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Location discovery with uncertainty using passive sensor networks in the nation’s power grid is known to be challenging, due to
the massive scale and inherent complexity. For bearings-only target localization in passive sensor networks, the approach of fuzzy
geometry is introduced to investigate the fuzzy measurability for a moving target in R2 space. The fuzzy analytical bias expressions
and the geometrical constraints are derived for bearings-only target localization. The interplay between fuzzy geometry of target
localization and the fuzzy estimation bias for the case of fuzzy linear observer trajectory is analyzed in detail in sensor networks,
which can realize the 3-dimensional localization including fuzzy estimate position and velocity of the target by measuring the fuzzy
azimuth angles at intervals of fixed time. Simulation results show that the resulting estimate position outperforms the traditional
least squares approach for localization with uncertainty.

1. Introduction

Wireless sensor network localization in smart grid is an im-
portant area that attracted significant research interest.
As a national smart grid constructed, it is important for
developers to consider target localization problems to ensure
both the smart grid operation efficiently. The objective of
location discovery in sensor networks for smart grid is to
estimate the location of a target from measurements collected
by a single moving sensor or several fixed sensors at distinct
and known locations.

For passive bearings-only localization, the sensor node
detects the signals transmitted by a target to generate direc-
tional information in the form of bearing measurements.
These measurements are triangulated to estimate the target
location. While triangulation yields a unique intersection
point for bearing lines in the absence of measurement errors,
the noise present in bearing and observer measurements re-
quires an optimal solution to be formulated based on noisy
measurements; hence, statistical techniques for bearings-
only target localization is introduced.

The pioneering work of Stansfield [1] provided a closed-
form small error approximation of the maximum likelihood

estimator in 1947. It is shown in [2] that the Stansfield es-
timator is asymptotically biased, where the traditional max-
imum likelihood (TML) formulation is examined in detail
including a bias and variance analysis. A linearized least
squares approach to bearings-based localization is given in
[3]. The linearized and iterative algorithms typically require
an initial estimate of the target location [2–5]. Liu et al.
[6] proposed a vertical localization method using Euclidean
geometry theory.

The practical passive target localization in sensor net-
works is characterized by a certain degree of uncertainty,
which may result from approximate definition of the meas-
urand, limited knowledge of the real environment, variability
of influence quantities, inexact values of reference standards
or parameters used in the model, background noise of the
electronic devices, and so on. Especially, there exists uncer-
tainty (fuzziness) with sensor locations and measurements,
which can be studied based on fuzzy geometry. Rosenfeld
[7] first discussed some concepts and properties of fuzzy
plane geometry. Buckley and Eslami [8, 9] proposed another
theory of fuzzy plane geometry, where the distances between
fuzzy points, fuzzy area, and fuzzy circumference is consid-
ered as fuzzy numbers. Inspired by the authors in [7–9], the
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approach of fuzzy geometry is introduced to investigate the
passive bearings-only target localization for the case of fuzzy
linear observer trajectory in passive sensor networks.

The paper is organized as follows. The concept of
fuzzy geometry is provided in Section 2. A novel analysis
approach of passive bearings-only target localization based
on fuzzy geometry theory for the case of fuzzy linear observer
trajectory is proposed in Section 3. Simulation examples are
presented in Section 4 to validate the theoretical findings of
the paper. Section 5 concludes the paper.

2. Fuzzy Geometry

In this section, fuzzy points and fuzzy lines in fuzzy geometry
are introduced. Place a “bar” over a capital letter to denote a
fuzzy subset of Rn (n = 1, 2, 3) such as, X ,Y ,A, and B. Any
fuzzy set is defined by its membership function. IfA is a fuzzy
subset of Rn (n = 1, 2, 3), we write its membership function
with μ((x1, . . . , xn) | A) in [0, 1] for all x. The α-cut of any
fuzzy set X of Rn, X(α), is defined as {x : μ((x1, . . . , xn) |
A) ≥ α}, 0 < α ≤ 1, and X(0) is the closure of the union

of X(α), 0 < α ≤ 1.
⇀
X is denoted as a fuzzy vector, and

⇀
x is

denoted as a traditional vector.

2.1. Fuzzy Points

Definition 1. A fuzzy point at p = (a1,a2, . . . ,an) in Rn (n =
1, 2, 3), written P(a1, . . . ,an), is defined by its membership
function:

(1) μ((x1, . . . , xn) | P(a1, . . . ,an)) is upper semicontinu-
ous;

(2) μ((x1, . . . , xn) | P(a1, . . . ,an)) = 1, if and only if
(x1, . . . , xn) = (a1, . . . ,an);

(3) P(α) is a compact, convex, subset of Rn for all α, 0 <
α ≤ 1.

