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Interest in video streaming has increased recently, as it constitutes most of the traffic on the Internet and cellular networks. These
networks use different video streaming technologies. One of the most famous technologies is DASH (which stands for Dynamic
Adaptive Steaming using HTTP). DASH adapts streaming parameters according to network conditions and uses the HTTP
protocol to communicate between the user and the server. DASH faces many challenges that may lead to video interruptions
and poor quality of user experiences (QoE) such as bad network conditions and buffering level control. In addition to the lack
of studies, we cover security issues for these types of services. In this paper, we proposed an integrated framework that consists
of four components: quality prediction model, precache model, light web application firewall, and a monitoring system. These
four components improve QoE and precache and increase the level of security. The results of the quality prediction model are
used to predict the quality of the next segments depending on the user’s network conditions and in the precache model to
improve caching to reduce the load on the streaming system and rely more on cache servers. The proposed web application
firewall is a light version used to defend against video streaming attacks and verify the existence of necessary HTTP headers.
The quality predictor model with the generated dataset achieved 97% classification accuracy using DecisionTree, and this
experiment proved the strong relationship between congestion periods and streaming quality, which is s the main key in QoE.

1. Introduction

1.1. Video Streaming Protocols. Video streaming technolo-
gies used four main protocols: HTTP 1.1, HTTP 2.0, RTMP,
and RTSP [1].

HyperText Transfer Protocol (HTTP) is a protocol that
works in the application layer, particularly in the webservers
[2]. It depends on the TCP/IP protocol and is used to trans-
fer data (HTML, files, and database query results). HTTP
uses port 80 by default. System administrators can configure
the webserver to work with other ports. HT'TP is a standard
for unifying the communication between clients and webser-
vers; this protocol defines how to build a user request, how
to send it to the server, and how the server responds to these
requests. Three features make HTTP simple and effective:
connectionless, media independent, and stateless.

The upgraded version of HTTP 1.0 and HTTP 1.1 is
HTTP 2.0 [3]; this version has additional features compared

to the old versions, as it is a binary protocol, multiplexed,
and encrypted.

Real-Time Messaging Protocol (RTMP) is a protocol
developed by Macromedia (now Adobe) and supported by
Adobe Flash [4]. RTMP has various derivatives such as
RTMPE (encrypted) [5], RTMPS (secure over SSL/TLS) [6],
and RTMPT (encapsulated within HTTP requests) [7]. The
packet loss in HTTP is slightly less than that in RTMP. It is
preferable to use HTTP over RTMP in high fluctuation cases.
Using RTMP is not recommended except in the case of small
networks such as conferences and e-learning lectures.

Real-Time Streaming Protocol (RTSP) relies on the RTP
protocol, the Real-time Transport Protocol, to transfer video
segments to the clients [8]. A disadvantage of this protocol is
the use of port 554; firewalls block this port by default.

1.2. DASH Technology. Adaptive Bitrate (ABR) streaming
technology is designed to deliver and provide a consistent,
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high-quality streaming experience to clients who use various
types of devices in bad network condition situations (fluctu-
ations) [9]. Segmented video streaming has become com-
mon for video content distribution over the Internet and
mobile networks. DASH (stands for Dynamic Adaptive
Steaming using HTTP) is a popular ABR algorithm [10].

DASH breaks the video file into segments and encodes
these segments at different bitrates; typically, the length of
every single segment is of 2 to 10 seconds. When the user
requests a video file, one of the previously encoded files is
sent depending on the current network conditions from
the client side; a client requests the next segment by pro-
viding a file from the streaming server called “MPD,”
which stands for Media Presentation Description. This file
contains media contents, available resolutions, and many
useful details for DASH [11].

The goal of implementing DASH is to improve the QoE
and to ensure that the video will keep on playing continu-
ously adaptive to the network conditions to avoid any inter-
ruption if it occurred.

The bandwidth limitation, the delay between request and
response, the rapid network condition fluctuation, and the
client device limitations are the main key video streaming
technology challenges [12]. These challenges make selecting
the next appropriate resolution for the next segments and
integrating with the client cache to avoid overflow and
underflow not easy to achieve.

As the Internet and mobile networks are constantly
expanding, expectations indicate that the traffic in mobile
networks for video streaming applications will be about
80% of the total traffic in mobile networks at the beginning
of 2020 and will increase annually [13].

