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After cataract, glaucoma is one of the second leading retinal diseases in the world. This paper presents the methodology to detect
the glaucoma using principal component analysis. The images are involved in dilation as a preprocessing, enhancement using the
contrast limited adaptive histogram equalization method, and followed by the extraction of features using principal component
analysis. The extracted features are classified using support vector machine, Naive Bayes, and K-nearest neighbor classifiers.
Comparing with other classifiers, the Naive Bayes provides high accuracy of 95% which demonstrates the effectiveness of the
feature extraction and the classifier.

1. Introduction

Glaucoma is the second-leading cause of blindness in the
U.S. The prevalence of glaucoma in the world is 60.5 million
in 2015, and by 2030, it is expected to increase up to 10 per-
centages of world population [1]. The high prevalence of
undetected glaucoma in the society contributes to the high
rate of blindness among the Indian people [2]. A physical
eye examination technique can occasionally result in incor-
rect diagnosis. Automated and accurate diagnosis of retinal
disease helps to prevent the loss of vision. A thorough eye
examination for the detection of glaucoma involves tonom-
etry, ophthalmoscopy, perimetry, gonioscopy, and pachyme-
try. Utilizing the right automated decision tools while
imaging the retina improves the early detection of glaucoma
and prevents visual loss. The brightest section within retinal
fundus image is where the optic nerve exits the retina and to
the brain, which is called the optic disc. To prevent vision
loss, the optic disc region must be examined for the existence
of glaucoma at an early stage. The nerve that transmits data

from the eye to the nerve is called the optic nerve. When the
optic nerve gets damaged, glaucoma occurs. Early on, there
are no symptoms, but if a proper diagnosis is not made,
vision loss sets in. The greater than usual pressure in the
eye, which occasionally accompanies glaucoma, is referred
to as ocular hypertension.

Initial enhancements are made to the input retinal
images to improve their quality. The feature extraction tech-
nique has an impact on analyses on the detection and classi-
fication of glaucoma utilizing retinal images. Glaucoma
progression is identified using morphological and nonmor-
phological elements. Glaucoma detection using CDR feature
was performed by Xu et al. [3], Muramatsu et al. [4], Joshi
et al. [5], and Yin et al. [6]. On the other hand, the categori-
zation of the retina structures is not a characteristic of the
nonmorphological features. The published investigations
have demonstrated that morphological parameters like col-
our, pixel intensity, histogram, and texture are not used to
detect glaucoma. A system based on hybrid feature extrac-
tion from fundus images using higher order spectra, trace
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transform, and support vector machine classifier was pro-
posed by Muthu Rama Krishnan and Faust [7]. Celina Rani
George [8] suggested methodology to classify glaucoma
using wavelet-based energy features and neural network.
Wang et al. [9] have introduced recognition of facial features
using contourlet and support vector machine. Zhang et al.
[10] segmented the blood vessels using Gabor filter bank
and textons. Shiny Christobel and Joshan Athanesious,
[11] suggested that the fractal dimension (FD) of the image
feature could be used as a parameter in detection of
glaucoma. The features are the useful information that can
be extracted from the retinal images without preprocessing
which has an accuracy of 84%. The images are classified
and detected using neural networks, NB, K-NN, and
SVM classifiers.

This paper is organized as follows: section 2 deals with
the overall methodology that includes preprocessing of the
input retinal fundus image followed by enhancement using
contrast limited adaptive histogram equalization then imple-
mentation of principal component analysis (PCA) and clas-
sification of normal and glaucomatous images. The section 3
deals with simulation results and performance measures in
section 4 followed by conclusion in section 5. The proposed
methodology to classify the healthy and glaucomatous image
using PCA is shown in the Figure 1.

2. Proposed Methodology

The retinal image is initially preprocessed using one of the
morphological operations called dilation, and then the image
is enhanced using CLAHE method. The features are
extracted using PCA. The extracted features are given as
input to the SVM, Naive Bayes, and K-NN classifier for
identifying the normal and glaucomatous images. From the
classifier results, the performance measure of each classifier
is calculated and compared with other classifiers.

2.1. Retinal Images. Glaucoma diagnosis is the most efficient
method in the detection of blindness. The glaucoma images
are obtained from STARE database, and the healthy images
are obtained from MESSIDOR database.

2.2. Preprocessing. The preprocessing technique is an impor-
tant step in detection of a disease which deletes the
unwanted distortions and increases the image qualities like
noise brightness, sharpness, and contrast. The erosion is
one of the morphological operations that remove pixels to
the boundaries of an image. The erosion is the process of
finding the minimum value. The erosion uses a structuring
element to process an image. The structuring element is a
binary matrix with a center pixel in which it has a center
pixel value as 1. The shape of the structuring element or a
matrix can be disk, square, etc. [12]. Any one of the pixels
in the structuring element interacts with an input image,
the value obtained is 1, else it is zero.

2.3. Enhancement Using CLAHE. After preprocessing, the
image is enhanced using contrast limited adaptive histogram
equalization method. The CLAHE method increases the
quality of an image. The CLAHE operates on tiny parts of

an image called tiles rather than the entire image. By using
CLAHE, the addition of noise in an image is removed. The
output image is slightly brighter than the original image.

