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Nowadays, the strong development of the economy and society has driven the increase in traffic participation, making traffic
management increasingly difficult. To effectively address this issue, AI applications are being applied to improve urban traffic
management and operations. Therefore, we propose a smart system to detect and monitor vehicles across multiple surveillance
cameras. Our system leverages data collected from traffic surveillance cameras and harnesses the power of deep learning
technology to detect and track vehicles smoothly. To achieve this, we use the YOLO model for detection in conjunction with
the DeepSORT algorithm for precise vehicle tracking on each camera. Furthermore, our system uses a ResNet backbone model
for feature extraction of objects within each camera’s frame. It utilizes cosine distance to identify similar objects in other
cameras, facilitating multicamera tracking. To ensure optimal performance, our system is implemented using the NVIDIA
DeepStream SDK, enabling it to achieve an impressive speed of 21 fps on each camera and an average of precision
approximately 85% for three modules. The results of our study affirm the system’s suitability and its potential for practical
applications in the field of urban traffic management.
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1. Introduction

Multiobject multicamera tracking (MOMCT) is aimed at
predicting the trajectories of all objects across multiple cam-
eras. This means that when an object appears on multiple
cameras, the system can recognize it as the same object
and assign a unique ID to it throughout the entire system.
The MOMCT system has numerous applications such as
human surveillance, retail analysis, and intelligent traffic
monitoring. In addition, the installation of multiple cameras
on roads, intersections, toll stations, and traffic vehicles is
becoming more popular with the development of informa-
tion and communication technologies, so it has become nec-
essary to automate the MOMCT system. In this article, we
present a proposed system for vehicle tracking in a large city.
This is a big challenge because the system does not have
overlapping areas for each camera and is not diverse enough

to handle illumination conditions and adverse weather. Fur-
thermore, traffic in large cities like Hanoi or Ho Chi Minh
City in Vietnam is dense, with vehicles moving chaotically
as shown in Figure 1.

Current approaches commonly decompose the problem
into distinct subtasks, including object detection, single-
camera multiobject tracking, and cross-camera object associ-
ation. Nevertheless, these methods still cannot be applied to
real-world camera network systems due to slow processing
speeds and hardware limitations. As illustrated in Figure 2,
our proposed system shares similarities with the pipeline.
However, we will leverage several algorithms and optimiza-
tions to reduce computational costs and enhance hardware
acceleration. Firstly, we employ YOLO for real-time vehicle
detection. Next, we utilize the DeepSORT algorithm for
tracking vehicles within each individual camera. Subse-
quently, we use ResNet to extract appearance features of the
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vehicles. Finally, we link objects and their trajectories across
cameras using cosine similarity of feature embeddings.

Furthermore, we will present the data we utilized and the
results of testing and evaluating the performance of the pro-
posed MOMCT system in the context of real-world traffic
scenarios. Our objective is to demonstrate that the proposed
MOMCT system is a robust solution capable of practical
deployment on a large scale in complex urban traffic envi-
ronments. The key contributions of this paper are as follows:

• Constructing a dataset tailored to urban traffic in
Vietnam

• Selecting deep learning models to detect objects and
extract features of vehicles

• Deploying an algorithm to link objects using the
extracted features and compare similarity based on
cosine similarity

• Building and deploying the system written in C++ and
optimized for speed using NVIDIA hardware to sup-
port multicamera CCTV setups

The rest of the paper includes four parts and is organized
as follows. Section 1 introduces the related systems. In Sec-
tion 2, we present related work. In Section 3, we present
the proposal system. In Section 4, the proposed system is
evaluated and the results are analyzed. In the final section,
we give conclusions and future research directions.

2. Related Work

Vehicle tracking is an important task for various applica-
tions, such as traffic monitoring, urban management, secu-
rity, and autonomous driving [2–9]. One of the single-
camera methods for vehicle detection in urban traffic sur-
veillance images is proposed by Zhang, Li, and Yang [2].
The method uses convolutional neural networks with feature
concatenation to extract robust features from the images and
classify them into vehicle or nonvehicle categories. The
method achieved high precision and recall rates on the
PKU-VD dataset. Another single-camera method for vehicle
tracking is proposed by Nguyen, Thi, and Quynh [3]. The
method uses YOLO to detect the lanes and obstacles on

the road and a PID controller to adjust the steering angle
and speed of the self-driving car. The method also uses a
camera mounted on the car to capture the surrounding envi-
ronment and send the data to a cloud server for processing.
The method achieved high accuracy and stability on the
UCF dataset.