Most recent works handled these key challenges by pro-
posing a modified version of HTTP, streaming hardware
architecture, or algorithms. In addition to the lack of studies
that proposed a comprehensive framework that addressed all
these issues mentioned in key challenges, in this paper, we
proposed a secure and intelligent framework that uses
machine learning techniques consisting of four components:
quality prediction model, precache model, web application
firewall, and monitoring system. These four components
improve QoE and precache and increase the level of security.

The rest of this paper is organized as follows: Section 2
presents related works, Section 3 explains the proposed
model, Section 4 discusses experiments, Section 5 contains
detailed results and discussions (evaluation, comparison,
and future works), and Section 6 includes the conclusion.

1.3. Machine Learning. Machine learning (ML) theory
designs and analyzes algorithms that allow computers to
“learn” automatically and conduct human tasks rather than
coding logic in traditional programming languages [14].
Machine learning algorithms can analyze and automatically
obtain rules from data and use these rules to make decisions
for new cases. Machine learning tasks are divided into three
sections: classification, association, and clustering [15].

1.4. Web Application Firewalls. OWASP is a popular founda-
tion that works to improve the security of software through
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various projects and guides. [16] defined web applica-
tion firewall (WAF) as follows: “web application firewall
(WAF)” is an application firewall for HT'TP applications. It
applies a set of rules to an HTTP conversation. Generally,
these rules cover common attacks such as Cross-site Script-
ing (XSS) [17] and SQL Injection [18]. WAF exists between
the client and the server, it verifies received a request, and
depending on the classification results, WAF either forwards
the request to the webserver or drops it [19].

2. Related Works

We can categorize related works into three categories:

2.1. Modify HTTP Structure. These studies proposed a mod-
ified version of HTTP. HTTP 1.1 is used as the default
version in DASH. Alhamad and Kazi [20] proposed a light
HTTP version to produce smaller requests and responses.
This proposed version enhances QoE significantly and
decreases the delay between requests and responses. Modify-
ing the widely used protocol structure, HTTP requires mod-
ifying the current software and devices. It is an expensive
and impractical solution.

Wei et al. [21] proposed using HTTP 2.0 instead of
HTTP 1.1 to take advantage of HTTP 2.0 features, which
enhance QoE. This version of the protocol is unpopular as
most software and devices use HTTP 1.1.

2.2. Extend or Modification Architecture. These studies pro-
posed hardware extensions in the streaming architecture.
Qiao and He [22] proposed extending the streaming archi-
tecture with proactive precaching servers in base stations
to enhance QoE as the client can request cached segments
from these servers with the client handover from the base
station to another base station. On the other side, this
approach is costly as it requires the setup of a proactive
cache server at every single base station and the precaching
process needs effective management to avoid consuming
power and storage.

Bruneau-Queyreix et al. [23] proposed to assist in
responding to requested cached segments by providing adja-
cent base stations. This study inexpensively enhances pre-
caching as it does not require setting up any additional
server. However, it should face the challenge of consuming
resources in adjacent base stations.

Al-Habashna et al. [24] proposed to assist precaching in
the base station with the clients that centered the cluster
called storage members (SM). This study is more effective
in the cost term and decreased delay between requests and
responses but at the expense of storage members QoE, who
are also clients.

Qiao et al. [25] proposed a double-buffer system that
guarantees better QoE for clients on highway, a buffer sys-
tem applied at every base station and every vehicle (client
on the highway). This study suggests storing the content of
requested video segments in all base stations. Precaching in
this proposed model enhances QoE at the expense of
resources.
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FIGURE 1: Proposed framework architecture for mobile networks.
Input: web logs
Output: The quality predictor model

1 Start

2 Configure the web service to satisfy framework requirements

2-1 Configuration of storing additional details while logging requests

2-2 Configuration of removing redundant HTTP headers

2-3 Configuration of forcing add and checking security HTTP headers

3 Collecting web logs

4 Process the web logs to generate the dataset

5 Select the appropriate classifier for the Quality predictor model

6 Training generated dataset using the selected classifier

7 End

AvrGoriTHM 1: Quality predictor model implementation.

Host - - [Time] "HTTP_method domain/resource HTTP_version" Status_code
192.168.10.250 - - [07/Jul/2021:22:17:39 +0300] "GET /bbb_30fps 320x180 200k 0.m4v

HTTP/1.1" 200

Host - - [Time] "HTTP_method domain/resource?buffer_level=x HTTP_version"

Status code Response_size

192.168.10.250 - - [07/Jul/2021:22:17:39 +0300] "GET
/bbb 30fps 320x180 200k 0.m4v?bufferLevel=59.32 HTTP/1.1" 200 705

FIGURE 2: Default web service log and new log after configuring the web service with examples.



