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The existing object detection algorithmbased on the deep convolution neural network needs to carry outmultilevel convolution and
pooling operations to the entire image in order to extract a deep semantic features of the image.The detectionmodels can get better
results for big object. However, those models fail to detect small objects that have low resolution and are greatly influenced by noise
because the features after repeated convolution operations of existing models do not fully represent the essential characteristics of
the small objects. In this paper, we can achieve good detection accuracy by extracting the features at different convolution levels of
the object andusing themultiscale features to detect small objects. For our detectionmodel,we extract the features of the image from
their third, fourth, and 5th convolutions, respectively, and then these three scales features are concatenated into a one-dimensional
vector.The vector is used to classify objects by classifiers and locate position information of objects by regression of bounding box.
Through testing, the detection accuracy of our model for small objects is 11% higher than the state-of-the-art models. In addition,
we also used the model to detect aircraft in remote sensing images and achieved good results.

1. Introduction

Object detection, which not only requires accurate classifi-
cation of objects in images but also needs accurate location
of objects is an automatic image detection process based
on statistical and geometric features. The accuracy of object
classification and object location is important indicators
to measure the effectiveness of model detection. Object
detection is widely used in intelligent monitoring, military
object detection, UAV navigation, unmanned vehicle, and
intelligent transportation. However, because of the diversity
of the detected objects, the current model fails to detect
objects. The changeable light and the complex background
increase the difficulty of the object detection especially for the
objects that are in the complex environment.

The traditional method of image classification and loca-
tion by multiscale pyramid method needs to extract the
statistical features of the image in multiscale and then classify
the image by a classifier [1–3]. Because different types of
images are characterized by different features, it is difficult
to use one or more features to represent objects, which do

not achieve a robust classification model.Thosemodels failed
to detect the objects especially that there are more detected
objects in an image.

Since deep learning has been a great success in the field
of object detection, it has become themainstream method for
object detection.Thesemethods (e.g., RCNN [4], Fast-RCNN
[5], Faster-RCNN [6], SPP-Net [7], and R-FCN [8]) have
achieved good results in multiobject detection in images.
But most of these object detection algorithms are based on
PASCAL VOC dataset [9] for training and testing. PASCAL
VOC dataset, which provides a standard evaluation system
for detection algorithms and learning performance, is the
most widely used standard dataset in the field of object clas-
sification and detection. The dataset consists of 20 catalogues
closely related to human life, including human and animal
(bird, cat, cattle, dog, horse, and sheep), vehicle (aircraft,
bicycle, ship, bus, car, motorcycle, and train), and indoor item
(bottle, chair, table, potted plants, sofa, and television). From
the above object category, we can find that the actual size
of most objects in the dataset is large object. Even if there
are some small objects, such as bottles, these small objects
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Figure 1: Small object dataset.

display very large objects in the image because of the focal
length. Therefore, the detection model based on the dataset
composed of large objects will not be effectively detected for
the small objects in reality [10].

Based on this problem, we mainly study automatic detec-
tion of small object. For small object, we define it as two
types: one is a small object in the real world, such as mouse
and telephone. And the other is small objects; those are large
objects in the real world, but they are shown in the image as
small objects because of the camera angle and focal length,
such as objects detection in aerial images or in remote sensing
images. The small object dataset is shown in Figure 1.

Usually, since small objects have low resolution and are
near large objects, small objects are often disturbed by the
large objects and it leads to failure in being detected in the
automatic detection process. As the mouse in Figure 1 is often
placed next to the monitor, the common saliency detection
model [11, 12] usually focuses on more significant monitor
and ignores the mouse. In addition, we not only find the

detected objects in the image but also need to accurately
mark object location for object detection. Because the big
detected objects have many pixels in the image, they can
accurately locate their location. But, it is just the opposite
for the small objects that have low resolution and few pixels.
Even more, because the small objects have fewer pixels and
the finite pixels contain few object features, it is difficult to
detect the small objects by the conventional detection model.
In addition, there are few studies, references, and also no
standard dataset on automatic detection of small objects.

In order to solve these problems, we propose a multiscale
deep convolution detection network to detect small objects.
The network is based on the Faster-RCNN detection model.
We firstly combine the features of the 3th, 4th, and 5th
convolution layers for the small objects to amultiscale feature
vector.Then, we use the vector to detect the small objects and
locate the bounding box of objects. In order to train small
objects, the paper also uses the method [13] to build a dataset
focusing on small objects. Finally, by comparing the proposed
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detectionmodelwith the state-of-the-art detectionmodel, we
find that the accuracy of our method is much better than that
of Faster-RCNN.

