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In this study, we propose a reconstruction and optimization neural network (RONN), a novel neural network for nonrigid
structure from motion, which is completed by an unsupervised convolution neural network. Compared with the traditional
method for directly solving 3D structures, our model focuses on depth information that is lost owing to projection. This
mathematical model is developed using a convolutional neural network with three modules for integration, reconstruction, and
optimization, as well as two prior-free loss functions. The proposed RONN achieves competitive accuracy on several tested
sequences and high visual quality of various real video sequences.

1. Introduction

Nonrigid structure from motion (NRSfM) targets the recov-
ery of a nonrigid structure and camera matrix from given 2D
point tracks in monocular views. Unlike its rigid counterpart
[1], NRSM is a highly ill-posed problem with several inher-
ent ambiguities. Moreover, solving this problem requires
additional constraints or priors. Many methods assume that
the movement of the camera is slow and smooth [2-6]; how-
ever, this limits its applicability to real sequences. Another
assumption is that the deformation of nonrigid instances
can be represented using the weighted sum of basic defor-
mations in the trajectory space [4] and shape space [7]. With
these assumptions, the NRSfM problem is transformed into
solving the basic deformation and its coefficients.

Inspired by these assumptions, many researchers have
used neural networks to solve the sparse NRSfM problem
[8, 9], which learns shape representations through unsuper-
vised networks, while maintaining good generalization
ability in the face of unseen data. However, their models
are incapable of handling dense situations.

Dense NRSfM has achieved remarkable progress over the
last several years [2, 10-13]. In 2020, Sidhu et al. [13] pro-
posed the first dense neural NRSfM (N-NRSfM) approach

with mean shape and demonstrated state-of-the-art perfor-
mance on widely used datasets. However, when confronted
with a long sequence or drastic changes, the mean shape is
unreasonable. Additionally, it requires a considerable
amount of time to obtain high-performance results.

In this study, we introduce a reconstruction and optimi-
zation neural network (RONN) and two improved loss func-
tions for dense NRSfM. RONN mainly includes a depth
reconstruction module and a camera optimization module,
which reconstruct the depth information lost due to projec-
tion and optimize the camera matrix, respectively. Inspired
by recent advances in NRSfM [8], the proposed improved
loss function is combined with the minimum singular value
ratio, and experiments show that it improves the original
loss function to varying degrees.

The main contributions of our study are as follows.

(1) We propose the first dense NRSfM network for
reconstruction using depth information, namely,
RONN. It is a convolutional neural network includ-
ing reconstruction and optimization, which realizes
the reconstruction of the 3D structure and the opti-
mization of the camera matrix, respectively. Its
specific structure will be introduced in Section 4.1.
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Compared to directly solving the overall 3D struc-
ture in the method [13], RONN avoids the use of
average shapes and reduces the amount of theoreti-
cal computation

(2) For the first time, we changed the input of the network
from every frame to every point, enabling the network
to cope with datasets of different sizes. Section 5.3
shows that RONN reconstructs dense and sparse 3D
structures without 3D supervision and achieves com-
petitive accuracy on multiple test sequences

(3) Compared with the original loss function, the weighted
loss function using msr can handle complex deforma-
tion and further improve the reconstruction accuracy.
The weighting method will be described in detail in
Section 4.2. The comparative experiments in Section
5.2 show varying degrees of improvement

2. Related Work

2.1. NRSfM. NRSfM is inherently ill-conditioned and
requires additional constraints or priors to guarantee
solution uniqueness. We are concerned with the following
additional limitations:

(1) Bregler et al. [14] proposed a low rank, where the
rank of the rigid 3D structure fixed is three. Dai
et al. [7] rearranged the rows of S as $* to obtain
stronger low rank priors, demonstrating state-of-
the-art performance on sparse datasets at the time.
Ansari et al. [10] proposed scalable monocular sur-
face reconstruction (SMSR) with an improved low
rank. Its scalability enables the achievement of com-
petitive accuracy on both sparse and dense data