One of the multicamera methods for vehicle tracking is
proposed by Li et al. [4]. The method uses mask R-CNN
for object detection and transfer learning for reidentification
(Re-ID). The method also uses a graph-based optimization
algorithm to associate the vehicle trajectories across different
cameras. The method achieved the best performance on the
AI City Challenge 2022 dataset. Another multicamera
method for vehicle tracking is proposed by Nguyen et al.
[5]. The method uses a deep neural network to extract fea-
tures from the vehicle images and a k-nearest neighbor algo-
rithm to match them across different cameras. The method
also uses a shortest path algorithm to recommend the opti-
mal route for the vehicles based on the traffic conditions.
The method achieved good results on the HCMC dataset.

Some recent works on vehicle tracking are proposed in
[6–8]. The former method uses YOLOv4 for object detection
and an improved DeepSORT algorithm for object tracking.
The method also uses a Kalman filter and a cosine metric
to estimate the state and the appearance of the vehicles.
The method achieved high precision and recall rates on the
MOT16 dataset. The latter method uses YOLOv3 for object
detection and classification and a convolutional neural net-
work for license plate recognition. The method also uses a
database to store and retrieve the vehicle information and
a payment system to charge the toll fee. The method
achieved high accuracy and efficiency on the Indian toll
plaza dataset [8]. A different approach by Song et al. [9] pro-
posed a transformer-based camera link model with spatial
and temporal filtering to conduct cross-camera tracking.
The model leveraged appropriate loss functions and distance
measures to handle occlusion, illumination, and shadow
challenges. The model showed the effectiveness on the NVI-
DIA Cityflow V2 dataset. However, the model required a
large amount of training data and computational resources,
which might limit its applicability in real-world scenarios.

Another work [10] proposed a deep learning–based
framework for MOMCT that utilized mask R-CNN for
object detection and transfer learning for Re-ID. This paper
proposes a novel framework for MTMCT of vehicles that
does not depend on any camera configuration or synchroni-
zation. The framework consists of two main components:
metadata-aided Re-ID (MA-ReID) and trajectory-based
camera link model (TCLM). MA-ReID is a method that
combines metadata features (such as color, type, and license
plate) and image features (extracted by a deep neural net-
work) to reidentify vehicles across different cameras. TCLM
is a method that uses the entry and exit information of vehi-
cles to automatically construct a camera link model that cap-
tures the spatial and temporal relations among the cameras.
By using TCLM, the framework can reduce the candidate
search space for MA-ReID and improve the efficiency and
accuracy of MTMCT. The framework achieved an IDF1
score of 76.77% on the CityFlow dataset, which outperforms

Figure 1: Illustrating image of urban traffic in Vietnam [1].
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the state-of-the-art MTMCT methods. However, it is worth
noting that the use of TCLM requires knowledge of the
entry/exit information of each object, making the method
unsuitable for real-time applications.

However, vehicle tracking in urban environments poses
many challenges, such as occlusion, illumination changes,
camera motion, and scale variation [11–13]. Moreover, most
existing methods for vehicle tracking are based on either
single-camera or multicamera settings, which have their
own limitations. Single-camera methods can only track vehi-
cles within a limited field of view, while multicamera
methods require complex camera calibration and synchroni-
zation. In addition, the development of algorithms for track-
ing multiple objects using cameras is being widely used in
aquaculture [11, 12, 14]. In these documents, they use many
cameras to monitor the bottom in shrimp farming to detect
abnormalities and warn farmers. This is also a new research
direction that we are implementing [13, 15, 16]. In the
paper, we build an algorithm to predict water parameters
using the long short-term memory (LSTM) model. We hope
to develop these algorithms not only for smart transporta-
tion but also for other smart underwater monitoring systems
such as smart shrimp ponds or smart homes. Another
research direction is object identification based on 2D and
3D models. This is also a new approach that we are inter-
ested in [17–19].

To overcome these challenges, some recent works have
proposed to use deep learning techniques for vehicle detec-
tion and tracking in urban environments. For example, the
paper [20] by Pham et al. uses a four-step process: image
preprocessing, vehicle detection, vehicle segmentation, and
vehicle classification. The method uses a sliding window
technique with a Haar-like feature extractor and an Ada-
Boost classifier for vehicle detection, a watershed algorithm
for vehicle segmentation, and a support vector machine
(SVM) classifier with geometric and color features for vehi-
cle classification. The method achieved high accuracy in
detecting and classifying vehicles in urban scenes in Viet-

nam. However, this method did not address the problem
of vehicle tracking across multiple cameras, nor did it con-
sider the temporal information of the vehicles. Moreover,
this method used a relatively simple feature extractor and
classifier, which might not be able to handle complex and
diverse vehicles in urban environments.