The paper is organized as follows. In Section 2, we
introduce related works. Thereafter in the Section 3, we
demonstrate the detection model. Experiments are presented
in Section 4. We conclude with a discussion in Section 5.

2. Related Works

Object detection is always a hot topic in the field of machine
vision. The conventional detection method based on sliding
window needs to decompose images in multiscale images.
Usually, one image is decomposed into lots of subwindows
of several million different locations and different scales.
The model then uses a classifier to determine whether the
detected object is contained in each window. The method is
very inefficient because it needs exhaustive search. In addi-
tion, different classifiers also affect the detection accuracy of
objects. In order to obtain robust classifier, the classifiers are
designed according to the different kinds of detected objects.
For example, the Harr feature combined with Adaboosting
classifier [14] is availability for face detection. For pedestrian
detection, we use the HOG feature (Histogram of Gradients)
combined with support vector machine [15] and the HOG
feature combined with DPM (Deformable Part Model) [16,
17] is often used in the field of the general object detection.
However, if there are many different kinds of detected
objects in an image, those classifiers will fail to detect the
objects.

Since 2014, Hinton used deep learning to achieve the best
classification accuracy in the year’s ImageNet competition,
and then the deep learning has become a hot direction to
detect the objects. Themodel of object detection based on the
deep learning is divided into two categories: the first that is
widely used is based on the region proposals [18–20], such
as RCNN [4], SPP-Net [7], Fast-RCNN [5], Faster-RCNN
[6], and R-FCN [8]. The other method does not use region
proposals but directly detects the objects, such as YOLO [21]
and SSD [22].

For the first method, the model firstly performs RoIs
selection during the detection; i.e., multiple RoIs are gener-
ated by selective search [23], edge box [24], or RPN [25].
Then the model extracts features for each RoIs by CNN,
classifies objects by classifiers, and finally obtains the location
of detected objects. RCNN [4] uses selective search [23] to
produce about 2000 RoIs for each picture and then extracts
and classifies the convolution features of the 2000 RoIs,
respectively. Because these RoIs have a large number of
overlapped parts, the large number of repeated calculations
results in the inefficient detection. SSP-net [7] and Fast-
RCNN [5] propose a sharedRoIs feature for this problem.The
methods extract only a CNN feature from the whole original
image, and then the feature of each RoI is extracted from
the CNN feature by RoI pooling operation independently. So
the amount of computing of extracting feature of each RoI is
shared. This method reduces the CNN operation that needs
2000 times in RCNN to one CNN operation, which greatly
improves the computation speed.

However, whether it is SSP-net or Fast-RCNN, although
they reduce the number of CNN operations, its time con-
sumption is far greater than the time of the CNN feature
extraction onGPU because the selection of the bounding box
of each object requires about 2 seconds/image onCPU.There-
fore, the bottleneck of the object detection lies in region pro-
posal operation. Faster-RCNN inputs the features extracted
by CNN to the RPN (Region Proposal Network) network
and obtains region proposal by the RPN network, so it can
share the image features extracted by CNN and thereby it
reduces the time of selective search operation. After RPN,
Faster-RCNN classifies the obtained region proposal through
two fully connected layers and the regression operation of
the bounding box. Experiments prove that not only is this
speed faster, but also the quality of proposal is better. R-
FCN thinks that the full connection classification for each
RoI by Faster-RCNN is also a very time-consuming process,
so R-FCN also integrates the classification process into the
forward computing process of the network. Since this process
is shared for different RoI, it is much faster than a separate
classifier.