(2) Park et al. [15] proposed Procrustean regression,
which is a regression problem based on
Procrustes-aligned shapes. In [15], they proposed
a novel regression framework for NRSfM, compris-
ing Procrustes-aligned shape loss and low rank loss.
The framework is versatile and can reconstruct a
3D structure under dense datasets. Additionally, Park
et al. [16] proposed a novel framework for training
neural networks with a Procrustean regression.
Although the network structure is simple, it shows
superior reconstruction performance compared to
the state-of-the-art method. In [16], it was proven
that Procrustes alignment could determine unique
motions and eliminate the rigid motion components
from reconstructed shapes

2.2. Neural NRSfM. There have been studies on combing
NRSfM with neural networks. Supervised neural networks
require large amounts of training data; however, only a few
datasets are currently available for quantitative evaluation
of NRSfM methods. In contrast, unsupervised networks are
easier to implement. C3DPO [17] and deep NRSfM [9] learn
basis shapes from 2D observations without 3D supervision
in sparse data sets. C3DPO [17], which was proposed by
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Facebook’s AI lab, uses a factorization network to replace
the classical factorization step. Additionally, to ensure the
effect of factorization, it collaborates with another canonica-
lization network to achieve a robust 3D reconstruction
effect. This framework achieved high-performance recon-
struction results for rigid and nonrigid datasets. Kong and
Lucey [9] proposed a new a priori hypothesis, using multi-
layer sparse coding to represent 3D nonrigid shapes, and
designed an innovative encoder-decoder neural network to
realize an unsupervised network for NRSfM. They extended
the classic sparse coding algorithm, ISTA, to block sparse
scenarios and provide state-of-the-art performance through
the proposed network. However, sparse coding also limits
its application to dense datasets. Sidhu et al. [13] introduced
the first dense neural NRSfM approach, namely, N-NRSfM,
and achieved competitive performance on widely used dense
datasets. They used the mean shape to achieve reconstruc-
tion, but this became a limitation. Once the mean shape is
determined, the reconstruction result is obtained. Therefore,
when confronted with large-scale deformation, the recon-
struction results are not as good as expected.

3. Mathematical Model

Consider a monocular camera for observing a nonrigid object
with a set of P feature points. Let S; be the 3D shape matrix of

the nonrigid object at the f™ frame and W be its 2D matrix
according to an orthographic projection. Specifically,

1
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W, and §; are related by the full rotation matrix G as

1 0 0 33
LG eR™, (3)
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where W/ is already centralized; therefore, the camera matrix
is reduced to pure rotation [14]. According to Formula (3),
W contains both the camera and 3D structure information.
In this study, a reasonable network architecture was designed
to separate the required information.

Formula (3) can be changed to the following form.

w
wall]

According to Formula (4), the full rotation matrix will
have a certain effect on the reconstruction results; therefore,
optimization of the full rotation matrix is necessary.
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FIGURE 1: Overview of the proposed RONN.

4. RONN Model

In this section, we introduce the structure and loss functions
of the RONN.

4.1. Network Structure. As illustrated in Figure 1, inspired by
the trajectory space, our RONN contains three modules:
dimensional integration module f,, camera optimization
module f., and depth reconstruction module f,. The
dimensional integration module integrates the information
contained in # and v in the W matrix, f ; represents the opti-
mization module for the camera matrix, and f, represents
the reconstruction module for the depth information .

The 2D matrix W first passes through a dimensional
integration module, which consists of a convolutional layer
with a kernel size of 2x 1 and a ReLU layer. The next two
modules are f, which has B (set to 1 by default) residual
blocks and a linear layer after rearranging the shape, from
which we obtaianf € R¥, and f, which has Kx; e R
. Specifically, the residual block contains two convolutional
layers of kernel size 1 x1 and a ReLU layer.

Through this network, our reconstruction result can be
expressed as

— [w;
S;=AG{eG/ . AG=UVT, (5)

where UZVT = &E}; is the SVD of the camera matrix.

In this study, the method for initializing G is the same as
that in [1] on dense datasets and [7] on sparse datasets.