In contrast to these works, our paper proposes a smart
system for detecting and monitoring vehicles using
MOMCT that does not rely on any camera calibration or
synchronization. Our system leverages the power of deep
learning technology and state-of-the-art algorithms to
detect, track, and reidentify vehicles across multiple cameras
in real time. Our system can handle dynamic camera
changes, occlusion, illumination variation, scale variation,
and other challenges in urban environments. Our system
also outperforms the state-of-the-art methods on several
benchmark datasets in terms of accuracy, efficiency, and
robustness. We will describe our system in detail in the next
section.

3. Proposal System

In this section, we mainly offer implementation solutions,
designed to optimize the accuracy and speed of the system.
An evaluation of the proposed method and the existing
method is carried out from the results received. The purpose
of the system is to track objects through various cameras.
The system can detect the same vehicle and assign an ID
(global ID) to it for an object appearing at the same time
at many different cameras. Firstly, it is necessary to clearly
define the objects that the system is targeting. It then pro-
vides suitable handling solutions for the objects.

The object of the system is the area of the traffic route
with many surveillance cameras mounted at different cor-
ners. The integrated system will provide a multicamera
monitoring solution for the route through which to know
where the vehicles are going and their location.
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Figure 2: The block diagram of the proposed system.
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Based on the actual requirements and context, the sys-
tem has the following main functions:

• Detecting and classifying vehicles in traffic

• Vehicle tracking on each camera

• Multicamera vehicle tracking

3.1. System Overview. In this section, we propose the block
diagram of the system as follows.

Figure 2 shows a brief description of the multicamera
vehicle monitoring system, in detail:

• Input: The input to the system is a video stream
streamed directly from the surveillance camera sys-
tems via the Real-Time Streaming Protocol (RTSP).

• Vehicle detection: The system will detect and classify
the vehicles on the road using the YOLOv5 model
from the input images.

• Vehicle tracking: Detected vehicles will use the Deep-
SORT algorithm to track each camera.

• Feature extraction and Re-ID: Each vehicle after hav-
ing its ID on each camera (local ID) will go through
the ResNet backbone to extract features. The Re-ID
of each vehicle will then be performed based on
the similarity cosine distance between the two fea-
ture vectors. If two vehicles have similar feature vec-
tors, they will have the same ID on all cameras
(global ID).

• Output: The system will display the location of all
vehicles and localize them. The vehicles with the same
global ID will have the same bounding box.

3.2. System Pipeline in DeepStream. In Figure 2, the system
used a pipeline to run with the NVIDIA DeepStream engine.
The blue elements are built by ourselves because these func-
tions are not yet supported by NVIDIA DeepStream. The
remaining green and pink are available elements of NVIDIA
DeepStream. The pipeline of the system includes the follow-
ing elements as follows:

• uridecodebin: used to decode video streams from dif-
ferent sources, such as video files, RTSP, or Hypertext
Transfer Protocol (HTTP) input. When used in Deep-
Stream, uridecodebin is used to take video data and
convert them into DeepStream-compatible frames.

• nvstreammux: used to combine multiple videos into a
single stream to process them simultaneously. It allows
DeepStream applications to process multiple video
streams at the same time, significantly reducing the
hardware resources required for multistream processing

• nvinfer YOLOv5: used to perform processing on video
and image data. This plugin provides the ability to
integrate AI and deep learning machine models for
object detection, classification, and behavior detection.
In the object detection module, we use the YOLOv5

model. The output will be information about the posi-
tion, size of bounding boxes, labels, and confidence.

• nvtracker DeepSORT: used to track objects in real-time
video. This plugin offers a variety of different algorithms,
including person-based and audience-based tracking.

• nvinfer extract feature: used to perform feature extrac-
tion model inference of each pretrained vehicle. The
output will be the feature vector of the means.

• matchingfeature: used to match feature vectors, manag-
ing matched vehicles. The output will be the global ID of
the vehicles. With this plugin that we have developed,
we extract feature information from the metadata of
NVIDIA DeepStream for detected objects. Subse-
quently, these extracted features of objects are compared
to one another, and a global ID is assigned across the
entire camera system if they match. Further details
regarding the algorithm are presented in Figure 3.

• nvmultistreamtiler: used to split and display video
streams on the screen or record them. This element
provides the ability to display multiple video streams
at the same time on the same screen, making it easy
for users to observe and monitor them.

• nvvideoconvert: used to convert video formats between
different types. This element provides the ability to
convert popular video formats such as H.264, H.265,
and MPEG-4 into other formats such as NV12, RGBA,
or BGR.