The other type is without using region proposal for the
object detection. YOLO divides the entire original image into
the S∗S cell. If the center of an object falls within a cell, the
corresponding cell is responsible for detecting the object and
setting the confidence score for each cell. The score reflects
the probability of the existence of the object in the bounding
box and the accuracy of IoU. YOLO does not use region
proposal, but directly convolution operations on the whole
image, so it is faster than Faster-RCNN in speed, but the
accuracy is less than Faster-RCNN. SSD also uses a single
convolution neural network to convolution the image and
predicts a series of boundary box with different sizes and
ratio of length and width at each object. In the test phase,
the network predicts the possibility of each class of objects in
each bounding box and adjusts the boundary box to adapt to
the shape of the object. G-CNN [25] regards object detection
as a problem of changing the detection box from a fixed
grid to a real box. The model firstly divides the entire image
with different scale to obtain the initial bounding box and
extracts the features from the whole image by the convolution
operation. Then the feature image encircled by an initial
bounding box is adjusted to a fixed size feature image by
the method Fast-RCNN mentioned. Finally we can obtain
a more accurate bounding box by regression operation. The
bounding box will be the final output after several iterations.

In short, for the currentmainstream there are two types of
object detection methods, the first will have better accuracy,
but the speed is slower. The accuracy of the second one is
slightly worse, but faster. No matter which way to carry out
the object detection, the feature extraction uses multilayer
convolution method, which can obtain the rich abstract
object feature for the target object. But this method leads to
a decrease in detection accuracy for small target objects
because the features extracted by the method are few and can
not fully represent the characteristics of the object.

In addition, the PASCAL VOC dataset is the main dataset
for object detection and it is composed of 20 categories of
object, e.g., cattle, buses, and pedestrians. But all of these
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objects in the image are large objects. Even in the PASCAL
VOC, there are also some small objects, e.g., cup, but these
small objects display very large objects in the image because
of the focal length. So, the PASCAL VOC is not suitable for
the detection of small objects.

Microsoft COCO dataset [26] is a standard dataset built
by Microsoft team for object detection, image segmentation,
and other fields. The dataset includes various types of small
objectswith the complexity of the background, so it is suitable
for small objects detection. The SUN dataset [27] consists of
908 scene categories and 4479 object categories and a total
of 131067 images that also contain a large number of small
objects.

In order to get the rich small object dataset, the paper [13]
adopted two standards to build the dataset. The first is that
the actual size of the objects is not more than 30 centimeters.
Another criterion is that the area occupied of the objects is
not more than 0.58% in the image. The author also gives the
mAP of RCNN based on the dataset and it has only 23.5%
detection rate.

3. Model Introduction

3.1. Faster-RCNN. The RCNN model proposed by Girshick
in 2014 is divided into four processes during the object detec-
tion. First, 2000 proposal regions in the image are obtained
by region proposal algorithm. Second, it extracts the CNN
features of the two thousand proposal regions separately and
outputs the fixed dimension features. Third, the objects are
classified according to the features. Finally, in order to get
the precise object bounding box, RCNN accurately locate
and merge the foreground objects by regression operation.
The algorithm has achieved the best accuracy of the year.
But it requires an additional expense on storage space
and time because RCNN needs to extract the features of
2000 proposal regions in each image. Later, Fast-RCNN is
proposed by Girshick based on RCNN, the model, which
maps all proposal regions into one image and has only one
feature extraction. So Fast-RCNN greatly improves the speed
of detection and training. However, Fast-RCNN still needs
to extract the proposal regions which is the same as RCNN.
The proposal regions extracted lead to inefficiency. Faster-
RCNN integrates the generation of proposal region, extract-
ing feature of proposal region, detection of bounding box, and
classification of object into a CNN framework by the RPN
network (regionproposal network). So it greatly improves the
detection efficiency. The RPN network structure diagram is
shown in Figure 2. The core idea of Faster-RCNN is to use
the RPN network to generate the proposal regions directly
and to use the anchor mechanism and the regression method
to output an objectness score and regressed bounds for each
proposal region; i.e., the classification score and the boundary
of the 3 different scales and 3 length-width ratio for each
proposal region are outputted. Experiments show that the
VGG-16 model takes only 0.2 seconds to detect each image.
In addition, it has been proved that the detection precision
will be reduced if the negative sample is very high in the
dataset. The RPN network generates 300 proposal regions for
each image by multiscale anchors, which are less than 2000
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Figure 2: RPN network structure.
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Figure 3: Faster-RCNN network structure.

proposal regions of Fast-RCNN or RCNN. So the accuracy is
also higher than them.

Faster-RCNN only provides a RPN layer improvement
compared to the Fast-RCNN network and does not improve
the feature mapping layer compared to the Fast-RCNN net-
work. Faster-RCNN network structure is shown in Figure 3.
Faster-RCNN performs multiple downsampling operations
in the process of feature extraction. Each sampling causes the
image to be reduced by half.Theoutput image in the fifth layer
is the 1/16 of the original object for Faster-RCNN; i.e., only 1
byte feature is outputted on the last layer if the detected object
is smaller than 16 pixels in the original image. The objects
failed to be detected because little feature information can not
sufficiently represent the characteristics of the object.