+ Response Headers

content-type: Text/html

date: Mon, 25 Apr 2822 29:32:84 GMT

server: Microsoft-HITPAPL/ 2. B

vary: Accept

+ Request Headers
imethod: GET
path: /

:scheme: https

International Journal of Digital Multimedia Broadcasting

accept: text/html,application/xhtml+xml,spplication/uml;q=0.9,image/avif,

image/webp, image/apng,*/*;q=9.8, application/signed-exchange;v=b3;g=9.9

accept-encoding: gzip, deflate, br

accept-language: en-US,en;g=8.9

cache-control: max-age=@

sec-ch-ua: " Not AjBrand”;v="99",
="184"

sec-ch-ua-mobile: 8

sec-ch-ua-platform: "Windows'

sec-fetch-mode: navigate
sec-fetch-site: none
sec-fetch-user: 1

upgrade-insecure-requests: 1

"Chromium" ;w="184",

"aoogle Chrome" ;v

user-agent: Mozilla/ 5.8 (Windows NT 18.8; Windd; wed) AppleWebiit/537.36

FIGURE 3: Request and response headers after requesting a segment and receiving it.

TaBLE 1: Features extracted from the log requests of the web
service.

Feature Type Description

Time  Input The current time (hour only, value range [0, 23]
Type Type Type

Size Input Response size

Buffer  Input The current buffer level of the client
Bitrate  Output The current bitrate of the client

(value range [1, 5]

2.3. Enhance Algorithms and Use Machine Learning. These
studies proposed dedicated algorithms to enhance QOE,
reduce delay, and decrease segment size in different man-
ners. Some of these studies use artificial intelligence tech-
niques, and others focus on enhancing the performance of
a dedicated component in the streaming architecture. These
studies contributed significantly to enhancing video stream-
ing services, but they need to be deployed in an integrated
framework to strengthen their contributions.

Claeys et al. [26] proposed using Q-Learning on the client-
side to enable clients to learn with tunable reward; this
approach will adapt streaming behavior dynamically depend-

ing on network conditions to maximize QoE.

TaBLE 2: Categorized bitrate levels.

Bitrate Level
25

1
50
76

2
101
125

3
188
313

4
495
991

5
1493

Hu and Cao [27] proposed an Energy-aware CPU Fre-
quency Scaling (EFS) algorithm that reduces the total
power consumed by the CPU. The low CPU frequency
reduces the CPU energy but increases the data transmis-
sion time and then increases the energy consumption
and vice versa. This algorithm achieved a balance between
CPU frequency and transmission time, but it did not con-
sider the performance in cases of high fluctuations in net-
work conditions.
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FIGURE 4: Dataset row after parsing the raw web service log request.

Polakovi¢ et al. [28] proposed a saliency-based extension
of the DASH video delivery system, and it is useful for
enhancing QoE in bad network conditions by preserving
more bits to the important part of the frame rather than
allocating bits to the whole frame.

Yousef et al. [29] used machine learning techniques with
streaming information (buffer level, bandwidth, previous
bandwidth, download time, and previous bitrate) to predict
the behavior of ABR algorithms. They conducted experi-
ments on six different ABR algorithms BBA, BOLA, CON-
VENTIONAL, PANDA, FESTIVE, and Robust MPC using
six different machine learning classifiers: Logistic Regression
(LGS), Support Vector Machine (SVM), Random Forest
(RF), DecisionTree (DT), Ada Boost (AdBst), Gradient
Boost (GrdBst), Naive Bayes (NB), and K-Nearest Neigh-
bours (KNN). Experiments show that both Random Forest
and Gradient Boosting achieved very high prediction accu-
racy among other used ML classifiers.

3. Proposed Framework

Our proposed framework consists of four major compo-
nents: quality prediction model, precache model, light web
application firewall, and a monitoring system. These compo-
nents work comprehensively to mitigate the impact of the
key challenges of DASH. We maintained the traditional
video streaming architecture without adding any costly
resources or modifying the process. Instead, only one server
was used for proactive prediction using machine learning
techniques in the streaming service data center. A quality
predictor model was deployed on this server to avoid con-
suming streaming service resources (see Figure 1).