• bboxcolor: used to generate random colors for bounding
boxes and manage the colors until the object disappears
from the frame.We built this element to be able to color
the bounding boxes of matching cars the same color.
With this plugin, we have designed it to support visual-
ization. For vehicles with different IDs, the plugin gener-
ates a random color for the bounding box border. For
vehicles with global IDs, the plugin generates a random
color for the background of the bounding box. This
enables supervisors or administrators to easily track tra-
jectories and identify similar vehicles across the surveil-
lance camera system. The visualization results of this
plugin are presented in Figures 4 and 5.

• fpstracker: used to calculate the processing speed per
thread. The unit of measurement is frames per second
(FPS). With this plugin, supervisors can monitor the
processing speed of each camera stream. It aids man-
agers in gaining insight into the current state of the
AI traffic surveillance system and any issues that may
arise with the cameras.

• nvdosd: used to display overlay information on the
video. This element provides the ability to add infor-
mation such as name, address, time, and location
information to the video to help users easily track
and identify objects.
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• nvvideo-render: used to display processed video streams
to the screen. This element provides the ability to dis-
play video streams with high resolution and fast frame
rate, making it easy for users to monitor and view
processed video streams.

3.3. Media Detection Module Analysis. In this section, the
objective is detected and classified for vehicles. We use the
YOLOv5 model to detect vehicles. The output of this module
will be the parameters of the location, type, and predicted
probability of each vehicle.

We have built a dataset of urban means of transport that
is suitable for the characteristics of Vietnam, where the traf-
fic density is very high and does not follow a certain direc-
tion. The dataset is collected on urban roads with a top-
down view. The device used in the data collection process
is an iPhone 7 with a 12MP camera. The image of the dataset
is extracted from the video recorded with full HD resolution
as 1920 × 1080 pixels at a frame rate of 30 fps as shown in
Figure 6.

We conduct data preprocessing according to the follow-
ing steps after collecting data. We split the video into frames
and then take one image for 10 fps. We then label the col-
lected images with the LabelImg tool [21].

Figure 7 shows a high traffic density, which is typical of
urban traffic in Vietnam. Vehicles stop at red lights and
overlap each other.

Figure 4: Result of the system with two video streams of urban
traffic in Vietnam.
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Figure 3: Flowchart of matching and managing the track algorithm.

5International Journal of Digital Multimedia Broadcasting



Figure 6: Illustrating several collected data samples.

Figure 7: Data after being labeled.

Figure 5: Result of the system with five video streams with the AI City Challenge dataset.

6 International Journal of Digital Multimedia Broadcasting



When we have the labeled data, we proceed to divide the
training data by the ratio (83:17). Eighty-three percent of
images of the dataset are used for training, and the remain-
ing 17% are used as a validation dataset. The number of
images is shown in Table 1.

Details of the dataset and the several results applied to
the object detection problem have also been presented in
our paper [22].

During the evaluation of the trained vehicle detection
model, we constructed a dedicated test dataset. This dataset
comprises 3000 images captured from two distinct traffic
routes in Hanoi, using the same equipment but on different
roadways compared to the training data. The purpose of this
test dataset is to provide an objective assessment of the accu-
racy of the trained model.

3.4. Solution Analysis and Design. We deploy the algorithm
diagram for the object detection module after preparing
the data as shown in Figure 8.

In Figure 8, the media detection algorithm flowchart has
the following main steps:

• Resizing image: The size of the input is converted to
a model-appropriate size. This has the effect of
reducing the resolution of the input image making
the calculation faster and increasing the performance
of the model. In addition, resizing the image also
helps to ensure that the objects are relatively the
same size and not too large, thereby minimizing
inaccurate prediction errors. However, if the image
is resized too much, then small details can be lost
leading to information loss and affecting the predic-
tive ability of the model. Therefore, image resizing
needs to be done carefully to ensure that its informa-
tion is not lost too much and the accuracy of the
model is preserved.

• Processing: At this step, the model computes and infers
on the input. The input image will be predicted by the
model of the vehicles and return information such as
coordinates, size, vehicle type, and reliability.

• Removing redundancy: After having the prediction
information of the model, we need to process to
remove incorrect and duplicate predictions to get reli-
able objects. These objects will be returned as bound-
ing boxes and corresponding labels.

• Assigning metadata: After obtaining the coordinates
and dimensions of the bounding box, the type, and
the reliability of the vehicles, proceed to assign the data
of each vehicle to the metadata of the frame. This
makes it easy to retrieve vehicle data for the following
system modules.

3.5. Module Analysis by Vehicle. In this section, we use the
DeepSORT algorithm to track traffic on each camera. The
goal is to help the system track each vehicle on each camera.
Its output is the track list of the means of transport.

After having information about each vehicle in each
camera, we proceed to build a solution for the object track-
ing module.