AlthoughFaster-RCNNhas achieved very good detection
results on the PASCAL VOC, the PASCAL VOC is mainly
composed of large objects. The detection precision will fall if
the dataset is mainly composed of small objects.

3.2. Multiscale Faster-RCNN. In reality, the detected objects
are low in resolution and small in size. The current model
(e.g., Faster-RCNN) which has good detection accuracy for
large objects can not effectively detect small objects in the
image [28]. The main reason is that those models based on
deep neural network make the image calculated with con-
volution and downsampled in order to obtain more abstract
and high-level features. Each downsampling causes the image
to be reduced by half. If the objects are similar to the
size of the objects in the PASCAL VOC, the object’s detail
features can be obtained through these convolutions and
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Figure 4: Our model structure.

downsampling. However, if the detected objects are the very
small scale, the final features may only be left 1-2 pixels after
multiple downsampling. So few features can not fully describe
the characteristics of the objects and the existing detection
method can not effectively detect the small target object.

The deeper the convolution operation, the more abstract
the object features which can represent the high-level features
of objects are. The shallow convolution layer can only extract
the low-level features of objects. But for small objects, the
low-level features can ensure rich object characteristics. In
order to get high-level and abstract object features and ensure
that there are enough pixels to describe small objects, we
combine the features of different scales to ensure the local
details of the object. At the same time, we also pay attention
to the global characteristics of the object based on the Faster-
RCNN.Thismodel will have more robust characteristics. The
model structure is shown in Figure 4.

The model is divided into four parts: the first part is the
feature extraction layer which consists of 5 convolution layers
(red part), 5 ReLU layers (yellow parts), 2 pooling layers
(green parts), and 3 RoI pooling layers (purple part). We
normalize the output of the 3th, 4th, and 5th convolution,
respectively. Then the normalized output is sent to the RPN
layer and the feature combination layer for the generation of
proposal region and the extracted multiscale feature, respec-
tively. The second part is the feature combination layer that
combines the different scales features of third, fourth, and
fifth layer into one-dimension feature vector by connection
operation. The third part is the RPN layer which mainly real-
izes the generation of proposal regions.The last layer, which is
used to realize classification and bounding box regression of
objects that are in proposal regions, is composed of softmax
and BBox.

3.3. L2 Normalization. In order to obtain the combinatorial
feature vectors, we need to normalization the feature vectors

of different scales. Usually the deeper convolution layer
outputs the smaller scale features. On the contrary, the lower
convolution layer outputs the larger scale features.The feature
scales of different layers are very different.Theweight of large-
scale features will be much larger than that of small scale
features during the network weight which is tuned if the
features of these different scales are combined, which leads
to the lower detection accuracy.

To prevent such large-scale features from covering small
scale features, the feature tensor that is outputted from differ-
ent RoI pooling should be normalized before those tensors
are concatenated. In this paper, we use L2 normalization.
The normalization operation, which is used to process every
feature vector that is pooled, is located after RoI pooling. After
normalization, the scale of the feature vectors of the 3th,4th,
and 5th layer will be normalized into a unified scale.

𝑋 = 𝑋‖𝑋‖2 , (1)

‖𝑋‖2 = ( 𝑑∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)
1/2

, (2)

where X is the original vector from the 3th, 4th, and 5th layer,
X̂ is normalized feature vector, and D is the channel number
of each RoI pooling.

The vector X will be uniformly scaled by scale facto; i.e.,

𝑌 = 𝛾𝑋̂, (3)

where 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑑]𝑇.
In the process of error back propagation, we need to fur-

ther adjust the scale factor 𝛾 and input vector X. The specific
definition is as follows:

𝜕𝑙
𝜕𝑋 = 𝛾

𝜕𝑙𝜕𝑦 , (4)
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Table 1: The process of model training.

Training process
Input: VGG CNN M 1024 and image
Output: detection model
Step 1 Initialize the ImageNet pre training model VGG CNN M 1024 and train the RPN network.

