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In VANETs, users are rational, independent, and selfish. Stimulation-based reputation management system is critical for them to
avoid selfishness and promote network performance in large-scale VANETs. The current reputation mechanisms produce some
problems, for example, overfull energy consumptions, confused collusion, and misreport. In order to detect selfish and collusive
behaviors accurately and quickly, we propose a dynamic three-layer reputation evidence decision and management mechanism,
which combine with Dempster-Shafer evidence integration mechanism to distinguish selfish nodes. In particular, the system helps
in collusion avoidance through reporting falsified reputation evidences of colluders. In addition, we borrow ideas from Weber-
Fechner’s law and design an adaptive reputation evidence gathering cycle for prolonging the lifetime of detector and overwhelming
frequent polling for reputation evidences. The simulation results demonstrate that REDS has higher detection speed for selfish
nodes and collusive observers and less network traffic of gathering reputations.

1. Introduction

Vehicular Ad hoc networks (VANETs) are one important
type of the mobile ad hoc networks (MANETs) developed
as the basis of Intelligent Transportation Systems (ITS) to
provide safer, better, and more efficient road conditions. In
VANETs, the main network nodes are the smart vehicles
and the road-side infrastructure units (RSUs) that are able
to communicate with each other through vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications.
Such communications provide a variety of applications
ranging from exchanging life-saving information, such as
environmental and driving hazards, to traffic congestion,
touristic messages, and advertisements.

The V2V and V2I communications are at short distance
and high speed in VANETs. Because the communication
range of vehicles is limited, packets in VANETs need other
vehicles to forward cooperatively. However, in real applica-
tion scenarios, the vehicles are driven by humans and the
human behavioral tendencies are reflected in the behaviors

of the nodes. In the event of high-energy consumption and
low bandwidth availability, some of the vehicle nodes in the
network might refuse to forward other’s message packets.
Such nodes are called as selfish nodes and they always intend
to maximize their own profit, causing undesirable delays in
the message delivery and increase the network latency, which
in turn affects the entire performance of the network. If a large
number of selfish vehicles exist in VANETs, the performance
and function of VANETs will be greatly influenced. For these
reasons, it is essential to detect selfishness and encourage
them in order to promote performance of VANETs. Repu-
tation mechanism is pivotal for node cooperation in packet
forwarding in the large-scale vehicular ad hoc networks [1–
3]. Through reputation evaluation, selfish behaviors can be
discovered and punished in a certain degree.

In order to monitor and isolate misbehaving of packet
forwarding in VANETs, a number of reputation technolo-
gies have developed to manage reputations and limit the
negative impact of selfish nature. For an observed vehicle
node 𝑛

0
, an evaluator (it is usually 𝑛

0
’s one-hop neighbor
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which is in 𝑛
0
’s communication range) may use watchdog

method, and so forth, to observe 𝑛
0
’s forwarding behaviors

and evaluate its reputation, or else the indirect neighbors
(it is usually not within 𝑛

0
’s communication range) can

adopt recommended and mediate reputations from 𝑛
0
’s one-

hop trustworthy neighbors [4, 5]. The direct observation
behaviors are usually influenced by channel noise or other
adverse conditions. If the observer is interfered, the sole
reputation may be inaccurate. In the latter, the final evaluator
merges local reputations from reliable recommenders and
forms the global reputation in the end. However reputation
recommendation may cause some problems, such as overfull
cost due to periodical reputation information exchanging,
reputation storage, and management because of movement
of vehicles and so on. It is difficult to distinguish exactly
collusion frommisreport and further to punish conspirators.

The network traffic consumption by continually report-
ing reputation data is another major concern problem. In
VANETs, vehicle nodes belong to different individual. The
users are not willing to consume extra traffic or resources
for periodically reporting local reputations in order to avoid
influencing personal applications. In addition, reputations
from different recommenders on the different period may
cause local reputations confusion (see Section 3.2). Calcu-
lating reputation based on a reasonable reporting cycle is
essential for saving network traffic and resources andmaking
reputation more accurate.

Reputation management needs to better suit VANETs
and increase the reputation accuracy, and thus we propose
a hierarchical reputation evidence decision system (REDS)
based on the Dempster-Shafer evidence theory. The main
merit of Dempster-Shafer evidence method [6, 7] is that it
combines different evidences, especially some uncertainties
from different evidence sources. Uncertain evidences are
used to denote reputations caused by vehicle mobility and
channel noise and further promote reputation accuracy and
mitigate the adverse impact of network characteristics.

REDS is a dynamic three-layer reputation evidence
combination structure. In the lowest coordination observer
decision layer, some of 𝑛

0
’s 1-hop neighbors which stay within

𝑛
0
’s communication range during a complete reputation

gathering cycle are regarded as coordination observers. They
detect and report 𝑛

0
’s forwarding behaviors as reputation

evidences.The intermediate coordinationmanager combines
the evidences reported from the coordination observers in
its own detection domain using evidence theory and sends
merged data to 𝑛

0
’s host manager in the highest layer.