2.4. Feature Extraction Using PCA. The features are
extracted using principal component analysis (PCA), and
the features are given as input to SVM, Naive Bayes, and
K-NN classifier. The features extracted from the retinal
images are mean, variance, standard deviation, energy, kur-
tosis, and skewness [13].

The principal component analysis (PCA) is a mathemat-
ical procedure. It is used to convert a set of observations of
correlated variables into a set of values of linearly uncorre-
lated variables using orthogonal transformations. These are
called as principal components. PCA is sensitive to the rela-
tive scaling of the original variables. The PCA has very less
loss of information.

2.5. Classifiers. The extracted features from the enhanced
images are given to three classifiers, namely, SVM, NB, and
K-NN. The three classifiers undergo two processes: training
and testing. The extracted features from images are given as
an input to the classifiers which detects the images to be
glaucoma or normal images.

3. Simulation Results

The input glaucoma image is the retinal image taken from
MESSIDOR database. The input image can be healthy and
glaucoma. The healthy and the glaucoma images are prepro-
cessed using dilation and CLAHE method [14]. Then, the
features are extracted using PCA, and the extracted
feature-like are mean, variance, standard deviation, energy,
kurtosis, and skewness. For each subdetails are classified by
three classifiers, namely, SVM, NB, and K-NN classifiers.
The simulation results for PCA are using dilation and
CLAHE method. The Figure 2 is the input glaucoma image
obtained from MESSIDOR database. Since the CLAHE does
not execute, the RGB image is converted into a gray scale
image [15]. The Figure 3 is the gray scale image.

The erosion image is shown in Figure 4 in which the
pixels of the input image are decreased.

The enhanced image using CLAHE method is shown in
Figure 5. The input image contains noise and unwanted dis-
tortions. So, it has to be removed. The CLAHE method

Retinal input images

Pre-processing technique

Enhancement technique

Feature extraction using PCA

SVM, NB and K-NN classifiers

Figure 1: Work flow of Glaucoma detection.
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operates in smaller regions called tiles rather than operating
in the entire image [16, 17].

The extracted features are classified using three classi-
fiers, namely, SVM, NB, and K-NN classifiers. From the
extracted features, all the three classifiers are trained with
160 healthy and 160 glaucoma images. The remaining 40
healthy and 40 glaucoma images are tested. Among 40
healthy and glaucoma images, the SVM detected 38 healthy
and 37 glaucoma images correctly [18, 19]. The NB classi-
fiers detect 38 healthy and 39 glaucoma images correctly.
The K-NN classifier detects 33 healthy and 35 glaucoma
images correctly. The Table 1 shows the classification results
for PCA using dilation and CLAHE method [20, 21].

4. Performance Measures

To identify that the proposed method detects to be accurate,
the four parameters are calculated. The performances of the
classifiers are measured using three parameters like accu-

racy, sensitivity, and specificity. From the output produced
by the classifiers, a number of true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN) are
counted [22, 23].

(i) TP. The input glaucoma image is detected as glau-
coma by the classifier

(ii) TN. The glaucoma image is detected as a healthy
image by classifier

(iii) FP. The healthy input image is detected as a healthy
image by classifier

Figure 2: Glaucoma image.

Figure 3: Gray scale image.

Figure 4: Erosion image.

Figure 5: Enhanced image.
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(iv) FN. The healthy input image is detected as a glau-
coma image by the classifier

The accuracy, sensitivity, and specificity are calculated
by the below formulae;

Accuracy %ð Þ = ΣTP + Σ FP
∑TP + TN + FP + FN

,

Sensitivity %ð Þ = ΣTP
ΣTP + Σ FN

,

Specificity %ð Þ = ΣTN
Σ FP + ΣTN

:

ð1Þ

The accuracy, sensitivity, and specificity are calculated
using their specific formulae, and the performance measures
of the three classifiers [24, 25] are tabulated in Table 2.

From the Table 2, the SVM gives the accuracy of 91.6%,
sensitivity of 93.1%, and specificity of 9.67 (%). The NB pro-
vides 95% accuracy, 93.5% sensitivity, and 3.44% specificity.
The K-NN classifier gives 80% accuracy, 78.1% sensitivity,
and 17.8% specificity. Comparing the performance measures
of the SVM, NB, and K-NN classifiers, the NB classifier gives
the highest accuracy of 95% and also less specificity of 3.44%
in the detection of retinal image as healthy or glaucoma [26,
27]. The computation time is also less. The elapsed time is
538 seconds. The performance measures’ graph is shown
in Figure 6.

5. Conclusion

This paper presents the PCA feature-based classification for
identifying the glaucomatous image. The significance of
PCA-based feature extraction is that PCA well describes
coefficients like eigenvalues and eigenvectors of the retinal
image. The accuracy of glaucoma detection, based on the
PCA feature-based classifier, is shown to be better than other
transform with NB classifier. Simulation results show that
the PCA feature-based classifier performs better with an
accuracy of 95%. By using nonlocal means filter as a prepro-
cessing technique and histogram of oriented gradients, con-
tourlet wavelet transform as a feature extraction technique,
the accuracy can also be increased.

Data Availability
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