(1) Initialize network parameters using pre training model parameters
(2) Initialization of caffe
(3) Prepare for roidb and imdb
(4) Set output path to save the caffe module of intermediate generated.
(5) Training RPN and save the weight of the network

Step 2 Using the trained RPN network in step 1, we generate the ROIs information and the probability distribution of the foreground
objects in the proposal regions.
Step 3 First training Fast RCNN network

(1) The proposal regions got from step 2 are sent to the ROIs
(2)The probability distribution of foreground objects is sent to the network as the weight of the objects in the proposal regions
(3) By comparing the size of Caffe blob, we get the weight of objects outside the proposal regions
(4) The loss-cls and loss-box loss functions are calculated, classify and locate objects, obtain the detection models.

Step 4 Replace the detection model obtained in step 3 with the ImageNet network model in step 1, repeat steps 1 to 3, and the final
model is the training model.

𝜕𝑙𝜕𝑋 = 𝜕𝑙𝜕𝑋 (
𝐼‖𝑋‖2 −
𝑋𝑋𝑇
‖𝑋‖32) , (5)

𝜕𝑙𝜕𝛾 = ∑𝑦
𝜕𝑙𝜕𝑦𝑋. (6)

3.4. Concat Layer. After the features of the third, fourth,
and fifth layer are L2 normalized and RoI pooled, output
vectors need to be concatenated.The concatenation operation
consists of four tuples (i.e., number, channel, height, and
weight), where number and channel represent the concate-
nation dimension and height and weight represent the size
of concatenation vectors. All output of each layer will be
concatenated into a single dimension vector by concatenation
operations. In the initial stage of model training, we set a
uniform initial scale factor of 10 for eachRoI pooling layer [11]
in order to ensure that the output values of the downstream
layers are reasonable.

Then in order to ensure that the input vector of the full
connection has the same scale as the input vector of the
Faster-RCNN, an additional 1∗1 convolution layer is added to
the network to compress the channel size of the concatenated
tensor to the original one, i.e., the same number as the
channel size of the last convolution feature map (conv5).

3.5. Algorithmic Description. Faster RNN provides two train-
ing methods with end-to-end training and alternate training
and also provides three pretraining networks of different
sizes with VGG-16, VGG CNN M 1024, and ZF, respectively.
The large network VGG-16 has 13 convolutional layers and
3 fully connected layers. ZF net that has 5 convolutional
layers and 3 fully connected layers is small network and the
VGG CNN M 1024 is medium-sized network. Experiment
shows that the detection accuracy of VGG-16 is better than

the other two models, but it needs more than 11G GPU. In
order to improve the training speed of the model, we use the
VGG CNN M 1024model as a pretrainingmodel and use the
alternation training as a training method. The main process
of training is shown in Table 1.

4. Experimental Analysis

4.1. Dataset Acquisition. At present, the dataset commonly
used in target detection is PASCAL VOC, which is made up
of larger objects or the objects whose size is very small but
the area of the objects in the image is very large because of
the focal length. Therefore, PASCAL VOC is not suitable for
small object detection. There is no dataset for small target
objects. In order to test the detection effect of the model on
small objects, the paper will establish a small object dataset
for object detection based on Microsoft COCO datasets and
SUN datasets.

In the process of building small object dataset, we refer
to the two criteria mentioned in [18]. The first criterion is
that the actual size of the detected object is not more than 30
centimeters. The second criterion is that all the small objects
in the image occupy 0.08% to 0.58% of the area in the image;
i.e., the pixels of the object are between 16∗16 and 42∗42
pixels. The small objects in the PASCAL VOC occupy 1.38%
and 46.40% of the area in the image, so it is not suitable for
small object detection. The statistics table is shown in Table 2
[18].

Based on the above standards, we select 8 types of objects
to make up a dataset, including mouse, telephone, outlet,
faucet, clock, toilet paper, bottle, and plate. After filtering
COCO and SUN dataset, we finally select 2003 images that
include a total of 3339 objects. The 358 mouse are distributed
in 282 images, and the other objects, e.g., toilet paper, faucet,
socket panel, and clock, are shown in Table 3.