In the end, the host manager calculates several reputation
evidences and correspondingly forms 𝑛

0
’s credit. If 𝑛

0
’s credit

is negative, it is selfish.
One of the advantages of the paper is that colluders

can also be detected through reputation evidence feedback.
Colluders usually report higher reputations for each other
and decrease other’s reputations. To avoid collusion, the host
manager feeds the ultimate reputation back to different layers’
evaluators. The upper evaluator can manage the trustworthy
degree of evaluators of lower layer. The trustworthy degrees
of evidence directly influence evaluators’ credits. If an evalu-
ator’s reputation evidences are always deviated from others,

it tends to be a colluder, and then its credit is also negative in
the end.

In addition, the responsibility for transmitting reputation
evidences leads evaluators to consume more network traffic.
So we design an adaptive evidence gathering cycle in views of
vehicles’ mobility and personal applications.

In detail, our contributions are as follows.

(1) The dynamic three-layer reputation evidence combi-
nation system: in the current reputationmanagement
technologies [8–10], the reputation manager ignores
the reputation which deviates dramatically from the
average value in order to avoid falsified reputation. It
leads the accurate reputation to be abandoned when
large-scale collusions exist. Our proposed scheme
combines Dempster-Shafer evidence with hierarchi-
cal evidence clustering on the dissimilar evaluation
layer to calculate more accurate reputations and
detect selfish vehicle nodes in less time than other
typical reputation algorithms. Especially it calculates
the trust degree of evaluators and therefore effectively
isolates collusive coordination observers that conspir-
atorially report higher reputation for selfish nodes.

(2) Adaptive reputation gathering cycle: too frequent
polling reputation evidences will cost plenty of net-
work traffic. An adaptive reputation gathering cycle
based on Weber-Fechner’s law is proposed in order
to maintain the stability of reputation management
system and save network traffic. Considering vehi-
cles’ movement and personal applications, dynamic
changing cycle can seek a balance between reputation
valuation accuracy and network traffic.

The rest of papers are organized as follows. Section 2 pro-
vides some related works about the reputation cooperation.
Section 3 introduces our hierarchical reputation evidence
decision system (REDS), and Section 4 depicts the simu-
lation results with respect to typical reputation evaluation
algorithms and demonstrates our algorithm’s efficiency and
superiority. In Section 5, we conclude the paper.

2. Related Works

Some research works have been done on vehicle stimulation
cooperation in VANETs at present. Related research of
MANETs is relatively abundant. The stimulation coopera-
tion mechanisms in the MANETs are generally classified
into virtual currency-based and reputation-based stimulation
system. In the virtual currency system, nodes pay virtual
money (called nuglets) [11] for forwarding service. In detail,
a source pays for each forwarding node on the routing path.
And each node also needs to provide forwarding service to
gain nuglets. The previously mentioned price mechanism is
not flexible enough to maximize cooperators’ profits. For
example, a source hardly evaluates accurately the total of
nuglets in the dynamic changing network environment. Some
researchers introduce economic incentive technology in the
self-organized ad hoc networks. To maximize the payoff of
relay nodes, Ji et al. [12] propose a game pricing-based routing
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Figure 1: (a) Reputation-based network topology. (b) Three-layer reputation decision architecture.

mechanism. Packet-forwarding services are negotiated and
auctioned in the orthogonal frequency-division multiplexing
setting.Mukherjee andKwon [13] design a robustmultiobject
bundled auction method for simultaneous partner selec-
tion. After successful auction, a contractor (winning bidder)
achieves satisfied QoS and rewards the service provider
(seller).

Reputation management systems are adopted to detect
and isolate misbehaving nodes to release their negative
influence on the network performance. In the light of adverse
impact of misbehaving nodes, the paper [14] presents the
watchdog and detects uncooperative relay nodes. Detecting
node maintains a buffer to store the number of neighbors’
received and sent packets. But it is probably influenced by
channel collision. MobiGame [15] designs a user-centric rep-
utation incentive system for delay tolerant network (DTN).
Packet forwarding’s cost and reward can get a Bayesian
equilibrium through a game-theoretic scheme. Refaei et al.
[1] represent a time-slotted evaluation approach to detect
timely node’s changing behaviors. In addition, the sequential
probability ratio test (SRRT) is used for judging whether a
neighbor is selfish. Anantvalee andWu [9] define two thresh-
olds, THcoop and THselfish (THcoop > THselfish) to classify
cooperative and selfish nodes, and then encourage suspicious
nodes whose reputation in the range [THselfish, THcoop] to
cooperate.

For the reputation store, DHT Trust overlay network [16]
uses CHORD to distribute local reputation to reputation
manager. Finger nodes issue reputation feedback in the
certain interval and fast aggregate local reputation into the
global reputation. Li and Shen [8] propose the account-
aided reputation management system (ARM) to stimulate
selfish mobile nodes.The ARM system calculates reputations
and credits to distinguish selfishness from cooperation. In
particular, the authors introduce the distributed hash table
(DHT) to store circulating reputations and credits. As node
mobility, DHT uses a lightweight maintenance protocol to
reduce the number of reputation structure reestablishment.

Although the above-mentioned references have provided
incentive mechanisms for selfish nodes in the wireless

self-organized network, there are some deficiencies that need
to be solved further, for example, reputation imprecision due
to vehicles’mobility, reputation falsifying caused by collusion,
and so forth. And thus, our REDS effectively promotes rep-
utation accuracy by using hierarchical reputation evidence
decision and distinguishes suspect collusion vehicle nodes
and decreases their trustworthy degree through reputation
feedback.