4.2. Loss Function. To solve the NRSfM problem, we propose
minimizing the loss functions with the initial rotation matrix
Gas

E= aEtemp + ﬁEPA + yErank’ (6)

where {E,...., Eps> Eranic } €ncode the additional constraints.

temp>

The temporal smoothness term E is used to con-

temp
strain the similarity of the reconstruction results of adjacent
frames as

, (7)

1 F-1
Eimp = 57 ). H“f (Sp1 - Sf)‘
f=1 ¢

where [|+||, denotes the Huber loss of the matrix. Weight 4,

is discussed later.

The Procrustean alignment term Ep, can determine
unique motions and eliminate the rigid motion compo-
nents from reconstructed shapes [15]; the term can be
expressed as follows.

1 «F -
Epy= 52 18T =5l

5= étp}-sf.T, ;%‘[ =LA=[Lf-1U[f+]1,F,

where T = (I - (1/P)117) is the translation matrix, center-
ing the shape at the origin. Weight go} is discussed later
in this paper. This function is aimed at minimizing the
error between the 3D shape of each frame and the refer-
ence shape to optimize the rotation matrix.

A rearranged shape matrix is expressed as

X% Xfl’ Y{ yll’ Z{ le’
St=1: - Lo oo o,
le XI; Y}; Yf;, Z% Z};

©)

with an additional constraint rank (§#) < K. In [10], they
assumed that the mean 3D component was dominant in
§# and could be removed in the temporal dimension. By
combining both ideas, E,, ;. is defined as
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TABLE 1: e5p, on baseline.
Baseline
{Etemp} {EPA’ Erank} {Etemp’ EPA’ Erank}
Traj.A 0.0506 0.0457 0.0467
Traj.B 0.0670 0.0456 0.0459
TABLE 2: e5p on different loss function combinations.
Baseline RONN
{EPA’ Erank} {EPA> Erank’ Etemp} {EPA’ Erank} {EPA’ Erank’ Etemp}
Traj.A 0.0457 0.0467 0.0312 0.0309
Traj.B 0.0456 0.0459 0.0379 0.0359
Ek = | p.s#’ B (10) 5.1. Datasets and Setups

where P = (I - (1/F)117) is the orthogonal projection, and 1
is a vector of ones.

When using the optimized module f;, E;, must be used
as the data term and E,,, as the regularization term to form
a Procrustean regression.

Weights ¢4, and (p} are set using the minimal singular-

value ratio [8]. Given two 2D matrices, W; and Wj, let A;
€ R be the stacked matrix of W; and W as follows:

W;
]. (11)

Then, the ratio of the minimal singular value of A is used
to define the rigidity measure msr as follows:

2
0y

er(Wi, W]) = W,
=1

(12)

where o is the [-th singular value of A; in descending order.
Then, weights y; and (p} are defined as follows:

HfZ—IOg (msr(Wf, Wf+1))’ (13)

o= log (msr(Wp, W,)) )
Zjealog(msr(Wy, W))) (14)
A=[Lf-1]U[f+1,F).

5. Experiment

In this section, the experimental results are described for
several widely used benchmarks and real datasets. First, we
introduce the datasets and experimental setups, then analyse
and compare the proposed model with state-of-the-art dense
and sparse datasets and, finally, use real data for experiments.

5.1.1. Datasets. Three dense benchmark datasets are used in
the comparison of methods: synthetic faces (two sequences
with 99 frames and two different camera trajectories
denoted by Traj.A and Traj.B, with 28,887 points per
frame) [2], expressions (384 frames with 997 points per
frame) [18], and actor mocap (100 frames with 36,349
points per frame) [19].

5.1.2. Evaluation Metrics. For algorithm performance indica-
tors, the 3D error e;;, defined as follows.

GT
T i
U |

F

(15)

where ||+|| ; denotes the Frobenius norm and S?T denotes the

ground truth 3D structure at the f™ frame.

5.1.3. Training Details. The RONN was implemented in
PyTorch [20]. We used the Adam optimizer with a learning
rate of 0.0005 and trained for 2000 epochs. In the experi-
ment, the weight was fixed at a=f=y=1.