In Figure 9, the main steps of the object tracking module
on each camera are presented, including three steps as
follows:

• Getting information from metadata: To be able to
perform object tracking on each camera, the first
thing is to get information about the object. This
step will take the vehicle information such as coordi-
nates and bounding box size, vehicle type, and con-
fidence level to perform the next step of the
module. This information is stored from the previ-
ous module of the system in metadata. We just need
to access the frame metadata and retrieve each object
metadata of the system.

• DeepSORT: In this step, after having enough informa-
tion about the object, the DeepSORT algorithm will
take steps to determine the ID object on each camera
(local ID). More detail of DeepSORT has been pre-
sented in [23–27]. Each vehicle will have an ID on
one camera after this step.

• Assigning metadata: After having the ID of each vehi-
cle on each camera, this step will assign information
about the ID object to the object_id field of each meta-
data object in the metadata frame.

3.6. Analysis of Feature Extraction Module and Re-ID

3.6.1. Data Collection and Preprocessing. In this module, we
use the ResNet model to extract the features of the vehicles.
Therefore, it is necessary to prepare a Re-ID dataset for vehi-
cles. We decided to use the VeRi-776 dataset [28] to train the
ResNet model for the vehicle Re-ID problem.

The VeRi-776 dataset was collected in urban traffic areas,
with different vehicle rotation angles as shown in Figure 10.
The dataset includes the following:

• More than 50,000 images of 776 vehicles were taken by
20 cameras covering an area of 1.0 km2 over 24 h,
which makes the dataset possible for the generalizabil-
ity of vehicle Re-ID.

• The images are captured in a real-world unconstrained
surveillance scene and labeled with different attributes,
e.g., Bboxes, type, color, and brand.

• Each vehicle is captured by two to eight cameras with
different angles, lights, and resolutions, bringing reality
to the Re-ID vehicle problem.

Table 1: Data of training and validation for the model.

Dataset Number of images

Train dataset 36,429

Valid dataset 7285

Total 43,715
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Vehicle Re-ID is the problem of identifying and refind-
ing a car in a dataset. Images are collected from many differ-
ent cameras as shown in Figure 11. In the Re-ID problem,
the data is divided into three datasets, namely, train, query,
and gallery.

• Train dataset: It contains car images labeled with their
unique identifiers. This volume includes images con-
taining information about the vehicle taken from differ-
ent cameras. The goal is to train the recognition model.

• Query dataset: The query dataset contains the car
images used for finding the images in the gallery that
has a similar car. This dataset is intended to be used
to evaluate the model during training.

• Gallery dataset: It contains car images for the model to
search. This dataset is intended to be used to evaluate
the model during training.

3.6.2. Solution Analysis and Design. In Figure 12, the algo-
rithm for the feature extraction module and Re-ID includes
the following steps:

• Getting information from metadata: Similar to the pre-
vious module, to be able to perform the next steps, it is
necessary to access metadata and retrieve the informa-
tion of each object to be able to get enough information.

• Feature extraction: In this step, the means will be cut
from the image after having information about the
coordinates and sizes of the means in the image. It
then will go through the ResNet backbone that has
been trained previously for the Re-ID problem. Finally,
the output will be a feature vector after calculating and
inferring through ResNet.

• Global track management: After having obtained the
feature vectors of each vehicle, this step will calculate

Figure 10: Illustration of the images of the VeRi dataset [29].

Figure 11: Images of a vehicle captured by six cameras in VeRi-776
[29].

Start

Input image Pre-processing Inference Non-maximum
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Finish

Figure 8: Flowchart of the vehicle detection algorithm.
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Figure 9: Flowchart of the object tracking algorithm on each camera.
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the similarity comparison between the feature vectors
of the vehicles. It then will manage and store the infor-
mation of the tracks such as the ID of the camera,
object, and global into tables in metadata. This step
output will be the global ID of each vehicle. This will
be the ID object on all cameras.

• Assigning metadata: In this step, it is necessary to
attach the global ID of each object to the metadata
because the blocks behind can retrieve and plot it on
the final output image of the system.

3.6.3. Designing Feature Extraction Module. One of the
most used models in feature extraction and Re-ID prob-

lems is ResNet. ResNet can learn image features through
the construction of residual classes, making it easier to
train the model.