3. Reputation Evidence Decision System

In the paper, we propose a dynamic three-layer reputation
evidence decision system. As illustrated in Figures 1(a)
and 1(b), the hierarchical structure contains all of mobile
vehicles that are classified into 4 roles: host manager (HM),
coordination manager (CM), coordination observer (CO),
and observed nodes. An observed node 𝑛

0
has only one

host manager (HM). HM is a special type of infrastructure
called Road Side Unit (RSU), which is deployed along the
road for connectivity. They are deployed in specific areas
and completely cover the whole VANETs. HM is regarded as
a trustful node, in charge of merging reputation evidences
about the observed node and forming the final reputation.
CMs are also considered to be trustful in our paper. They
are the coordination managers in the second layer. CMs take
the charges of reputation decision, merge the reputation evi-
dence from Cos, and send the local synthetically reputation
evidence to HMs.

In addition, 𝑛
0
has a lot of 1-hop neighbors (vehicles

which stay within the range of 𝑛
0
’s communication radius

during a complete reputation gathering cycle), part of which
are COs. For example, suppose that 𝑛

0
is an observed node

and a vehicle node 𝑛
1
runs passing 𝑛

0
. If the time from 𝑛

1

enters 𝑛
0
’s communication range to the time 𝑛

1
runs out

of 𝑛
0
’s communication range is not less than the reputation

gathering cycle, then 𝑛
1
can be regarded as a coordination

observer. In the intermediate layer, several 𝑛
0
’s one-hop

neighbors, which staywithin the range of 𝑛
0
’s communication

radius no less than two complete reputation gathering cycles,



4 International Journal of Distributed Sensor Networks

are regarded as coordination managers. That is, if a coordi-
nation observer 𝑛

1
stays within the range of 𝑛

0
’s communi-

cation radius no less than two complete reputation gathering
cycles, then it upgrades itself to a coordination manager. It is
obvious that the coordinationmanager of one observed node
has relatively similar motion state with the observed node.

However, if a CO or a CM runs out of the observed node’s
communication range, it downgrades itself to a normal node,
and will be no longer engaged in reputation gathering in the
current round until it enters the observed node’s commu-
nication range again. In a reputation gathering cycle, each
CO chooses the nearest CM in 𝑛

0
’s communication range,

detects the statistical value with respect to 𝑛
0
’s forwarding

behaviors as reputation evidences through vehicle wireless
communication devices, and reports the reputation evidences
to the CM. However, a CMmanages several COs and merges
the evidences from COs in its management domain and
sends to 𝑛

0
’s host manager (the highest layer). For a running

observed node 𝑛
0
, if there is no CO in its communication

range, then CMs detect the observed node’s forwarding
behaviors directly. If there is no CM in its communication
range, then COs report the reputation evidences directly
to HM. Each observed node has its own host manager
that is responsible for calculating the account of forwarding
services.

An example depicted in Figures 1(a) and 1(b) is given as
follows. It is assumed that the observed vehicle node 𝑛

0
has

6 coordination observers which sequence from 𝑛
1
to 𝑛
6
. 𝑚
2

is the nearest CM to 𝑛
3
and 𝑛

4
, so 𝑛

3
and 𝑛

4
are managed

in the same domain of 𝑚
2
. Here 𝑚

2
, 𝑚
3
, and 𝑚

4
are viewed

as 𝑚
1
’s CO. The host manager of 𝑛

0
is 𝑚
1
, which is the

nearest road-side unit to 𝑛
0
. In the lowest layer of reputation

evidence decision (coordination observer reputation decision
layer), each coordination observer records the received and
forwarded packets of 𝑛

0
, judges the uncertain conditions

(may be caused by wireless channel unconventionality) by
inquiring the coordination observer, and forms the basic
belief assignment (BBA) values (see Section 3.1 for more
explanations) corresponding to the uncertain conditions.
According to 𝑛

0
’s behaviors and coordination observer’s

monitoring value, the coordination observer reports BBA
values to its upper manager. They transmit the BBA value to
𝑚
2
.
In the middle-layer of reputation decision, 𝑚

2
merges

the reputation evidences from 𝑛
3
and 𝑛

4
and sends the local

synthetic reputation evidence to 𝑚
1
. As 𝑛

0
’s host manager is

𝑚
1
, so 𝑚

1
combines different reputation evidences reported

by several coordination managers (𝑚
2
, 𝑚
3
, 𝑚
4
) and reputa-

tions reported from 𝑛
1
and 𝑛

2
. In the end, 𝑚

1
calculates the

comprehensive value in the highest reputation decision layer.
Some reputation evaluation algorithms ignored the high

deviated reputation which may be caused by misreport or
falsification. On the one hand, the benign reputation may
be abandoned in the large-scale collusion environment and
then the benign node is classified into selfish. On the other
hand, they have no restraint measures to punish colluders
with falsified reports in many times. These falsified or mis-
reporting nodes are unsuitable to continue to serve as COs.
Sowe introduce theDempster-Shafer Evidence theory [17, 18]

into reputation decision in order to calculate reputationmore
accurately. Through reputation feedback on COs and CMs,
we can fast detect selfish node and colluders.