3.1. Quality Prediction Model. This component achieves two
goals and predicts the next appropriate segment while the cli-
ent plays a video and assists the precache model to manage
the precaching process more effectively (see Algorithm 1).
In this section, we will discuss “configuring web service for
satistying framework requirements” and processing web ser-
vice logs to generate the dataset. The training model will be
discussed in Section 4. Configuring the web service includes
three basic steps to configure a video streaming server to
work with the proposed framework. Streaming service imple-
mented through web service (e.g., Apache or Nginx), web
service logs every single request arrived, and these logs are
used to generate a dataset that is used in the training quality
predictor model. Usually, the log requests of the web service

Input: HTTP request “r”
Output: HTTP response
1 Start
2 while WAF is “ON”
3 HTTP request “r" received
4 If “buffer_level” exists in the payload.
5 if “buffer_level” parameter value is an integer
6 if security headers exist
7 if IP is not on the blacklist
8 Pass request to streaming service
9 else
10 drop request and block the IP
11 endif
12 else
13 drop request and block the IP
14 endif
15 else
16 drop request and block the IP
17 endif
18 else
19 drop request and block the IP
20 endif
21 End

ALGorITHM 2: Light WAF methodology.

have a default format. The system administrator must cus-
tomize this format to fit the proposed solution. The default
format used in logging requests needs customization to have
additional features that will be included in the dataset (step
2-1 in Algorithm 1). Also, an additional configuration is
needed to remove redundant headers sent from the web
server to the client; this would help a lot in reducing
responses sent to the client. For protection, also web service
needs more configuration to force adding security HTTP
headers.

The default log record contains the following informa-
tion: host, time, HTTP method, requested resource (in video
streaming case, it is the requested segment), HTTP version,
and HTTP status code.

We customized the client player to send “buffer_level” in
every single request, which describes the current buffer level
in the client player, and the web service to store the response
size in logs in addition to the default information (see
Figure 2).
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FIGURE 5: Experiment environment architecture.

Application

C:\program files\google\chrome\application\chrome.exe

A Application properties

Google LLC (Full info: CN=Google LLC, O=Google LLC, L=Mountain View,

Name: Google Chrome
Product: Google Chrome
Version: 100.0.4896.127
Company: Google LLC
Tags: No tags Edit tags
Trusted: True
AuthCodelnfo:

S=California, C=US)
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Type In Out
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Quota Advanced Delete
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FIGURE 6: Net Limiter panel to control browser bandwidth.

Instead of making the client send the current bitrate, we
can extract it from the segment name requested by the client.
Finally, after the web service is configured, logs contain the
following information: host, time, HTTP method, requested
resource (in video streaming case it is the requested seg-
ment), current client buffer level, current client bitrate,
response size, HT'TP version, and HTTP status code. This
information will be used to generate the dataset.

The next step is to configure the web service to remove
redundant headers that will not affect the streaming service
and increase response size (step 2-2 in Algorithm 1). Addi-

tionally, the client player should reduce the request size. The
main goal of this step is to reduce request and response sizes
to contain only useful and needed information in streaming
services. Informational headers will not be sent to the client
as they consume the total size. The attackers take advantage
of these headers in the information-gathering phase [30],
e.g., the “Server” header and “Access-control-Allow-
Methods” header (see Figure 3; these headers are highlighted
in black border).

Finally, the web service and client player need to be con-
figured to force using security headers needed to increase the
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Initiate test_bandwidths = [10mbps, 2mbps, Imbps, 800kbps, 600kbps, 200kbps, 100kbps]

Input: HTTP requests by playing video many times
Output: Apache logs

1 Start

2 Initiate test_hours = [2, 6, 10, 14, 20, 23]

3

4 Initiate i =0

5 While loop_counter < length(test_hours)

6 set web server clock to test_hours[i]

7 set browser bandwidth to test_bandwidths][i]

8 Play video with dash.js

9 i=1+1

10 Endwhile

11 End

ALGORITHM 3: Generating dataset.

security level of the streaming service process and prevent
common attacks [31] (step 2-3 in Algorithm 1), eg.
“Content-Security-Policy,” “Strict-Transport-Security,” and
“Content-Security-Policy” headers [32].

After configuring the web service, the dataset can be
generated using web service logs. The dataset contains the
following information (see Table 1): buffer level, time
(extracted hour only from DateTime string), response size,
type of segment (video or audio), and bitrate (bitrate catego-
rized to simplify the problem) (see Table 2).