The feature extraction process is performed by the
ResNet model trained for the Re-ID problem on the
VeRi-776 dataset for vehicles as shown in Figure 13. After
obtaining the features of the vehicle, we compare the sim-
ilarity between the extracted feature vectors to search for
vehicles from different cameras. In this feature extraction
block, we decided to use the CNN backbone which is
ResNet to extract the features of the vehicles into vectors
of size 1 × 512. We then train the model on the VeRi-
776 dataset. In the training process, we use the loss func-
tion centroid triplet loss (CTL) [30] to calculate the error

Start

Finish

Get bbox from
metadata Feature extraction Manage global

track Attach metadata

Figure 12: Flowchart of feature extraction and Re-ID modules.
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Figure 13: Using the ResNet34 model to extract vehicle features.
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in the learning process. We train the Re-ID model with
vehicles to solve the problem. When taking out the ResNet
backbone in the Re-ID model for feature extraction, the
image of the same vehicle is taken from many different
angles and the feature vectors have the smallest similarity
distance.

3.6.4. Designing Global Track Management Block. In this
block, the extracted features will be processed and managed
in the tables in the metadata of the system pipeline. The
tables that store the characteristics and IDs of each vehicle
are shown in Figure 14.

In Figure 14, three tables are used to manage the tracks
and characteristics of the vehicles during the Re-ID for the
vehicle. The tasks of the tables shown in Figure 14 are as
follows:

• object_feature_table: It stores the vehicle’s feature vec-
tors and tracks during distance comparison. This table
will contain information as source_id (ID of the cam-
era containing the media image), object_id (local ID
of the object on each camera), feature_state (status
of media in the table: CONFIRMED: matched one
vehicle in another camera, UNCONFIRM: newly
added to the table, and DELETE: media needs to be
removed from the table), unconfirm_count (frame
number consecutive object in an UNCONFIRM state),
feature (object feature vector), and global_id (global
ID of the vehicle on all cameras).

• batch_object_global_id_state_table: It stores the appear-
ance information of vehicles in a batch based on their
global_id. At the end of each pipeline loop, this table
will be dropped to store the information in the next
new batch. This table will have two fields of informa-
tion: global_id (global ID of the vehicle on all cameras)
and global_id_state (the status of one vehicle appear-
ing on all cameras based on global_id—APPEAR: one
or more tracks with the same global_id appear in the
batch and DISAPPEAR: in the whole batch, no track
with the global_id appears).

• object_global_id_disapear_count_table: It plays the role
of storing consecutive frame number information,
and the track disappears from all cameras. This table

will contain information such as global_id (global ID
of the vehicle on the whole camera) and disappear_
count (the number of consecutive frames global_id
disappeared from all cameras in the system).

In Figure 3, a flowchart of the algorithm compares the
feature vectors and manages the tracks in the tables. In this
process, the similarity cosine distance is used to determine
the distance between two feature vectors of two means from
two different sources. The formula to calculate the similar-
ity cosine distance of two vectors A and B is

cos θ =
A × B
A × B

=
∑n

i=1AiBi

∑n
i=1A

2
i ∑n

i=1B
2
i

1

After getting the distance of one vehicle under consid-
eration (src_object in src_camera) to vehicles in other
cameras (dst_object in dst_camera), sort the distance by
each dst_camera by value from high to low. Then, select
the largest distance (Top 1) in each dst_camera and com-
pare this distance with the distance threshold value (dis-
tance_threshold). If the distance threshold is greater than
the threshold value, the two tracks match and will have
the same global_id of the track with the smaller global_
id. Otherwise, for two tracks that do not match, increase
the unconfirm_count counter by one value. If the uncon-
firm_count value is greater than the unconfirm_count_
threshold threshold value, delete the track from both
tables.

4. Simulation and Result

4.1. Evaluation Parameters

4.1.1. Mean Average Precision (MAP). MAP is a measure of
model quality in the object detection problem. It is used to
measure the accuracy of the objects detected by the model
and calculate the average of this accuracy over the entire
dataset.

MAP is calculated based on the precision and recall
values of the model on each feature class. Precision measures
the ratio of the number of correctly detected objects (TP) to
the total number of detected objects, while recall measures

Object_feature_table
Source_id
Object_id
Feature_state
Unconfirm_count
Feature
Global_id

Global-id
Batch_object_global_id_state_table

Object_global_id_disappear_count_table

Global_id_state

Global_id
Disappear_count

Figure 14: Tables for managing track information and features.
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the ratio of the number of correctly detected objects to the
total number of detected objects:

Precision =
TP

TP + FP
2

Recall =
TP

TP + FN
3

To calculate MAP, we must first calculate the precision
and recall values for each feature class and the area under
the precision–recall curve for each layer as

MAP =〠
n

Rn − Rn−1 × Pn 4

where Rn and Pn are the recall and precision values at the
point of order n on the PR curve, respectively. The first point
on the PR curve is (0,1), and the last point is (1,0).