Next; we define the fuzzy distance between fuzzy points.
Let d(u, v) be the usual Euclidean distance metric between
points u and v in Rn; we define the fuzzy distance D between
two fuzzy points P1 = P(a11, . . . ,an1), P2 = P(a12, . . . ,an2).

Definition 2. Consider Ω(α) = {d(u, v) : u is in P(a1,b1)(α)
and v is in P(a2,b2)(α)}, 0 ≤ α ≤ 1, then, μ(d | D) =
sup{α : d ∈ Ω(α)}.

Theorem 1. One has D(α) = Ω(α), 0 ≤ α ≤ 1, and D is a real
fuzzy number.

Definition 3. A fuzzy metric M is a mapping from pairs of
fuzzy points (P1,P2) into fuzzy numbers so that

(1) M(P1,P2) =M(P2,P1),
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Figure 1: Fuzzy geometry for bearings-only target localization (3
sensors along fuzzy linear observer trajectory) in R2 space.

(2) M(P1,P2) = 0, if and only if P1,P2 are both fuzzy
points at (a1,a2, . . . ,an),

(3) M(P1,P2) ≤ M(P1,P3) + M(P3,P2) for any fuzzy
points P1,P2, and P3.

2.2. Fuzzy Lines

Definition 4 (Two-point form). Let P1,P2 be two fuzzy points
in Rn space (n = 2, 3). Define

Ω(α)

=

⎧
⎪⎪⎨

⎪⎪⎩

(x1, x2, . . . , xn) :
x1 − b1

a1 − b1
= x2 − b2

a2 − b2
= · · · = xn − bn

an − bn ,

(a1,a2, . . . ,an) ∈ P1(α), (b1,b2, . . . ,bn) ∈ P2(α)

⎫
⎪⎪⎬

⎪⎪⎭

,

0 ≤ α ≤ 1.
(1)

Then the fuzzy line L is

μ
(

(x1, . . . , xn) | L
)

= sup{α : (x1, . . . , xn) ∈ Ω(α)}. (2)

3. Fuzzy Geometry Analysis for Bearings-Only
Target Localization in R2 Space

Based on fuzzy geometry, a detailed analysis of the interplay
between the target localization geometry and the fuzzy
estimation bias for the case of fuzzy linear observer trajectory
in R2 space is provided, which can realize the 3-dimensional
localization including fuzzy estimate coordinate and target
velocity by measuring the fuzzy azimuth angles at intervals
of fixed time.

3.1. Fuzzy Geometry for Bearings-Only Target Localization
in R2 Space. Fuzzy geometry for bearings-only target local-
ization in R2 space is discussed. The fuzzy geometric rela-
tionship between one-sensor locations Pi, and the target is
shown in Figure 1. Assume a fuzzy linear observer trajectory
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Figure 2: Fuzzy geometric relationship between a sensor and a
target.

with three bearing measurements θ1, θ2, and θ3 collected
by three sensors at fuzzy observer locations P1,P2, and
P3, respectively. The target localization is denoted as P =
[x, y]. In practical sensor networks, angle measurements are
corrupted with some fuzzy factors.

Then define unit function αk and ζk in Figure 1,

αk =
⎡

⎣
sin θk

− cos θk

⎤

⎦,

ζk =
⎡

⎣
cos θk

sin θk

⎤

⎦.

(3)

Using fuzzy points Pi in the plane, define

Anglek(α) =
{

θk | θk ∈ Pi(α)
}

, 0 ≤ α ≤ 1. (4)

Then, the membership function of fuzzy angle Θk is

μ
(

θk | Θk

)

= sup
{

α : θk ∈ Anglek(α)
}

. (5)

The target localization is related to the fuzzy observer
locations through the fuzzy line equation. For fuzzy points
Pi in the plane, by Definition 3, define

Ω3i(α) =
{
(
x, y

)
:
y − vi
x − ui =

py − vi
px − ui , (ui, vi) ∈ Pi(α)

}

,

0 ≤ α ≤ 1.

(6)

Then, the membership function of fuzzy line PiP is

μ
((
x, y

) | PiP
)

= sup
{
α :
(
x, y

) ∈ Ω3i(α)
}
.