Every single raw request in a row will be converted to a
table row that contains five fields (4 input features and one
output class). The quality predictor model will get parsed
requests, extract features, and predict the appropriate bitrate
depending on inputs (see Figure 4).

We conducted the experiments on the generated dataset
with four fast and popular classifiers in real-time applications
(Linear SVC, KNeighbours, Naive Bayes, and DecisionTree)
[33], and we selected DecisionTree. This classifier achieved
the highest accuracy and has the best big O time complexity
(it will be discussed in detail in Section 5).

3.2. Precache Model. Precaching works before congestion
periods and depends on the results of the quality prediction
model. We proposed a mathematical coefficient to evaluate
the effectiveness of precaching based on the number of
requests received by the webserver and the number of
requests received by the cache server (see Equation (1)).

A new dataset of video streaming statistics can be used
with the quality predictor model and clustering algorithms
to precache effectively. The proposed mathematical coeffi-
cient called the “precaching effectiveness coeflicient” will
evaluate the model and help to enhance it.

Sr
E= = x100, 1
- (1)

E is the precaching effectiveness coefficient, sr are
requests received by web service, cr are requests arrived at
cache server, and tr are total requests received by video
streaming service.

TaBLE 3: Big O time complexity of classifiers.

Classifier Complexity
. O(p)
DecisionTree p: the number of features
O(nsv x p)

SVM (kernel) p: the number of features

nsv: the number of support vectors
O(nxp)

n: the number of training samples
p: the number of features
O(p)

p: the number of features

K-Nearest neighbours

Naive Bayes

Total requests received by the video streaming service
are calculated as follows:

tr=sr+cr. (2)

For example, if the total requests received by the system
are 1000 requests, the cache server responds to 430 requests
and forwards the rest to the streaming server. The precach-
ing effectiveness coefficient was calculated as follows:

sr = 1000 — 430 = 570, (3)
570

E=""" x100=57%. (4)
1000

3.3. The Light Web Application Firewall. It is a customized
web application firewall that configures its rules and behav-
ior to detect video streaming attacks by checking only the
necessary HTTP headers, instead of deploying a full web
application firewall. The main goal is to enhance perfor-
mance without affecting the security level.

As video streaming technologies use HTTP, they are
subject to web attacks, and it requires web security controls
to increase the security level and mitigate these attacks.

OWASP listed the top 10 attacks [34] for web applica-
tions and services in a project called “OWASP Top 10.”
The last release of this project was published in September
2021.
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FIGURE 7: Results of training of four classifiers with the generated dataset.

We prefer to deploy light WAF instances in cache
servers, as it is the first to face potential attackers. It receives
requests and either responds to the customer or forwards it
to the streaming server.

The proposed light WAF checks the existence of security
headers and check payloads; it must contain only the
“buffer_level” parameter as an integer value. It will drop
any request unformed in this pattern and block the user
immediately (see Algorithm 2).

3.4. Monitoring System. The monitoring system is a web
application that helps technical administrators monitor the
entire streaming process. This web application is connected
to a database to retrieve all needed information.

4. Experiments

This section discusses the technical environment of the
streaming server and the client player to generate a dataset
by playing a video: parsing the web logs to generate the
dataset, select a classifier, and train.

4.1. Technical Environment. We built a local web environ-
ment to generate the web logs by playing video many times
at different hours of the day to fill webserver logs and gener-
ate enough rows to get a dataset.

The technical environment consists of the following
components: a webserver (Apache 2.4), web client (Dash.js),
Google Chrome browser, Net Limiter application to control
browser bandwidth, and Python to write necessary scripts
(see Figure 5).

The webserver configured to store requests in logs; as
mentioned in Section 2.1, we modified the dash.js to send
“buffer_level.” We deployed a segmented “Big Buck Bunny”
[35] video on the webserver with different bitrates.

4.2. Generating the Dataset. The client (dash.js) should
request video many times in different hours of the day (by
modifying webserver hour) with different network condi-
tions (network conditions simulated by set bandwidth Net
Limiter; see Figure 6) to fill the webserver logs (see Algo-

TasLE 4: Classification precision of DecisionTree for bitrate classes.

Precision Bitrate class
100% 1
99% 2
92% 3
76% 4
93% 5

rithm 3). Then, a python script will parse these logs and con-
vert them to a CSV file that contains five columns (four
input features and one output class).

This algorithm generates about 2000 HTTP requests in
the webserver logs, hours, and bandwidth which are set
depending on a private ISP database that holds detailed ses-
sions for 10,000 clients between 2015 and 2018.