Finally, we calculate the average of overall feature classes
to get the mapped value as

MAP =
1
N
〠
N

i=1
APi 5

A good object detail model will have a high MAP value.
It is capable of detecting the right objects that do not cause
too many errors.

4.1.2. Multiple Object Tracking Precision (MOTP) and
Multiple Object Tracking Accuracy (MOTA) mbox. MOTP
and MOTA are two common parameters used to evaluate
the performance of multiobject monitoring models.

MOTP is used to assess the accuracy of the location pre-
dictions of the objects monitored compared to their actual
locations. The MOTP formula is calculated by calculating
the average Euclidean distance between the location predic-
tions of the monitored objects and their actual locations. The
formula is shown as follows:

MOTP =
1
N
〠
N

i=1
Ti × 〠

Ti

j=1
dij 6

where N is the number of objects monitored during the
evaluation process, Ti is the number of frames during the

monitoring process of the object i, and dij is the Euclidean
distance between the prediction and the actual location of
the object i in the j frame.

We see that the higher the MOTP value, the better the
quality of the object monitoring system.

MOTA is used to assess the total number of wrong pre-
dictions of the system compared to the actual objects. It is
calculated by subtracting the percentage of the wrong num-
ber of predictions (FP) and the number of subjects lost mon-
itoring from the total number of actual objects. The formula
is shown as follows:

MOTA = 1 −
∑N

i=1 FPi +Missedi
∑N

i=1GTi

7

where N is the number of subjects monitored during the
evaluation process, FPi is the wrong number of objects i,
Missedi is the number of subjects i lost monitoring, and G
Ti is the actual number of objects. The closer the MOTA
value to 1, the better the quality of the object monitoring
system.

4.1.3. Rank-1 mbox. Rank-1 is the index of the accuracy
model, showing the number of times the most accurate
image in the dataset is given compared to the total number
of tested cases.

Rank-1 is calculated as follows:

Rank‐1 = TruePredict
TruePredict + FalsePredict

8

where TruePredict is the number of times that the only
correct image prediction of the model is made and
FalsePredict is the number of times that the wrong predic-
tion is made.

For example, if a Re-ID model is tested on 1000
images and the model only gives the most accurate results

Table 4: Model training results of detected vehicles.

Model MAP@0.5 Precision Recall

YOLOv5s 92.56% 94.21% 80.34%

YOLOv5n 91.84% 92.37% 76.64%

Table 3: Laptop hardware configuration and embedded computer for performing the system.

Device CPU GPU RAM

Lenovo Legion 5 15ARH05H
AMD Ryzen™ 7-4800H
(2.90–4.20GHz, 8MB)

NVIDIA GeForce GTX 1660 Ti
6GB GDDR6

16GB DDR4

NVIDIA® Jetson AGX Xavier™
8-core NVIDIA Carmel Armv8.2 64-bit

CPU 8MB L2+4MB L3
512-core Volta GPU with

Tensor Cores
16GB 256-bit LPDDR4x

137GB/s

Table 2: Model training hardware configuration.

CPU GPU RAM

Intel Xeon Silver 4216 @2.1GHZ 16 cores 32 threads NVIDIA Quadro RTX 5000 VRAM 16GB 125GB
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in 800 cases, then rank-1 of this model will be rank‐1 =
800/1000 = 0 8.

4.2. Training Hardware Configuration. Table 2 is the config-
uration of the model training server used in the paper.

Table 3 is the configuration of two devices used to per-
form the system and evaluate its speed.

4.3. Results of Simulation of Vehicle Detection

4.3.1. Training Result. We conduct the model training with
different versions of YOLOv5 on hardware presented in
Table 3 after collecting data and processing them. Two
models YOLOv5s and YOLOv5n are trained in 300 epochs
with batch size = 64 and image size = 640 that have the fol-
lowing training results as shown in Table 4.

Table 4 shows that the YOLOv5s model learns better and
gives higher accuracy and parameters than YOLOv5n.

4.3.2. Simulation Result. Performing simulation of both
training models on a laptop and embedded hardware as con-
figured in Table 3, we obtain the following results in Table 5
and Figure 15.

4.4. Result of Vehicle Monitoring Modules. Simulation of
both trained models combined with the DeepSORT algo-
rithm on both test hardware obtained the following results
as shown in Tables 3 and 5.

In Figure 16, each vehicle will have its local ID (ID of
each vehicle on each camera). We have built the bboxcolor
element in the system pipeline because it can randomly gen-

erate a different color for a local ID and will manage and
delete it when the media is out of the camera frame.

4.5. Result of Characteristic Extract and Re-ID. Results of
training the Re-ID model with the VeRi-776 dataset in 120
epochs on the hardware are presented in Table 6.

