
s

Figure 13: Sparsity of data transmitted for K = 20.

3.3.2. Kalman Filter-Based Compressed Sensing. The kalman
filter is a recursive filter that estimates the state of a
process or system from a series of noisy observations [70–
72]. The kalman filter optimally estimates the true state
of the system by making a prediction, estimating the error
in the prediction, and computing a weighted average of
the predicted value and the measured value. Therefore,
the mathematical equations for the kalman filter can be
separated into time updates or prediction and measurement
updates or correction. Due to its versatility, the kalman
filter has been used in diverse engineering applications
such as digital signal processing, control systems, wireless
communications, image processing, and weather forecasting
[73–78].

Recently, a new kalman filtering approach for the recov-
ery of sparse signals was proposed, called compressed sensing
embedded kalman filter (CSKF-1) [66, 79]. The CSKF-
1 adopts the pseudomeasurement (PM) technique [80] to
incorporate a fictitious measurement in the kalman filtering
process to satisfy the sparseness constraint. The PM can be
expressed as

0 = Ĥs− δ,

Ĥ = [sign(s(1), s(2), . . . , s(N))
]
,

(8)

where sign(s(k)) = 1 if s(k) ≥ 0, and −1 otherwise.
δ is the tuning parameter which controls the sparsity of

the solution state vector.

3.3.3. System Description and Signal Model. As mentioned in
the previous section, the smart meter data transmission to
the AP is sparse in nature, that is, only a small percentage
of meters would be actively transmitting data at any time.
Therefore, the principles of compressed sensing can be
readily applied to the recovery of the data reports. The
main advantage of employing compressed sensing is that
it allows the smart meters to transmit simultaneously, as
opposed to the popular carrier sense multiple access (CSMA)
protocol, which uses a random backoff to avoid collisions in

transmissions. This could result in significant delay in data
recovery.

The system consists of N smart meters managed by an
AP. In each frame, synchronization and channel estimation
is performed, followed by data transmission. The syn-
chronization and channel estimation can be performed by
transmitting a pilot signal to the meters during the assigned
periods in the frame and is beyond the scope of this paper.
However, it is assumed that the channel parameters are flat
fading in nature, with a large coherence time indicating a
slow time-varying channel. The data transmission section
in the frame is divided into several time slots during
which the active smart meters can simultaneously transmit
their readings. In mathematical form, the data transmission
received by the AP at time t can be expressed as

z(t) =
N∑

i=1

pi(t)cisi + w(t) (9)

ci is the flat-fading channel parameter between meter i and
the AP, pi(t) is the pseudorandom spreading code at time
t for meter i, si is the data transmitted by meter i, w(t) is
the Gaussian distributed noise term. The spreading code is
known only to the AP and meters, preventing unauthorized
people from accessing and tampering with the data. Suppose
that the data transmission period has T time slots, then the
above signal model can be rewritten in matrix-vector form as
follows:

Z = HS + W , (10)

where

H = PC, (11)

C = diag(c1, c2, . . . , cN), (12)

Pt,i =
[
pi(1), pi(2), . . . , pi(T)

]T , (13)

Z = [z(1), z(2), . . . , z(T)]T , (14)

S = [s1, s2, . . . , sN ]T , (15)

W = [w(1),w(2), . . . ,w(T)]T . (16)

Since the number K of meters simultaneously transmit-
ting is small, K � N . As a result, the vector S in (15) is sparse.
It can therefore be easily inferred that (10) is identical to
the CS equation (6), with the exception of additive Gaussian
noise. Hence, the recovery of the smart meter reading would
correspond to the optimization problem in (7). In the
simulations, the total number of smart meters, N , in the
cognitive smart grid network is considered to be 250, and the
length of the observation vector/time slots T is 100. Binary
phase shift keying (BPSK) modulation is considered. The
mean square error (MSE) between the actual data vector
and the estimated data vector is used as the measure of
performance. The MSE is plotted for different number of
active meters K or sparsity of the data transmission.
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3.3.4. Bayesian Compressive Sensing for Smart Meter Reading.
In this section, the smart grid data recovery problem in (6) is
treated as a linear regression problem and is considered from
a Bayesian perspective, as proposed in [65]. A hierarchical
sparseness prior is imposed on S, and sparse Bayesian
learning using the relevance vector machine (RVM) [81] is
performed. The MSE achieved by the BCS algorithm for
different values of K is illustrated in Figure 10. For the case
of K = 30, the sparsity of the data transmitted along with the
recovered data is illustrated in Figure 11.