Moreover, we design a dynamic reporting cycle for coor-
dination managers and coordination observers according
to their mobility and resources. This is because they will
consume extra network traffic for collecting andmerging evi-
dences. However mobile vehicles belong to different individ-
ual users, and then the extra network traffic consumptionwill
influence user’s personal applications. Itmeans the reputation
managers should save extra network traffic consumption.

3.1. Reputation Evidence Combination. In the Dempster-
Shafer evidence reasoningmechanism, evidences are denoted
as some possible events. Using reasoning combination rule
to aggregate multiple belief evidences under uncertainty. To
calculate an accurate comprehensive reputation, we consider
effect of each reputation evidence rather than simply ignore
the value that deviates largely from the average. We design
the dynamic three-layer reputation evidence aggregation
structure for reputation evaluator at different layers. And fur-
thermore, the system executes reputation feedback to amend
each evaluator’s trust weight and distinguish colluders.

In the coordination observer reputation decision layer,
a set of hypotheses about observed forwarding behaviors is
denoted as a frame of discernment Θ = {𝑂,𝑂}. 𝑂 indicates
that the observer has monitored the forwarding events of
the monitored node and 𝑂 indicates that the observer does
not monitor any forwarding behaviors. In the following, the
power set 2Θ includes all the subsets of Θ. Here 2Θ =

{{Φ}, {𝑂}, {𝑂}, {𝑂, 𝑂}}, each symbol of which respectively
represents the hypotheses about impossible, forwarded, non-
forwarded, and uncertainty.

Observer 𝑖 calculates 𝑛
0
’s BPA function per unit time as

𝑚 : 2
Θ
󳨀→ [0, 1]

𝑚
(𝑛)

𝑖,𝑗
(Φ) = 0.

(1)

The BPA for proposition 𝑂 is

𝑚
(𝑛)

𝑖,𝑛0
({𝑂}) =

𝑁𝐹
(𝑛)

𝑖,𝑛0

𝑁𝑅
(𝑛)

𝑖,𝑛0

, (2)

where 𝑁𝐹(𝑛)
𝑖,𝑛0

and 𝑁𝑅(𝑛)
𝑖,𝑛0

denote observer 𝑖 recording the
number of packets that 𝑛

0
forwarded and received at 𝑛th

unit time in the normal wireless network environment when
observer 𝑖 runs in 𝑛

0
’s communication range. However wire-

less network conditions possibly cause adverse interferences
(e.g., buildings’ obstruction,moving, channel noise, collision,
congestion, etc.), which lead to monitoring incompletely.
Define uncertainty being aroused by wireless channel uncon-
ventionality. When an observer 𝑖 detects nonforwarding
events corresponding to node 𝑛

0
caused by adverse wireless

environment in a period, then it contacts any coordination
observer 𝑘 which runs in the same CM’s domain. Observer
𝑖 acquires 𝑛

0
’s forwarding data recorded by 𝑘 in 𝑖’s jammed
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period and treats it as uncertainty value. Observer 𝑖 deter-
mines whether the observed value is equal to 𝑘’s observed
value. If it is, itmeans that detection behaviors are not affected
by network environment. It is assumed that𝐴𝐹(𝑛)

𝑖,𝑛0
and 𝐴𝑅(𝑛)

𝑖,𝑛0

indicate that observer 𝑖 records the number of packets that
𝑛
0
forwarded and received in the abnormal period. Consider

𝐴𝐹
(𝑛)

𝑖,𝑛0
= 𝐴𝐹
(𝑛)

𝑘,𝑛0
and 𝐴𝑅(𝑛)

𝑖,𝑛0
= 𝐴𝑅
(𝑛)

𝑘,𝑛0
. Consider

𝑚
(𝑛)

𝑖,𝑛0
({𝑂}) =

𝑁𝐹
(𝑛)

𝑖,𝑛0
+ 𝐴𝐹
(𝑛)

𝑖,𝑛0

𝑁𝑅
(𝑛)

𝑖,𝑛0
+ 𝐴𝑅
(𝑛)

𝑖,𝑛0

. (3)

If less, it means that 𝑖’s monitoring data has been affected
by network environment. And then 𝑖 should utilize 𝑘’s
observed value in its abnormal period. But in order to avoid
collusion, 𝑖 will incompletely believe 𝑘’s observed value and
multiplies that value by a discount factor𝛼, or else, 𝑖 abandons
𝑘’s observed value because 𝑘 may fall into wireless channel
unconventionality. For example, 𝑖 gets 𝑘’s detected total
number of forwarded and received packets in the anomalous
period and then BPA for proposition {𝑂, 𝑂} is

𝑚
(𝑛)

𝑖,𝑛0
({𝑂,𝑂}) =

𝛼 ⋅ 𝐴𝐹
(𝑛)

𝑘,𝑛0

𝑁𝑅
(𝑛)

𝑖,𝑛0
+ 𝐴𝑅
(𝑛)

𝑘,𝑛0

. (4)

Here the discount factor 𝛼 is defined as follows:

𝛼 =

𝑁𝐹
(𝑛−1)

𝑖,𝑛0

𝑁𝑅
(𝑛−1)

𝑖,𝑛0

,

𝑚
(𝑛)

𝑖,𝑛0
({𝑂}) = 1 − 𝑚

(𝑛)

𝑖,𝑛0
({𝑂}) − 𝑚

(𝑛)

𝑖,𝑛0
({𝑂,𝑂}) .