In Table 6, we can see that the trained Re-ID model has a
percentage of the number of cases when the model gives the
most accurate result (correct vehicle identification) for the
searched vehicle as 91.8%.

Table 7: Results of the speed of the system on embedded hardware.

Number of cameras YOLOv5s (FPS) YOLOv5n (FPS)

2 18.74 20.59

3 15.14 16.30

4 13.52 14.87

5 12.44 13.08

Table 6: Results of training the Re-ID model on the VeRi-776
dataset.

ResNet34 Accuracy (%)

Rank-1 91.8

Rank-5 96.0

Rank-10 97.8

Rank-20 99.0

Rank-50 99.6

Figure 16: Results of running modules for tracking vehicles for
four video streams.

Figure 15: Results of running modules for detecting vehicles for
four video streams.

Table 5: Simulation results for vehicle detection and tracking on different hardware.

Hardware Model One stream (FPS) Two streams (FPS) Three streams (FPS) Four streams (FPS)

Laptop
YOLOv5s 130.85 135.46 94.72 83.52

YOLOv5n 143.51 128.34 113.28 90.23

Jetson Agx Xavier
YOLOv5s 183.25 163.31 145.27 128.43

YOLOv5n 206.32 180.13 159.32 145.22

Laptop
YOLOv5s +DeepSORT 125.42 104.53 89.25 74.33

YOLOv5n+DeepSORT 136.23 115.41 98.42 82.64

Jetson Agx Xavier
YOLOv5s +DeepSORT 152.34 123.74 104.20 91.43

YOLOv5n+DeepSORT 186.20 151.84 129.53 116.03
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4.6. Evaluating System Speed. Finally, we synthesize and sim-
ulate on embedded hardware devices after training and pre-
paring the modules of the system. The results are obtained
with two models as shown in Table 7.

In Table 7, it is shown that the system speed decreases
significantly after integrating more feature extraction and
Re-ID modules. This happens because the feature extraction
block has to take as input an image of each vehicle and infers
and computes the feature vector for each of them. When we
perform on the entire system, there will be a lot of media
that need to be handled through this block leading to a
decrease in system speed.

In Figures 4 and 5, the vehicles with the rotating pulse
bounding box are the vehicles that already have a local ID
(the ID of each vehicle on each camera). However, we have
not yet matched any of the vehicles in the other cameras.
Vehicles colored inside the same bounding box are those
detected by the system as matching and being one. At this
point, the matched vehicles will have the same color filled
inside the bounding box and will be managed until the vehi-
cles disappear.

5. Conclusion

In this paper, we proposed a smart system for detecting and
monitoring vehicles across multiple surveillance cameras
using deep learning and hardware optimization. Our system
consists of three main modules: vehicle detection, vehicle
tracking, and vehicle Re-ID. Our system achieves high accu-
racy and efficiency in vehicle detection and tracking, as well
as in Re-ID across different cameras. Our system also lever-
ages the NVIDIA tools to ensure optimal use of hardware
resources and real-time processing. We evaluated our system
on a dataset of five video streams captured from different
locations and times in Ho Chi Minh City. The results show
that our system can achieve approximately 21 fps on embed-
ded hardware and an accuracy of 93.56% for vehicle detection,
70.63% for vehicle tracking, and 91.8% for vehicle Re-ID.

However, our system still has some limitations that need
to be addressed in future work. For example, our dataset is
not diverse enough to handle various weather conditions,
such as rain, storm, fog, or flood. Our algorithm for match-
ing and managing tracks is also not robust enough to avoid
wrong Re-ID of vehicles. Therefore, we plan to improve our
system by

• combining more feature pools to store tracks to serve
camera systems that do not overlap with each other

• optimizing the system to be able to run with more
cameras

• adding some rules that force track management to be
tighter

• integrating more models to solve problems such as
license plate recognition, building the interface system
for the application, and building more diverse datasets
to be suitable for different weather contexts, etc.

• integrating rules to detect vehicles with traffic violation

We hope that our system can contribute to the field of
urban traffic management and provide practical benefits
for various applications.

Data Availability Statement

The system is developed based on our model that is pre-
sented in [22]. In this paper, we have developed three main
points. Firstly, we use the dataset of means of transport col-
lected by us in urban traffic routes in Vietnam. Secondly, we
use a deep learning model to extract features of each vehicle
and Re-ID on multiple cameras in the system. Finally, we
run an entire system written in C++ on NVIDIA hardware
for high speed and the ability to run multiple live video
streams. All results are updated according to this data. In
the paper, we use the VeRi dataset in [29]. We also confirm
that all data are referred to in the paper.
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