3.3.5. Compressed Sensing Kalman Filter Approach. In this
section, the recently proposed CSKF algorithm is employed
for the recovery of data at the AP. The total number of smart
meters in the network is assumed to be 250, and T is 150.
The MSE yielded for various number of active meters K is
shown in Figure 12, respectively. A comparison between the
amplitudes of the transmitted and recovered signal versus the
sparsity of meter transmission is shown in Figure 13.

3.4. FPGA-Based Fuzzy Logic Intrusion Detection for Smart
Grid. Artificial intelligence techniques such as fuzzy logic,
bayesian inference, neural networks, and other methods can
be employed to enhance the security gaps in conventional
IDSs. As shown in Figure 14, a fuzzy logic approach was used
in [82], in which different variables that influence the infer-
ence of an attack can be analyzed and later combined for the
decision-making process of a security device. Additionally,
if each security device serving as an IDS is aware not only
of itself, but also of a limited number (depending on local
resources and traffic) of surrounding trusted IDS devices, the
alerts that these other devices generate can be used to adjust
local variables or parameters to better cope with distributed
attacks and more accurately detect their presence.

The research and development of robust and secure
communication protocols, dynamic spectrum sensing, and

distributed and collaborative security should be consid-
ered as an inherent part of smart grid architecture. An
advanced decentralized and secure infrastructure needs to
be developed with two-way capabilities for communicating
information and controlling equipment, among other tasks,
as indicated in the recently published “Guidelines for Smart
Grid Cyber Security Vol.1” by the National Institute of Stan-
dards and Technologies. The complexity of such an endeavor,
coupled with the amalgam of technologies and standards
that will coexist in the development of the smart grid,
makes it extremely necessary to have a common platform of
development, with flexibility and reliable performance.

Field programmable gate arrays (FPGAs) development
platforms share these advantages, not to mention the fact
that a single silicon FPGA chip can be used to study several
smart grid technologies and their implementations. FPGA
chips offer significant potential for application in the smart
grid for performing encryption and decryption, intrusion
detection, low-latency routing, data acquisition and signal
processing, parallelism, configurability of hardware devices,
and high-performance and high-bandwidth tamper-resistant
applications. Dr. William Sanders, a member of the Smart
Grid Advisory Committee of the National Institute of
Standards and Technology (NIST), has been in the recent
years among the most influential persons in the research of
smart grid security. His research team and several collabo-
rating universities proposed the use of a Trustworthy Cyber
Infrastructure for the Power Grid (TCIPG) that focuses on
the security of low-level devices and communications, as well
as trustworthy operation of the power grid under a variety
of conditions including cyber attacks and emergencies [83].
TCIPG proposes a coordinated response and detection at
multiple layers of the cyber-infrastructure hierarchy includ-
ing but not limited to sensor/actuator and substation levels.
At these levels of the hierarchy, software defined radio
and wireless communications technologies could be used
and studied to prevent attacks such as wireless jamming.
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Dr. Sanders also proposes the use of specifications-based
IDS in protecting advanced metering infrastructures (AMIs)
[84]. A distributed FPGA-based network with adaptive and
cooperative capabilities can be used to study several security
and communication aspects of this infrastructure both from
the attackers and defensive point of view.

4. Conclusions

In this paper, the integration of two emerging technologies,
namely, the cognitive radio and smart grid is addressed.
The concept of dimensionality reduction is presented as
a possible preprocessing method to extract the intrinsic
dimensionality of high-dimensional data. Using Wi-Fi signal
measurements, the effectiveness of the PCA, KPCA, and
LVMU dimensionality reduction techniques in conjunction
with the SVM method is provided in a spectrum sensing
application. In addition, the SVM technique is used for
suitably classifying the power system disturbances. For the
recovery of sparse smart meter transmissions, experimental
results obtained by employing the Bayesian compressed
sensing and compressed sensing kalman filter approaches are
given for BPSK data. Finally, the critical issue of smart grid
security is addressed, and a possible approach for achieving
this is presented using FPGA-based fuzzy logic intrusion
detection.
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