(5)

A coordination observer may be colluder that reports a
higher reputation for selfish nodes. Once a CO is detected to
be a colluder, it will be not suitable for reputation gathering
and decision even though it still runs within the observed
node’s communication range. These collusive COs will be
punished and isolated and will not be permitted to upgrade
themselves to be CMs. To detect colluders, 𝑚

1
calculates

the trust weights of coordination observers and coordination
managers which run within the range of 𝑛

0
’s communication

radius during the current reputation gathering cycle and fur-
ther feedbacks them, respectively, to coordination managers
(Figure 2). Define the ultimate belief reputation calculated by
the host manager as follows:

𝑒
∗
= ⟨𝑚

∗
({𝑂}) , 𝑚

∗
({𝑂}) ,𝑚

∗
({𝑂,𝑂}) ,𝑚

∗

(Φ)⟩ . (6)

Define the direction cosine between any evidence by any
evaluators 𝑒

𝑖
and 𝑒∗ as follows:

𝜌
𝑖
= cos (𝑒

𝑖
, 𝑒
∗
) =

𝑒
𝑇

𝑖
𝑒
∗

󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
⋅ ‖𝑒
∗
‖

=

𝑒
𝑇

𝑖
𝑒
∗

[(𝑒
𝑇

𝑖
𝑒
𝑖
) (𝑒
∗𝑇

𝑖
𝑒
∗
)]
1/2
. (7)

The trust weights of evaluators (coordination observers
and managers) are defined as follows:

𝜆
𝑖
=

𝜌
𝑖

∑
𝑛
𝜌
𝑛

. (8)
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Figure 2: Feedback for trustworthy weights.

Through evaluation of trust weights of COs and CMs,
a reputation evidence reported by a CO or a CM will be
influenced:

𝑚
𝑖 (
𝐴) ←󳨀 𝑚𝑖 (

𝐴) ⋅ 𝜆𝑖
(∀𝐴 ∈ 2

Θ
) . (9)

Define the reputation evidence combination rule based
on reputation evidence feedback as follows:

𝑚
𝑖𝑗
(𝐴) = 𝑚

𝑖
⊕ 𝑚
𝑗
(𝐴) =

1

1 − 𝑘

∑

𝑋∩𝑌=𝐴

𝑚
𝑖
(𝑋)𝑚

𝑗
(𝑌) . (10)

Here 𝑘 is a normalized constant. Consider 𝑘 =

∑
𝑋∩𝑌=0

𝑚
𝑖
(𝑋)𝑚

𝑗
(𝑌). A new reputation evidence is deduced

through combining two BPAs𝑚
𝑖
and𝑚

𝑗
. But the typical D-S

algorithm may cause evidence conflict; for example,

𝑚
1
: 𝑚
1 (
𝐴) = 0.99, 𝑚

1 (
𝐵) = 0.01, 𝑚

1 (
𝐶) = 0

𝑚
2
: 𝑚
2
(𝐴) = 0, 𝑚

2
(𝐵) = 0.01, 𝑚

2
(𝐶) = 0.99

𝑘 = 0.9999, 𝑚 (𝐴) = 𝑚 (𝐶) = 0, 𝑚 (𝐵) = 1.

(11)

The combined evidence represents the probability of
event 𝐵 being 1 although BPAs of𝑚

1
and𝑚

2
about 𝐵 are 0.01.

To further avoid evidence conflict, we improve D-S
evidence rule integrated with hierarchical clustering theory
besides adding trust weight for each reputation evaluator.
In the coordination manager reputation decision layer, a
coordination manager receives the coordination observers’
belief reputation value in its own domain. If some evidence
equals 0, then we use the hierarchical clustering mechanism
to combine evidences to avoid evidence conflict, or else it uses
weighted D-S evidence combination rule.

It is assumed that the coordination manager acquires 𝑁
evidences. Classify𝑁 clusters according to𝑁 evidences, and
each cluster only includes a reputation evidence. When com-
bining reputation evidences by using hierarchical clustering
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Begin 𝐷
𝑖𝑗
= 0,𝐷

𝑘𝑙
= 0,

DoWhile n evidences are combined as a compositive conclusion
For 𝑖 = 1 to𝑁
For 𝑗 = 1 to 𝑁
Calculate𝐷

𝑖𝑗
according to formula (12);

End For
End For
𝐷
𝑘𝑙
= minimize (𝐷

𝑖𝑗
);

If ∃𝑚
𝑖
(𝐴
𝑗
) = 0 (𝑖 ∈ {𝑘, 𝑙}, 𝑗 = {{𝑂}, {𝑂}, {𝑂, 𝑂}})

Then
Combine reputation evidences based on hierarchical clustering (formula (10)–(12));
Else
Use reputation𝐷-𝑆 evidence combination (formula (7)–(9)) for integration. And𝑚

𝑖𝑗
is

regarded as a new gravity center if using hierarchical evidence clustering next combination.
End If
EndWhile
End

Pseudocode 1

theory, the distance between evidences is defined as distance
between their gravity centers. We assume the gravity centers
of clusters 𝜔