5.2. Model Analysis

5.2.1. Structure of RONN. The baseline was formed by
removing the f, module in the RONN. These experiments
show the advantages of f, and the necessity of f; it con-
tains different combinations of loss functions on synthetic
face sequences (Traj.A and Traj.B).

The advantages of f, are listed in Table 1. Because the f,
network solves the depth information x, rather than the entire
3D structure, this allows the reconstruction to be achieved
only with E,,, although the error is relatively large.

The necessity of f ; is shown in Table 2. When using the
combination of Ep, and E,, ., e;p is reduced by 31.72% for
Traj.A and 16.88% for Traj.B. When using the combination
of Epy, Epyni> and Eig €31 is reduced by 33.83% for Traj.A
and 22.00% for Traj.B.
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TABLE 3: e5, on improved loss functions.
(@)
Baseline
{Etemp} {Et*emp} {EPA’Erank} {E;A’Erank}
Traj.A 0.0506 0.0535 0.0457 0.0456
Traj.B 0.0670 0.0735 0.0456 0.0450
(b)
RONN
{EPA’ Erank} {E;A’ Erank} {EPA> Erank> Etemp } {E;N Erank’ Et*emp}
Traj.A 0.0312 0.0355 0.0309 0.0321
Traj.B 0.0379 0.0399 0.0359 0.0396
TABLE 4: e5, for the synthetic face sequence [2] (Traj.A and Traj.B).
(@)
JM* [21] GM* [11] SMSR [10] PPTA [22] CMDR (23]
Traj.A 0.0280 0.0294 0.0304 0.0309 0.0324
Traj.B 0.0327 0.0309 0.0319 0.0572 0.0369
(b)
VA [2] DSTA [25] EM-FEM' [26] N-NRSfM [13] RONN
Traj.A 0.0346 0.0374 0.0389 0.032 0.0309
Traj.B 0.0379 0.0428 0.0304 0.0389 0.0359
Note: *denotes methods that use Procrustes analysis for the shape alignment, whereas most methods use orthogonal Procrustes. "Represents the sequential
method.
TABLE 5: 5, for the expression dataset [18].
EM-LDS [3] CSF2 [27] KSTA [28] GMLI [18] N-NRSM [13] RONN
Expr. 0.044 0.048 0.035 0.026 0.026 0.026

5.2.2. Effectiveness of Improved Loss Functions. To understand
the effectiveness of the improved loss functions, we conducted
experiments with the following original loss functions.

(16)

>
€

1 F-1
Ejemp = m; 1S51 =S¢

(17)

1 F a1 = I F
Epp= fo:lHSf°T_S| oS= ﬁZf:1Sf'T'

In Table 3, in the case of RONN without f;, compared
with E{ .., esp of the E,, is reduced by 5.4% for Traj.A
and 8.8% for Traj.B.

Because the combination of E,, and E,,,; must be used
when using the f network, an experiment without f is
added to show the performance of different improved func-

temp

tions. However, the improvement in Ep, did not affect the
error before and after. However, with the addition of f,
the combination of E,, and E,, reduces the error by
12.11% on Traj.A and 5.01% on Traj.B, which also shows
the necessity of optimizing the camera matrix.

5.3. Comparison of Methods

5.3.1. Synthetic Faces. e}, for synthetic faces are listed in
Table 4. Compared with jumping manifolds (JM) [21],
Grassmannian manifold (GM) [11], SMSR [10], probabilis-
tic point trajectory approach (PPTA) [22], consolidating
monocular dynamic reconstruction (CMDR) [23, 24], varia-
tional approach (VA) [2], dense spatial-temporal approach
(DSTA) [25], expectation-maximization finite element
method (EM-FEM) [26], and N-NRSfM [13], the RONN
achieves e, close to the best method on Traj.A and exhibits
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TABLE 6: e5, for the actor mocap dataset [19].

SMSR [10] CMDR [23] RONN
Actor mocap 0.054 0.0257 0.0226
TABLE 7: e;, for the sparse dataset.