International Journal of Digital Multimedia Broadcasting 7

Table 2: PASCAL VOC object area account table. Unit: %.

category cat sofa train dog table motorbike horse
area ratio 46. 40 33.87 32.33 30.96 23.73 23.69 23.15
category bus plane bicycle person bird cow chair
area ratio 23.04 22.83 14.38 8.14 8.03 6.68 6.09
category TV boat sheep plant car bottle
area ratio 5.96 3.82 3.34 2.92 2.79 1.38

Table 3: The small object dataset.

category Mouse Telephone Outlet Faucet Clock Toilet paper bottle plate
Number of images 282 265 305 423 387 245 209 353
Number of objects 358 332 477 515 422 289 371 575

Table 4: The comparison of accuracy between our model and Faster-RCNN. (40000,20000).

model mAP Mouse Telephone Outlet Faucet Clock Toilet paper bottle plate
Faster RCNN 0.479 0.360 0.409 0.519 0.392 0.643 0.350 0.485 0.676
Our model 0.589 0.402 0.482 0.600 0.506 0.687 0.641 0.585 0.806

Table 5: The comparison of accuracy between our model and Faster-RCNN (60000,30000).

model mAP Mouse Telephone Outlet Faucet Clock Toilet paper bottle plate
Faster RCNN 0.491 0.447 0.449 0.549 0.424 0.604 0.309 0.428 0.719
Our model 0.587 0.371 0.564 0.572 0.561 0.690 0.546 0.514 0.880

The small object dataset established in this paper is based
on COCO and SUN. Because the data in COCO and SUN are
mainly based on the scenes of everyday life, the complexity of
image background in our dataset is much larger than that in
PASCAL VOC. In addition, there are more objects in single
image compared with the PASCAL VOC, and most of these
objects are not in the image center. These make the object
detection based on the small object datasetmore difficult than
that based on the PASCAL VOC.

During the experiment, we randomly select 300 images
as a test set and 600 as a validation set from the small dataset,
and all the remaining images are trained as a training set.

4.2. Experimental Comparison. The paper compares our
model with the state-of-the-art detection model Faster-
RCNN for small object detection. In the process of model
training, our model and Faster-RCNN model use the alter-
nate training method. Firstly, we train the RPN network and
use the RPN network as a pretraining network to train the
detection network. Then we repeat the above steps to get
the final detection model. In the training process, we have
40000 iterations for the RPN network and 20000 iterations
for the detection network.The final accuracy of the detection
is shown in Table 4.

With the increase in the number of iterations of the train-
ing network, different models will show different detection
results. In the experiment, we also try to increase the number
of iterations; that is, the RPN network iterates 60000 times

and the detection network iterates 30000 times. The results
obtained are shown in Table 5.

We can find that the detection accuracy is stable when
the number of iterations of RPN network is 40000 and the
number of iterations of detection network is 20000 from
the above experiments. The accuracy of our model is better
than that of Faster-RCNN for all types of objects. The part
renderings of the objects detection are shown in Figure 5.

In order to further detect the robustness of the model, we
also detect the remote sensing images in real environment.
The remote sensing image dataset comes from the Google
map and the insulators of the field transmission line are pho-
tographed by the UAV (unmanned aerial vehicle). Because
the images in real environment have the characteristics
of changeable light, complex background, and incomplete
objects, we try to take all the special cases into consideration
during the building the dataset. Experiments show that
our proposed detection model has better detection results
in small objects detection in real environment. The part
renderings of the objects detection are shown in Figure 6.

5. Conclusions

Small objects are very difficult to detect because of their
lower resolution and larger influence of the surrounding
environment. The existing detection models based on deep
neural network are not able to detect the small objects
because the features of objects that are extracted by many
convolution and pooling operations are lost. Our model not
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Figure 5: The detection renderings.

Figure 6: Effect of remote sensing image detection.
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only ensures the integrity of the feature of the large object
but also preserves the full detail feature of the small objects
by extracting the multiscale feature of the image. So it can
improve the accuracy of the detection of the small objects.

The GANs (Generative Adversarial Nets) have been
widely applied to the game area and achieved good results
[29]. For future work we believe that investigating more
sophisticated techniques for improving the accuracy of small
object detection, including the Generative Adversarial Nets,
will be beneficial. Existing object detection usually detects
small objects through learning representations of all the
objects at multiple scales. However, the performance is
usually limited to pay off the computational cost and the
representation of the image. In the future, we address the
small object detection problem that internally lifts represen-
tations of small objects to “super-resolved” ones, achieving
similar characteristics as large objects and thus being more
discriminative for detection. And finally, we use the adver-
sarial network to train the detection model.
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