𝑝
(each cluster only includes an evidence) and 𝜔

𝑞

are 𝑥
𝑝
and 𝑥

𝑞
, and the number of the samples in them is 𝑛

𝑝

and 𝑛
𝑞
, respectively. Then we combine 𝜔

𝑝
and 𝜔

𝑞
as a new

reputation evidence cluster 𝜔
𝑖
; thus 𝜔

𝑖
would own 𝑛

𝑝
+ 𝑛
𝑞

samples. Cluster 𝜔
𝑖
’s gravity center would be as follows:

𝑥
𝑖
=

1

𝑛
𝑝
+ 𝑛
𝑞

(𝑛
𝑝
𝑥
𝑝
+ 𝑛
𝑞
𝑥
𝑞
) . (12)

Assume that another evidence cluster 𝜔
𝑗
’s gravity center

is 𝑥
𝑗
, the Euclidean distance𝐷

𝑖𝑗
between clusters 𝜔

𝑖
and 𝜔

𝑗
is

defined as follows.𝐷
𝑘𝑙
is the minimal value of𝐷

𝑖𝑗
(∀𝑖, 𝑗):

𝐷
𝑖𝑗
= √(𝑥

𝑖
− 𝑥
𝑗
)

𝑇

(𝑥
𝑖
− 𝑥
𝑗
).

(13)

The pseudocode of reputation evidence calculation is
shown in Pseudocode 1.

In the host manager reputation decision layer, the host
manager needs to know the relative degree about each
coordination manager when evidence combination. Namely,
it calculates the direction cosine between 𝑒∗ and 𝑒

𝑚𝑖
reported

by each coordination manager and further gets the trust
weights of these coordination managers. And then it uses
the same combination mechanism and integrates reputation
evidences per unit time reported by different coordination
managers.

High-reputed and low-reputed nodes should be rewarded
or punished. Define a selfish character factor 𝑆

𝑜
(is set as

initial number) for each observed node. The host manager
calculates the global reputation 𝑅

𝑔
and relation between 𝑆

𝑜

and 𝑅
𝑔
is

𝑆
𝑜
←󳨀 𝑆
𝑜
+ (−1)

𝑟
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
0.5 − 𝑅

𝑔

󵄨
󵄨
󵄨
󵄨
󵄨
. (14)

Here 𝑟 = 0 when 𝑅
𝑔
≥ 0.5; otherwise 𝑟 = 1. When 𝑆

𝑜
<

0, then the observed node is completely selfish and must be
isolated.

Colluders report high reputation for selfish nodes and
low reputation for cooperators, so it also expects its ally to
report high reputation in return. It can be regarded as selfish
in certain extent. Given a trust weight of the coordination
observer 𝑖, its selfish character factor will decline along with
the decreasing trust weight. The punishment measure for a
colluder 𝑗 is as follows (𝑛 is the current iteration):

𝑆
0
←󳨀 𝑆
0
− (𝜖 − 𝜆

(𝑛)

𝑗
) . (15)

Here 𝑆
𝑜
is only used for judging the selfishness and 𝜖 is an

initial value. Credit that stimulates nodes to provide or share
more forwarding services is defined as follows. If 𝑆

𝑜
of a node

is less than zero, its credit correspondingly is cleared:

𝐶
𝑖
(𝑛) = 𝐶

𝑖
(𝑛 − 1) − 𝑝

𝑖
+ 𝑅
𝑔𝑖
+ 𝑐
𝑖
. (16)

Here 𝐶
𝑖
(𝑛) is the observed node 𝑖’s credit in the process

of 𝑛th reputation evaluation period of the host manager.
𝑝
𝑖
is the paid credit of 𝑖 for sharing forwarding service.

𝑐
𝑖
is cost factor for consuming extra network traffic for

reputation evidence report and combination. It is because
the coordination observers consume extra network traffic for
reputation report and combination that the corresponding
credits should be assigned to them.

3.2. Adaptive Reputation Gathering Cycle. However polling
may cause more network traffic consumption if vehicle
nodes gather reputation more frequently. In VANETs, selfish
vehicles [19, 20] pursue the least cost to reduce network
traffic consumption. But the responsibility for gathering
and merging reputation leads evaluator to consume more.
It should seek a balance between gathering frequency and
consumption of network traffic. Therefore, each neighbor
vehicle node which runs within the range of 𝑛

0
’s commu-

nication radius needs to determine an adaptive gathering
cycle according to its current applications in the network,
and then according to the new reputation gathering cycle and
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their velocities, vehicle nodes determine whether they can be
regarded as COs or CMs.The number of current applications
reflects traffic load and remaining resources of evaluators.The
more applications an evaluator has, the longer the gathering
cycle is set.

In the paper, we improve Weber-Fechner’s law [21] in
order to update gathering cycle that is subject to a variety of
environment stimulating factors, such as the number of cur-
rent applications and mobility of vehicles. Weber-Fechner’s
law uses a linear function of logarithm for describing the
relationship between individual’s response and incitement
due to external environments. In the following formula,
𝑆 denotes the intensity of sensation, 𝑅 the magnitude of
stimulation, and𝐾 a constant. Consider

𝑆 = 𝐾 ln𝑅. (17)