4.3. Selecting Classifier and Training. We trained the
generated dataset with four classifiers (Linear SVC, KNeigh-
bours, Naive Bayes, and DecisionTree). Previous classifiers
are popular in real-time applications. Depending on the
training results, we selected DecisionTree to be used in
deployed quality predict model (it will be discussed in detail
in Section 5).

5. Results and Discussion

This section discusses the results of the experiments, the lim-
itations of related works and how the proposed framework
addresses these limitations, and the future works.

5.1. Experiment Evaluation. The generated dataset was tested
with four classifiers: Naive Bayes, KNeighbours, Linear SVC,
and DecisionTree.

Evaluation keys for selecting one classifier from these
four classifiers are classification accuracy, big O time com-
plexity in training, testing, and execution (when the classifier
is deployed to work in a real environment), and efficiency in
real-time applications.
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F1cure 8: Comparison of the six datasets training results using KNN in the study [29] and our generated dataset training results using KNN.

TaBLE 5: Limitations of related work approaches and how the proposed framework addressed it.

Related works approach

Contribution and limitation

Proposed framework approach

+ Reduce requests and response size

Modifying HTTP version

- Modifying HTTP requires modifying all
applications and devices, and it is not a

+ Removing redundant headers

practical solution as HTTP is widely spread

Extending or modifying the architecture

+ Enhance QoE
- Consuming power and costly

+ Precache model

+ Enhance QoE

Enhance algorithms and use
machine learning

+ Preserve resources
- Used to predict segments from the client side

+ Used in prediction and
precaching models

- Not deployed in an integrated framework

All previous classifiers are popular in real-time applica-
tions; the differences exist in big O time complexity [36]
(see Table 3) and classification accuracy (see Figure 7).

Depending on the results, we choose DecisionTree as
it achieved the highest classification accuracy rate (see
Table 4) and the lowest Big O time complexity and is
efficient with real-time applications.

5.2. Benchmarking with the Related Work. Most of the dis-
cussed related work in Section 2 proposed a modification to
the structure itself. We can compare the prediction model
with the proposed approach by Yousef et al. [29], who trained
six datasets using different classifiers. Figure 8 describes a
comparison of the six datasets training results using KNN
in the study [29] and our generated dataset training results
using KNN. We chose KNN in this comparison depending
on the classifier selection results of Section 5.1.

5.3. Limitation of Related Work and Contributions of the
Proposed Framework. Related studies focused on partially
enhancing instead of proposing a comprehensive framework
to address all key challenges of video streaming technologies.
This section briefly discusses the main approaches that
researchers have used to improve video streaming tech-

niques, their effects, and how we have overcome them in
the proposed framework (see Table 5).

5.4. Future Work

(i) Propose additional features for the quality predictor
model

(ii) Use a new dataset (generated or from ISPs) for the
quality predictor model

(iii) Build a clustering model for the precaching model

(iv) Study video streaming attacks to extend and
enhance the proposed light WAF

(v) Use saliency detection in a saliency-based extension.
We recommend the deep learning approach pro-
posed by Wang et al. [37].

(vi) Extend the framework with new components

6. Conclusion

In this paper, we proposed an integrated framework for
video streaming over HTTP; this framework handles major
issues in this technology (security, caching, and quality of
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service). We described the entire framework, focused on
detailing the first component, and proposed bold lines for
other components. This framework consists of four compo-
nents: quality prediction model, precache model, light web
application firewall, and a monitoring system. These four
components improve QoE and precache and increase the
level of security.

The streaming service architecture is not costly—only
one server with a streaming server—and the configuration
is simple enough for client player and server side. The
quality predictor model extracts features from the web ser-
vice log to predict appropriate streaming quality depending
on client network conditions; these features are buffer level,
time, response size, type of segment, and bitrate. This model
achieved 97% classification accuracy using DecisionTree
with the generated dataset. The results of this component
were used in the precache model to assist precaching, and
we proposed a mathematical coeflicient to evaluate the pre-
cache model. A light WAF is proposed to protect streaming
services with custom and effective rules—checking the exis-
tence of certain headers and payloads—instead of imple-
menting a full and heavy WAF. Additionally, a monitoring
component contains a web application to monitor the entire
process.

Data Availability

The generated dataset with Python scripts will be available in
the following repository: https://github.com/aref2008/dash_
framework.
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