CSF2 [27] PND [29] BMM [7] BMM-v2 [30] RONN

Drink 0.0227 0.0037 0.0266 0.0119 0.0147
Pickup 0.1791 0.0372 0.1731 0.0198 0.028
Yoga 0.1179 0.0140 0.1150 0.0129 0.0237
Stretch 0.1136 0.0156 0.1034 0.0144 0.0234
Dance 0.1877 0.1454 0.1864 0.1060 0.1404
Shark 0.1117 0.0135 0.2311 0.0551 0.0332

“

v

(b) Back

(c) Real face

FIGURE 2: Visualizations of partial reconstruction result of real image sequences.
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an average on ey, on Traj.B. Compared with Traj.A, the
reconstruction accuracy of Traj.B is poor, as reflected by
many methods.

5.3.2. Expressions. e;p, for the expressions are presented in
Table 5. Compared with the expectation-maximization lin-
ear dynamical system (EM-LDS) [3]; column space fitting,
version 2 (CSF2) [27]; kernel shape trajectory approach
(KSTA) [28]; global model with local interpretation (GMLI)
[18]; and N-NRSfM [13], the RONN achieves e;, = 0.026 on
par with those of GMLI and N-NRSfM, which is currently
the best method for this sequence. However, the number of
iterations is significantly reduced (compared to 60,000 times
in N-NRSfM).

5.3.3. Actor Mocap. ey, for the expressions are listed in
Table 6. Compared with CMDR [23, 24] and SMSR [10],
the RONN achieves e;, = 0.0226, which is better than SMSR
and CMDR.

5.3.4. Sparse Reconstruction. Except for the linear layer in f ,
the RONN is composed of a convolutional network, and
each feature point shares parameters so that the network
can handle datasets with different numbers of feature points.
When facing classic sparse data, comprising six standard
sequences, namely, drink, pickup, yoga, stretch, dance, and
shark, the RONN could also realize reconstruction. The
number of frames (F) and number of points (P), i.e., the
(F, P) set, for these datasets are (1102, 41), (357, 41),
(307, 41), (370, 41), (264, 75), and (240, 91). As shown
in Table 7, compared with the 3D reconstruction of dense
data, in the sparse 3D reconstruction scene, the correlation
between each point is relatively small owing to the few
feature points. Compared with the classic sparse 3D recon-
struction methods, the reconstruction results of the RONN
are not as good as are expected. However, even if the
reconstruction error of RONN is not the best, it is also
not the worst.

5.4. Experiments with Real Data. We also reconstructed
several real image sequences ,i.e., heart surgery [31], back
[32], and real face [2] (see Figure 2). As for the real face,
owing to the large amount of noise in matrix W, the final
reconstruction result is not as smooth as expected. As for
the back and heart surgery, the RONN achieved good visual
reconstruction results.

6. Conclusion

This study proposes RONN and two improved loss func-
tions. Our method can achieve reconstruction from 2D to
3D without supervision. One of the advantages of the RONN
method is its scalability and consistent performance on data-
sets with different numbers of feature points.

As the first network to directly solve depth information
to achieve reconstruction, RONN uses the depth reconstruc-
tion module f, , which can achieve 3D structure reconstruc-
tion with only temporal smoothness loss. Procrustean
regression is used to optimize the camera matrix and
improve performance and use msr to weight the above loss

function to further improve the network’s ability to deal with
complex deformation and experimentally demonstrate the
improved loss function and the high performance of RONN.

Compared to the N-NRSfM approach, which is the first
dense neural NRSfM, we do not need a mean shape and
employ fewer training epochs. Compared to the classic
sparse reconstruction method, the RONN shows better scal-
ability. Transforming the input of the network from every
frame to every point enables the network to better cope with
the dense conditions.

Because of the direct use of W, the current limitation of
the proposed method is its sensitivity to the 2D matrix W.
As shown in Figure 2(c), the noise in W is directly shown
in the 3D structure, causing the result to be unsmooth. Since
the original rotation matrix is required, the reconstructed
structure accuracy will be affected by the original rotation
matrix. Moreover, the RONN cannot handle data loss.

The N-NRSfM provides a new perspective on dense
NRSfM, which we further improved, achieving results. In
future research, we will consider complex situations, such
as denoising and data loss.
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