Assume that Will is the response degree of changing
gathering cycle, which corresponds to VANETs environment
reaction such as the number of current applications 𝐴 and
the velocity of vehicles 𝑉. These two influence factors can
be considered as environment stimulating factors, and Will
reflects the corresponding responses of changing gathering
cycle. Will(𝑛) should be recalculated before the 𝑛th cycle.
As an evaluator is also a common mobile vehicle node, its
traffic loads and computational resources are subjected to a
variety of applications. The larger the number of applications
executed on a vehicle node, the more traffic will be occupied.
The gathering cycle will be prolonged companying with
remaining traffic decreasing. As vehicles move quickly which
makes the topology of VANETs change frequently. When a
vehicle node moves at a high speed, its surroundings change
frequently. To gain more accurate reputation, the gathering
cycle should be moderately reduced. 𝜔

𝑖𝑗
(𝑗 = 1, 2) is the

weight of each environment stimulating factors:

Will(𝑛) = 𝜔
1
ln𝐴(𝑛) + 𝜔

2
ln 1

𝑉
(𝑛)
,

ΔWill(𝑛) =Will(𝑛) −Will(𝑛−1) = 𝜔
1
ln 𝐴
(𝑛)

𝐴
(𝑛−1)

+ 𝜔
2
ln 𝑉
(𝑛−1)

𝑉
(𝑛)
,

(18)

where Will(𝑛) reflects the corresponding responses of chang-
ing gathering cycle, 𝐴(𝑛) is the number of current applica-
tions, and 𝑉(𝑛) is the velocity of vehicles. ΔWill(𝑛) is the just
noticeable difference (JND) for changing the cycle according
toWeber-Fechner’s law. If ∃|ΔWill(𝑛)| >Will(𝑛−1) ×𝑘web (𝑘web
is Weber fraction, generally 𝑘web = 1/30), then evaluator’s
gathering cycle increases or decreases 1 minute. Otherwise,
the cycle is inalterable:

𝑇 =

{
{
{
{

{
{
{
{

{

𝑇 + 1, ΔWill(𝑛) >Will(𝑛−1) ⋅ 𝑘web,

𝑇 − 1, ΔWill(𝑛) < −Will(𝑛−1) ⋅ 𝑘web,

𝑇, Else.

(19)

For example, 𝐴(𝑛−1) = 10, 𝐴(𝑛) = 12, 𝐵(𝑛−1) = 0.3, and 𝐵(𝑛) =
0.25. Consider Will(𝑛) = 1.9356, Will(𝑛−1) = 1.7533, Will(𝑛) =
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Figure 3: The time for detecting all selfish observed nodes.

0.1823 >Will(𝑛−1) × 𝑘web = 0.0584; then gathering cycle adds
1 minute.

4. Simulation Analysis

We conduct simulations to demonstrate the performance of
REDS in our paper. The simulated VANETs include 60/120
vehicle nodes randomly deployed in the 1 km driveway area.
The velocity of each vehicle is dynamically changed and is set
randomly from 50 km/h to 100 km/h. As shown in Figure 1,
the RSUs are deployed along the road and regarded to be
HMs. Different roles of vehicle nodes such as COs or CMs
are determined by vehicle nodes themselves according to the
dynamic changing gathering cycles and vehicle’s velocities.
We assume all of managers are trustworthy, while coordina-
tion observers maybe collude with observed nodes in order
to report high reputation evidences for them. Colluders are
divided into random collusion and group collusion. Group
collusion means all of coordination observers in a group
advisedly overwhelm other groups. The initial credits of all
of observed nodes (ONs) and COs are equal to 2. Physical
bandwidth is set to 2Mbit/s. We compare our algorithm with
ARM [8] and purely D-S Proof Fusion mechanism.

The ARM system calculates reputations and credits to
distinguish selfishness from cooperation. In particular, the
authors introduce the distributed hash table (DHT) to store
circulating reputations and credits. As node mobility, DHT
uses a lightweight maintenance protocol to reduce the num-
ber of reputation structure reestablishment.

Firstly we verify the validity of selfish node detection
when the network size changes. In Figure 3, there are 10
selfish observed nodes (ONs) and 10 cooperative ONs. In
the communication ranges of these observed nodes, we set
15 collusive nodes and 25 cooperative nodes (include ONs’
host managers). We assume that all collusive nodes and
cooperative nodes have qualification to be COs, whereas all
managers (including HMs and CMs) need to be cooperative
and trustworthy.That is to say, a collusive CO cannot upgrade
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Figure 4: (a) Average credit of selfish ONs. (b) Average credit of cooperative ONs.

itself to a CM even though it runs within the corresponding
observed node’s communication range all the time.

Figure 3 shows the time for detecting all of selfish
observed nodes. Here selfish degrees (ON’s drop packet rate)
are defined in [0.6, 0.9]. REDS has the minimum detection
time for all of selfish nodes. The greater the selfish degree
is, the less the detection time is taken. While in the figure
we see a comparative result in D-S when no one ticket veto
situation happens, and ARM shows the worst performance
in this situation. As ARM only simply ignores anomalous
reputations rather than punishing colluders, it is difficult to
distinguish cooperators from collusive COs in the large-scale
group collusion. And then ARM consumes the longest time
for detecting selfishness.