(7)

Define

Ω3P1P2P3
(α)

=
⎧
⎪⎨

⎪⎩

(
x, y

)
:
y − v1

x − u1
= v2 − v1

u2 − u1
= v3 − v1

u3 − u1
, (u1, v1) ∈ P1(α),

(u2, v2) ∈ P2(α), (u3, v3) ∈ P3(α)

⎫
⎪⎬

⎪⎭

0 ≤ α ≤ 1.
(8)

Then, the membership function of fuzzy line P1P2P3 is

μ
((
x, y

) | P1P2P3

)

= sup
{

α :
(
x, y

) ∈ Ω3P1P2P3
(α)
}

. (9)

Pk fuzzy observer location of the sensor in the plane is
illustrated in Figure 2.

It is shown from Figure 2 that the fuzzy error ek is
obtained by

ek = sk sin
(

θk − θk
)

, (10)

where sk is fuzzy distance between Pk and P which satisfies
Definition 2.

Define

Ω(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x1 + d
(

P1,P2

)

•
sin
(

θ2 + ψ
)

sin
(∣
∣
∣θ2 − θ1

∣
∣
∣

) • cos
(

θ1

)

y = y1 + d
(

P1,P2

)

•
sin
(

θ2 + ψ
)

sin
(∣
∣
∣θ2 − θ1

∣
∣
∣

) • sin
(

θ1

)

ψ = arctg
(
y2 − y1

x2 − x1

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x1, y1

) ∈ P1(α),
(
x2, y2

) ∈ P2(α)

θ1 ∈
{

θ1 | θ1 ∈ P1(α)
}

θ2 ∈
{

θ2 | θ2 ∈ P2(α)
}

0 ≤ α ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

Then, the membership function of fuzzy location (x, y) of
the target is

μ
((
x, y

) | P
)

= sup
{
α :
(
x, y

) ∈ Ω(α)
}

, (12)

where d(P1,P2) is fuzzy distance with fuzzy points P1 and P2

which satisfies Definition 2. By the formulas (3)–(12), for the
case of N sensors deployed along using the fuzzy object pro-
gramming, we have the fuzzy location of the target as follows:
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Min e =
∑

k

wkek,

S.T. ek = sk sin
(

θk − θk
)

, k = 1, 2, . . . ,N ,

Ωi(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = xi + d
(

Pi,Pj
)

•
sin
(

θj + ψ
)

sin
(∣
∣
∣θj − θi

∣
∣
∣

) • cos
(

θi
)

y = yi + d
(

Pi,Pj
)

•
sin
(

θj + ψ
)

sin
(∣
∣
∣θj − θi

∣
∣
∣

) • sin
(

θi
)

ψ = arctg

(
yj − yi
xj − xi

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xi, yi

) ∈ Pi(α),

(

xj , yj
)

∈ Pj(α)

θi ∈
{

θi | θi ∈ Pi(α)
}

θj ∈
{

θj | θj ∈ Pj(α)
}

0 ≤ α ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

i = 1, 2, . . . , N − 1, j = i + 1, i + 2, . . . ,N.

(13)

Then, the membership function of fuzzy location (x, y) of
the target is

μ
((
x, y

) | Pi
)

= sup
{
α :
(
x, y

) ∈ Ωi(α)
}
, (14)

where, d(Pi,Pj) is fuzzy distance with fuzzy points Pi and Pj
which satisfies on Definition 2. Define

Ω3PiPi+1Pi+2
(α) =

⎧
⎪⎨

⎪⎩

(
x, y

)
:
y − vi
x− ui =

vi+1 − vi
ui+1 − ui =

vi+2 − vi
ui+2 − ui ,

(ui, vi) ∈ Pi(α), i = 1, ...,N − 2

⎫
⎪⎬

⎪⎭
,

0 ≤ α ≤ 1
(15)

the membership function of fuzzy line PiPi+1Pi+2 is

μ
((
x, y

) | PiPi+1Pi+2

)

= sup
{

α :
(
x, y

) ∈ Ω3PiPi+1Pi+2
(α)
}

.

(16)

Next, the target velocity needs to be determined, which
is based on the time-neighboring estimate locations and
time intervals. Similarly, there also exists some fuzziness
among target locations and time intervals. Let Pi(α),Pi+1(α)
be the estimate location at time ti, ti+1, respectively. The time
interval ti+1 − ti is denoted as the fuzzy number Ti+1 =
(a/b/c); define

Ωvi+1 (α) =
{

vi+1 = d
(
pi, pi+1

)

εi+1

∣
∣
∣
∣
∣

pi ∈ Pi(α), pi+1 ∈ Pi+1(α), εi+1 ∈ Ti+1

}

.

(17)

Then, the fuzzy target velocity Vi+1 at time ti+1 is

μ
(

vi+1 | Vi+1

)

= sup
{
α : vi+1 ∈ Ωvi+1 (α)

}
. (18)

y

P1(0, 0) P2 P3 P4 PN−1 PN
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· · ·

Figure 3: Fuzzy geometry of target localization for the case of fuzzy
linear observer trajectory.