In Figure 4, we define, respectively, the selfish degree of
the coordination observer nodes in [0.8, 1] (Figure 4(a)) and
[0, 0.2] (Figure 4(b)) and evaluate their credits according to
the simulation setting as Figure 3. Each ON’s initial credit
is set to 2. For selfish ONs in REDS, the average credit
decreases slowly in the start detection stage. That is because
the reputation feedback has not distinguished all of collusive
COs. As time goes on, collusive COs are detected one by one
(shown in Figures 6–9). Based on this, the selfishON’s credits
(shown in Figure 4(a)) decrease quickly because less collusive
COs report fake high reputation evidences. REDS and DS act
more steeply which means that they detect selfishness more
quickly than ARM. ARM puts selfish nodes into blacklist
but has no ability to detect collusive COs. The selfish nodes’
reputation evaluations are always influenced by falsified high
reputation reported by collusive COs.

Figure 4(b) represents average credit of cooperative ONs.
Selfish observed nodes are detected as quickly as possible
in the REDS, and thus the system has a higher throughput
than others. As more trustworthy nodes are selected to be
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Figure 5: Average credits change over different network size.

forwarding node, the credits of cooperative ONs have stably
increased compared with DS and ARM.

In Figure 5, we evaluate whether the average credit of
REDS would be influenced by the network size or not. The
simulation executes 33 minutes, respectively, with different
network size (60 or 120). The number of selfish nodes is 1/6
of the total.The total of cooperative ONs follows the number.
We can see that the average credit of selfish observed nodes
has decreased to zero. The credit’s slope with 60 nodes is
similar with 120 nodes, which means REDS executes stably
regardless of the network size. When the rate of number of
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Figure 9: Network traffic consumption.

COs to number of ONs is changeless, the declining ratio of
credit is also stationary.

Wewill verify the effectiveness of collusive COs’ detection
in REDS when the network size is 60. Define 15 collusive
nodes are randomly distributed and they have equal change to
beCOs. In each coordinationmanagers’ domain, 2∼3 random
colluders are included at most in the random collusionmode.
Group collusion mode represents the network including
several random colluders and 1∼2 collusion groups. All of
coordination observers in each collusion group agree with
selfish observed nodes to report falsified high reputation
evidences.

Figure 6 demonstrates the detection time for collusive
coordination observers. We can see that group collusion
detection is slightly faster than random collusion in REDS.
Through reputation feedbacks on COs and CMs, REDS
amends their trust weights.We have assumed that all of coor-
dinationmanagers are trustworthy. As to group collusion, it is
easier for CM to evaluate the behaviors of all of coordination
observers in its own management domain.

Figures 7 and 8 verify the stability of REDS in the
conditions of random collusion and group collusion. The
network size is 60, and the total of colluders (including group
and random colluders) is 15. Figure 7 represents the average
credit of colluders when the number of group colluders is 10
(5 random collusion, in addition) or 15 (no random collusion
in the network). We can see that average credit decreasing
speed of 15 group colluders is 0.088 per minute, slightly faster
than 10 group colluders (0.069 per minute). According to
the results of Figure 6, group colluders are detected in less
time due to the trustworthy weights of group colluders and
their high-level coordinationmanagers are always lower than
others.

Figure 8 presents observation results of average credit
of colluders over different network size (60 or 120). If all



10 International Journal of Distributed Sensor Networks

collusive vehicles become COs, then the number of collusive
COs is 1/4 of the total. We adopt reputation feedback and
credit update in REDS, and each observed node insures more
than 5 COs to detect itself though the network size enlarges.
REDS detects colluders in a stable speed and approximately
regardless of network size in the distributed conditions.

Figure 9 represents the network traffic consumption
in different reputation evaluation system. The simulation
settings are followed as in Figure 3. The packets size of
reputation evidence and weight feedback is 512 bytes. For
simplicity, the following algorithms do not add more nodes
for new ONs after removed selfish ONs and collusive COs
to blacklist. It means that they only continue to detect old
cooperative ONs.

Curves of DS and ARM have the same gradient and 𝑌-
value at the same time. ARM collects local reputation and
calculates global reputation in the end. DS calculates the
comprehensive reputation evidence in the light of similar
rule. DS detects selfish observed nodes faster than ARM
according to Figure 3, and totally it shows a lower con-
sumption than ARM after 43 minutes. REDS-fc means the
simulation results adopt reputation evidence feedback as
REDS, but coordination managers gather reputation evi-
dences at stable period. It produces more extra network
traffic consumptions than others because trustworthy weight
feedback packets are distributed to coordination managers
in fixed cycle. REDS determines an adaptive gathering cycle
according to evaluators’ applications and velocities in the
network. The changing gathering cycle can effectively reduce
gathering consumptions though adopting feedback evidence
mechanism. So REDSmakes better performance than others.

5. Conclusion

In the paper, we propose a three-layer reputation evidence
decision system (REDS) to detect misbehaving nodes in
VANETs. REDS can distinguish fraudulent information from
real reputation evidences and avoid credits of cooperative
nodes being affected by falsified information. Collusive coor-
dination observers usually conspiratorially report fraudulent
reputation evidences in a random or group collusion way.
If only ignores highly deviated information rather than
punishes premeditated reporters, collusion will always exist.
We feed back trust degree of each coordination observer to
its coordination manager, thus helping reputation evidence
combination and collusion detection. The credits of the
coordination observers decreased or increased according
to the results of their trust degree weights. Moreover, an
adaptive reputation evidence gathering cycle is proposed to
replace frequent polling mechanism and save the network
traffic.The simulation results demonstrate REDS having high
performance of detection for selfish and collusive behaviors.
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