Based on the above formulas (13), (14), (17), (18), define

Ωi+1(α) =
⎧
⎪⎨

⎪⎩

(
xi+1, yi+1

)

vi+1 = d
((
xi, yi

)
,
(
xi+1, yi+1

))

εi+1

∣
∣
∣
∣
∣
∣
∣

(
xi, yi

) ∈ Pi(α),
(
xi+1, yi+1

) ∈ Pi+1(α),
εi+1 ∈ Ti+1

⎫
⎪⎬

⎪⎭
.

(19)

Then, in R2 space, the 3-dimensional fuzzy estimate ℘i+1

including the fuzzy target locations and fuzzy velocity at time
ti is

μ
((
xi+1, yi+1, vi+1

) | ℘i+1
)

= sup
{
α :
(
xi+1, yi+1, vi+1

) ∈ Ωi+1(α)
}
.

(20)

3.2. Fuzzy Geometry Theory for the Case of Fuzzy Linear
Observer Trajectory in R2 Space. Figure 3 shows the fuzzy
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geometry of target localization for the case of fuzzy linear
observer trajectory. Let observer location P1 be the origin of
the fuzzy plane, denoted as P1(0, 0).

Theorem 2. Suppose that the neighboring observers are sepa-
rated by the fuzzy distance q, then

(1) any fuzzy geometry of target localization for the case
of fuzzy linear observer trajectory can be equivalently
represented by Figure 3, which can be realized with the
rotation and translation of absolute coordinates of the
target location and observer locations,
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Figure 6: Velocity estimate error comparison with fuzzy observer
positions.

(2) for the fuzzy linear observer trajectory shown in
Figure 3, the fuzzy centroid of the observer locations is

c =
[

1
2

(N − 1)q 0
]

. (21)

Proof. Obvious by fuzzy geometry theory.

4. Experiments Analysis

Three sensor nodes are deployed in R2 space to implement
the 3-dimensional fuzzy estimation including the target
position and velocity. Due to the uncertainty in practical
sensor networks, sensor observation positions are estimated
by S1(0, 0), S2(100, 0), and S3(200, 0) based on fuzzy theory,
where the coordinates of sensor (X,Y ) are a triangle fuzzy
number, denoted as (x − 5/x/x + 5, y − 5/y/y + 5),
which determine a fuzzy linear observer trajectory. For the
same bearing measurements, let the standard deviation of
measurement error be 0.01 rad, time interval T(1) = 1 s.
The bearings-only localizations based on fuzzy geometry and
least squares methods [10] are analyzed and compared in
Figure 4.

The sensor positions are estimated as the arbitrary points
which belong to the fuzzy points S1(0, 0), S2(100, 0), and
S3(200, 0), respectively. Figure 4 illustrates the moving target
trajectory, the defuzzified position estimate of the target us-
ing weighted average operator and some interval values,
and the position estimate based on least squares method.
Figures 5 and 6 compare the position estimate error and ve-
locity estimate error between the two methods. It shows
that the precision of fuzzy geometric localization is better
than that of least squares localization in uncertain sensor
networks. The resulting position estimate outperforms the
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traditional least squares approach for bearings-only local-
ization with uncertainty. When the target arrived at the co-
ordinate (112, 120), set α = 0.6, then the fuzzy position
estimate interval is ([110.8, 114.8], [117.3, 121.3])(0.6).
The defuzzified position estimate is (112.8, 119.3), and the
defuzzified estimate error is 1.05 m, and the defuzzified
estimate velocity is 3.01 m/s. Therefore, the defuzzified 3-
dimensional fuzzy estimation is (112.8, 119.3, 3.01). Sim-
ulation results validate the rationality and the effectiveness
that fuzzy geometry is applied in the bearings-only target
localization for two-dimensional sensor networks.

5. Conclusion

A fuzzy geometric localization approach using passive sensor
networks in smart grid is proposed based on fuzzy geometry.
The fuzzy analytical bias expressions and the constraints are
derived considering fuzzy measurements and fuzzy observer
positions. The interplay between the target localization ge-
ometry and the fuzzy estimation bias is analyzed in detail for
the case of fuzzy linear observer trajectory. The experiment
results validate that the resulting fuzzy estimate outperforms
the traditional least squares approach in a number of respects
for localization with uncertainty. Future work will focus on
the various kinds of fuzzy observer trajectories and higher-
dimensional localization problem in practical sensor net-
works.
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